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1 Introduction

The Chinese stock market is one of the most interesting equity markets in

the world by its size, scope, structure and recency. These features have a

deep influence on its behavior and returns, including on the occurrence of

rare events, in particular stock market crashes and downturns. In fact, the

“2015 Chinese stock market crash” is just the latest in a series of 22 major

downturns in a twenty-six years history.

In this paper, we discuss six stylized facts on the return distribution of

the Shanghai Stock Exchange Composite Index (SHCOMP) and the Shen-

zhen Stock Exchange Composite Index (SZECOMP). We explain how equity

downturn and crash prediction models work, and how to test their accuracy.

The construction process for the signal and hit sequence is crucial to ensure

that the crash prediction models produce out of sample predictions free from

look-ahead bias. It also eliminates data snooping by setting the parameters

ex ante, with no possibilities of changing them during the analysis. The con-

struction process removes the effect of autocorrelation, making it possible to

test the accuracy of the measures using standard statistical techniques. We

also conduct a Monte Carlo study to address small sample bias.

Then, we test whether the price-to-earnings ratio (P/E) based on current

earnings, the Bond-Stocks Earnings Yield Differential model (BSEYD) and

the Cyclically Adjusted Price-to-Earnings ratio (CAPE), accurately predicts

downturns in the SHCOMP and SZECOMP indexes. We find that the loga-

rithm of the P/E has successfully predicted crashes over the entire length of

the study (1990-2015 for the SHCOMP and 1991-2016 for the SZECOMP).
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During the shorter 9-year period from 2006 to 2015, we find mixed evidence

of the predictive ability of the BSEYD. Overall, this study supports the

application of crash prediction models to the Chinese market.

The academic literature on bubbles and crashes is well established, start-

ing with studies on bubbles by Blanchard and Watson (1982), Flood et al.

(1986), Camerer (1989), Allen and Gorton (1993), Diba and Grossman (1988),

Abreu and Brunnermeier (2003) and more recently Corgnet et al. (2015), An-

drade et al. (2016) or Sato (2016). A rich literature on predictive models has

also emerged. We can classify bubble and crash prediction models in three

broad categories, based on the type of methodology and variable used: fun-

damental models, stochastic models and sentiment-based models.

Fundamental models use fundamental variables such as stock prices, cor-

porate earnings, interest rates, inflation or GNP to forecast crashes. The

Bond-Stock Earnings Differential (BSEYD) measure (Ziemba and Schwartz,

1991; Lleo and Ziemba, 2012, 2015b, 2017) is the oldest model in this cat-

egory, which also includes the CAPE (Lleo and Ziemba, 2017) and the ra-

tio of the market value of all publicly traded stocks to the current level of

the GNP (MV/GNP) that Warren Buffett popularized (Buffett and Loomis,

1999, 2001; Lleo and Ziemba, 2015a).

Stochastic models construct a probabilistic representation of the asset

prices, either as adiscrete or continuous time stochastic process. Examples

include the local martingale model proposed by Jarrow and Protter (Jar-

row et al., 2011a; Jarrow, 2012; Jarrow et al., 2011b,c), the disorder de-

tection model proposed by Shiryaev, Zhitlukhin and Ziemba (Shiryaev and

Zhitlukhin, 2012a,b; Shiryaev et al., 2014, 2015) and the model proposed by
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Gresnigt et al. (2015), which adapts the Epidemic-type Aftershock Sequence

model (ETAS) geophysics in Ogata (1988) to the stock market.

Behavioural models look at crashes in relation to market sentiment and

behavioral biases. Goetzmann et al. (2016) use surveys of individual and in-

stitutional investors, conducted regularly over a 26 year period in the United

States, to assess the subjective probability of a market crash and investigate

the effect of behavioral biases on the formulation of these subjective prob-

abilities. This research takes its roots in recent efforts to measure investor

sentiment on financial markets (Fisher and Statman, 2000, 2003; Baker and

Wurgler, 2006) and identify collective biases such as overconfidence and ex-

cessive optimism (Barone-Adesi et al., 2013).

In this paper, we focus on the three main fundamental models: the

BSEYD, P/E ratio and CAPE, which we will compute daily. We leave aside

Warren Buffett’s ratio of the market value of all publicly traded stocks to

the current level of the GNP (MV/GNP) because this measure cannot be

computed more frequently than quarterly.

2 A Brief Overview of the Chinese Stock Mar-

ket

Mainland China has two main stock exchanges, the Shanghai Stock Exchange

(SSE) and the Shenzhen Stock Exchange (SZSE). The Shanghai Stock Ex-

change is the larger of the two. With an average market capitalization of

USD 3.715 billion over the first half of 2016, it is the fourth largest stock
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market in the world1. The modern Shanghai Stock Exchange came into exis-

tence on November 26, 1990 and started trading on December 19, 1990. The

Shenzhen Stock Exchange was founded on December 1, 1990, and started

trading on July 3, 1991. While the largest and most established companies

usually trade on the Shanghai Stock Exchange, the Shenzhen Stock Exchange

is home to smaller and privately-owned companies.

With an average market capitalization of USD 6.656 billion over the first

half of 2016, the Shanghai and Shenzhen Stock Exchanges taken together

represent the third largest stock market in the world after the New York

Stock Exchange at USD 17.970 billion, and the NASDAQ at USD 6.923

billion, and before 4th place Japan Exchange Group at USD 4.625 billion

and fifth place LSE Group at USD 3.598 billion2.

Chinese companies may list their shares under a variety of schemes, ei-

ther domestically or abroad. Our study focuses on equity market downturns

on the two leading domestic markets: the Shanghai and Shenzhen Stock

Exchanges.

3 Six Main Stylized Facts

The SHCOMP and SZECOMP are market capitalization weighted index

of shares listed on the SSE and SZSE, respectively. In August 2016, the

SHCOMP SZECOMP consisted of the shares of 1,155 and 478 Chinese com-

panies.

We observe and discuss six main stylized facts on the historical distribu-

tion of daily log returns on the SHCOMP and SZECOMP. Collectively, these
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stylized facts indicate that the SHCOMP and SZECOMP behave differently

from the mature equity markets in Europe and North America.

3.1 Stylized Fact 1: The return distribution is highly

volatile, right skewed with very fat tails

The daily log return on the SHCOMP from December 20, 2017 until June 30,

2016 averaged 0.0541%, with a median return of 0.0693%. The lowest and

highest daily returns were respectively -17.91% and +71.92%. Table 1 also

gives the corresponding statistics at a weekly and monthly frequency. The

returns are highly volatile: the standard deviation of daily returns is 2.40%,

equivalent to around 40 times the mean daily return. The distribution of

daily returns is positively skewed (skewness = 5.26) with surprisingly fat

tails (kurtosis = 149). As a result, the Jarque-Bera statistic is 5,419,808,

rejecting normality at any level of significance. The Jarque-Bera statistic

also leads to a strong rejection of normality for weekly and monthly data.

The aggregational gaussianity, the tendency for the empirical distribution

of log-returns to get closer to normality as the time scale ∆t over which

the returns are calculated increases, is much weaker on the SHCOMP and

SZECOMP than on the S&P500 where Cont (2001) initially documented it.

We make similar observations on the SZECOMP. Table 1 shows that over

the entire period, the daily log return on the SZE averaged 0.04784%, with a

median return of 0.05933%. The lowest and highest daily returns were respec-

tively -23.36% and +27.11%. Here as well, the returns are highly volatile:

the standard deviation of daily returns is 2.28%, equivalent to around 50
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times the mean daily return. The distribution of daily returns has a mildly

positive skewness (skewness = 0.3517) and very fat tails (kurtosis = 17). The

Jarque-Bera statistic for the SZECOMP still reaches 52,879. The test leads

to a rejection of normality at any level of significance not only for daily data,

but also for weekly and monthly data.

[Place Table 1 here]

3.2 Stylized Fact 2: The SHCOMP and SZECOMP do

not exhibit a strong dependence structure

We turn our attention to the joint behavior of the SHCOMP and SZECOMP

during the period from April 4, 1991 to June 30, 2016 (6,170 daily observa-

tions). We compute the Pearson linear correlation, Spearman’s rho (rank

correlation) and Kendal’s tau of the daily log returns. While the Pearson

linear correlation measures the strength of the linear dependence of two data

series, Spearman’s rho computes the correlation between data of the same

rank, and Kendal’s Tau measures the distance between two ranking lists

based on pairwise disagreements. Spearman’s rho and Kendall’s tau are non

parametric: they do not require any assumption on the underlying distribu-

tion. At 0.6801, 0.7922 and 0.6443 respectively, the Pearson linear correla-

tion, Spearman’s rho and Kendall’s Tau are all statistically different from

0. However, neither of them is close to 1. In fact, the statistical association

between the SHCOMP and the SZECOMP is noticeably weaker than, for

example, the association between the S&P500 and the NASDAQ. Over the
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same period, the two US indices had respective Pearson linear correlation,

Spearman’s rho and Kendall’s Tau of 0.8742, 0.8592 and 0.6884.

3.3 Stylized Fact 3: The tail behavior of the SHCOMP

and SZECOMP can be modeled using a General-

ized Pareto Distribution

Extreme Value Theory (EVT) is the method of choice to uncover the statis-

tical properties of rare events. We analyze the tail behavior of the SHCOMP

and SZECOMP. We refer the reader to Coles (2001) for a concise and clear

introduction to EVT and to Embrechts et al. (2011) for a thorough tour of

the subject.

Here, we apply EVT to the loss distribution, which we define as the

negative of the probability distribution of returns, meaning that if a stock

index returns -1.5% on a given day, the associated loss will be 1.5%. We

focus on the tail behavior, identified as the loss above a given threshold u,

that we will determine during our analysis. Let X be the random variable

representing the loss, and let F be its cumulative density function. Then the

cumulative density function of the loss in excess of u is:

Fu(y) = P (X − u ≤ y|X > u) =
F (u+ y)− F (u)

1− F (u)
,

for 0 ≤ y ≤ xF − u, where xF is the right endpoint of F .

Theorem 3.1 (Pickands-Balkema-de Haan (PBH) (Pickands, 1975; Balkema

and de Haan, 1974)). For a large class of distribution functions F , and for
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u large enough, we can approximate the conditional excess distribution Fu(y)

by a Generalized Pareto Distribution (GPD) Gξ,σ, that is:

Fu(y) ≈ Gξ,σ(y), where Gξ,σ(x) =

 1−
(
1 + ξ

σ
y
)− 1

ξ if ξ 6= 0,

1− e− ξ
σ if ξ = 0,

for y in [0, xF − u] if ξ ≥ 0 and y ∈
[
0,−σ

ξ

]
if ξ < 0.

The parameters σ and ξ are respectively the scale and shape parameter

of the GPD.

There is no firm rule governing the choice of threshold u. This choice

of threshold must achieve a trade-off. If u is to low then the PBH theorem

will not apply. If u is too high, then we will have too few observations to

estimate the parameters of the GPD accurately. For example, we have 6,242

daily return observations for the SHCOMP, out of which 2,851 correspond

to negative returns (i.e. positive loss). We still have 716 observations at

a threshold of 2%, and 128 at a threshold of 5% but only 48 at 7%. The

situation is similar on the SZECOMP. A popular method to determine u

consists in plotting the sample mean excess loss against the threshold u, and

picking the threshold u such that the sample mean excess loss is broadly

linear for v ≥ u. Figure 1 displays the excess loss against threshold for

both the SHCOMP and SZECOMP. For the SHCOMP, we observe that the

sample mean excess loss against the threshold becomes broadly linear in

the threshold u starting at about u = 4%. At that level, we still have 211

observations to fit the Generalized Pareto distribution. For the SZECOMP,

the post suggests choosing u = 6%, which leaves us with 85 observations to
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fit the distribution.

[Place Figure 1 here]

Finally, we estimate the scale parameter σ shape parameter ξ of the GPD

using maximum likelihood. This estimation is performed against 100y, or

100 times the loss, in order to improve numerical stability. Table 2 presents

the estimated parameters, standard error of estimates as well as the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

for both indexes.

[Place Table 2 here]

3.4 Stylized Fact 4: Log returns do not exhibit a sig-

nificant autocorrelation

Figures 2 show that the autocorrelation of daily log returns up to lag 20

are in the interval [-0.03, 0.06]. This suggests that neither indexes exhibits a

short-term memory: today’s return does not help forecast tomorrow’s return.

An analysis of the PACF leads to similar conclusions.

[Place Figure 2 here]
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3.5 Stylized Fact 5: A Gaussian Hidden Markov Chain

provides a good probabilistic description of the

evolution of log returns... but we need between

five and six states.

Stylized Fact 1 indicates that the distribution of log returns is skewed with

fat tails, while Stylized Fact 2 supports the use of a Markov model to de-

scribe the probabilistic behavior of the log returns on the SHCOMP and

SZECOMP. We look for a simple discrete-time Markov Model able to de-

scribe the probabilistic behavior and the evolution of log returns.

A good starting point is to look at Hidden Markov Models (HMMs).

HMMs are a useful way to model the behavior of a physical or economic

system when we suspect that this behavior is determined by the transition

between a finite number of unobservable “regimes” or “states.” We refer the

reader to the excellent presentation of HMMs in Rabiner (1989) and Rabiner

and Juang (1993).

The simplest, and often the best, HMM models are Gaussian Hidden

Markov Chains. In these models, the returns in each state are conditionally

normally distributed. The parameters of each normal distribution are specific

to that state. As the state transitions over time, the returns are drawn

from different normal distributions, resulting in an aggregate distribution

that bears little resemblance to a normal distribution. Gaussian HMMs are

estimated via the Baum-Welch algorithm (Baum et al., 1970), an application

of the well-known EM algorithm (see Dempster et al., 1977).

One of the difficulties is to find the optimal number of states for the
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model. To that end, it is customary to use an information criterion such as

the AIC or the BIC to discriminate between model formulations. The optimal

model minimize the absolute value of the information criterion. Contrary to

the LogLikelihood, the AIC and BIC penalize the model for the number of

parameters used. This penalty is stiffer in the BIC than in the AIC.

Tables 3 present the Loglikelihood, AIC and BIC for HMMs with one to

seven states, fitted respectively on the SHCOMP and the SZECOMP. We

performed the numerical procedure using the depmixS4 package in R. For

the SHCOMP, we find that the optimal model specification, the specification

that minimizes the AIC and BIC, is a six-state model, while the optimal

model for the SZECOMP is a slightly more parsimonious, but still large,

five-state model. By contrast, a two or three-state model usually proves

adequate for mature indexes such as the S&P 500.

[Place Table 3 here]

3.6 Stylized Fact 6: Downturns and large market move-

ments occur frequently

The return distribution of the SHCOMP has fat tails, which indicates that

extreme events are more likely to occur than a Normal distribution would

predict. Here, we focus on the large downward movements that occurred on

the SHCOMP and SZECOMP.

Earlier studies, such as Lleo and Ziemba (2015b, 2017), defined an equity

market downturn or crash as a decline of at least 10% from peak to trough
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based on the closing prices for the day, over a period of at most one year (252

trading days). We identify a correction on the day when the daily closing

price crosses the 10% threshold. The identification algorithm is as follows:

1. Identify all the local troughs in the data set. Today is a local trough if

there is no lower closing price within ±30 business days.

2. Identify the crashes. Today is a crash identification day if all of the

following conditions hold:

(a) The closing level of the index today is down at least 10% from its

highest level within the past year, and the loss was less than 10%

yesterday;

(b) This highest level reached by the index prior to the present crash

differs from the highest level corresponding to a previous crash;

(c) This highest level occurred after the local trough that followed the

last crash.

The objective of these rules is to guarantee that the downturns we identify

are distinct. Two downturns are not distinct if they occur within the same

larger market decline. Although these rules might be argued with, they have

the advantage of being unambiguous, robust and easy to apply.

A total of 22 downturns occurred on the SHCOMP between December

19, 1990 and June 30, 2016. On average, the downturns lasted 163 days and

had a 27.8% decline in the value of the index. With 22 downturns in 25

years, the SHCOMP had as many downturns as the S&P 500 over the 50

year period from January 31, 1964 to December 31, 2014.
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A total of 21 downturns occurred on the SZECOMP between April 3, 1991

and June 30, 2016. On average, the downturns lasted 122 days and had a

26.4% decline in the value of the index. While the number and magnitude of

equity market corrections are comparable between both indexes, we observe

that downturns tend to last noticeably longer on average on the Shanghai

stock Exchange than on the Shenzhen Stock Exchange.

4 Methodology

4.1 Signal Construction

The construction process for the signal and hit sequence is crucial to ensure

that the crash prediction models produce out of sample predictions free from

look-ahead bias. It also eliminates data snooping by setting the parameters

ex ante, with no possibilities of changing them when we construct the hit

sequence. More importantly, the construction of the hit sequence removes

the effect of autocorrelation, making it possible to test the accuracy of the

measures using a standard likelihood ratio test.

Equity market crash prediction models such as the BSEYD, the high

P/E model or the CAPE generate a signal to indicate that an equity market

downturn is likely at a given horizon h. This signal occurs whenever the

value of a crash measure crosses a threshold. Given a prediction measure

M(t), a crash signal occurs whenever

SIGNAL(t) = M(t)−K(t) > 0 (4.1)
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where K(t) is a time-varying threshold for the signal.

Three parameters define the signal: (i) the choice of measure M(t); (ii)

the definition of threshold K(t); and (iii) the specification of a time interval H

between the occurrence of the signal and that of an equity market downturn.

We construct the measures using two time-varying thresholds: (i) a dy-

namic confidence interval based on a Normal distribution; and (ii) a dy-

namic confidence interval using Cantelli’s inequality - see Problem 7.11.9

in Grimmett and Stirzaker (2001) for a statement of the mathematical re-

sult, and Lleo and Ziemba (2012, 2017) for applications to crash predictions.

To construct the confidence intervals, we compute the sample mean and

standard deviation of the distribution of the measures as a moving average

and a rolling horizon standard deviation respectively. Using rolling horizon

means and standard deviations has the advantage of providing data consis-

tency. Importantly, this construction only makes use of information known

at the time of the calculation. The h-day moving average at time t, denoted

by µht , and the corresponding rolling horizon standard deviation σht are

µht =
1

h

h−1∑
i=0

xt−i, σht =

√√√√ 1

h− 1

h−1∑
i=0

(xt−i − µht )2.

We establish the one-tailed confidence interval at the 95% level. This corre-

sponds to 1.645 standard deviations above the mean in the Normal distribu-

tion.

We select the one-tailed confidence interval at α = 95%, corresponding to

1.645 standard deviations above the mean in the Normal distribution. This

choice is consistent with the crash prediction literature and can be traced to
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the first published work on the BSEYD Ziemba and Schwartz (1991).

The historical development of statistical inference by Fisher, E. Pearson

and Neyman, among others, has contributed to popularizing the choice of

α = 95% for two-tailed tests: R.A. Fisher suggested the use of a two-tailed

5% significance level (see for example pp. 45, 98, 104, 117 in Fisher, 1933;

Neyman and Pearson, 1933; Neyman, 1934, 1937).

As an alternative to the normal confidence level, we construct the confi-

dence level using Cantelli’s inequality. This inequality relates the probability

that the distance between a random variable X and its mean µ exceeds a

number k > 0 of standard deviations σ to provide a robust confidence inter-

val:

P [X − µ ≥ kσ] ≤ 1

1 + k2
.

Setting β := 1
1+k2

yields P
[
X − µ ≥ σ

√
1
β
− 1
]
≤ β. Contrary to the normal

confidence level, Cantelli’s inequality does not require any assumption on the

shape of the underlying distribution. It should therefore provide more robust

results for fat tailed distributions. The parameter β provides an upper bound

for a one-tailed confidence level on any distribution. In our analysis, the

horizon for the rolling statistics is h = 252 days. There is no clear rule on

how to select β, so we chose β = 25% to produce a slightly higher threshold

than the standard confidence interval. In a Normal distribution, we expect

5% of the observations to lie in the right tail, whereas Cantelli’s inequality

implies that the percentage of outliers in a distribution will be no higher than

25%.
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The last parameter we need to specify is the horizon H. Earlier, we

defined the crash identification time is the date by which the SHCOMP has

declined by at least 10% in the last year (252 trading days). We define the

local market peak as the highest level reached by the market index within

252 trading days before the crash. We set the horizon H to a maximum of

252 trading days prior to the crash identification date.

4.2 Signal Indicator and Crash Indicator

Crash prediction models have two components: (1) a signal indicator, which

takes the value 1 or 0 depending on whether the measure has crossed the

threshold, and (2) a crash indicator, which takes the value 1 when an equity

market correction occurs and 0 otherwise. From a probabilistic perspective,

these components are Bernoulli random variables, but they exhibit a high

degree of autocorrelation, that is, a value of 1 (0) for the crash signal is

more likely to be followed by another value of 1 (0) on the next day. This

autocorrelation makes it difficult to test the accuracy of the model.

To remove the effect of autocorrelation, we define a signal indicator se-

quence S = {St, t = 1, . . . , T}. This sequence records as the signal date the

first day in a series of positive signals, and it only counts distinct signal dates.

Two signals are distinct if a new signal occurs more than 30 days after the

previous signal. The objective is to have enough time between two series of

signals to identify them as distinct. The signal indicator St takes the value

1 if date t is the starting date of a distinct signal, and 0 otherwise. Thus,

the event “a distinct signal starts on day t” is represented as {St = 1}. We
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express the signal indicator sequence as the vector s = (S1, . . . , St, . . . , ST ).

For the crash indicator, we denote by Ct,H the indicator function returning

1 if the crash identification date of at least one equity market correction

occurs between time t and time t + H, and zero otherwise. We identify the

vector CH with the sequence CH := {Ct,H , t = 1, . . . , T −H} and define the

vector cH := (C1,H , . . . , Ct,H , . . . CT−H,H).

The number of correct predictions n is defined as

n = # {Ct,H = 1|St = 1} =
T∑
t=1

1{Ct,H=1|St=1},

where 1A is the indicator function returning 1 if condition A is satisfied,

and 0 other wise.The accuracy of the crash prediction model is therefore

the conditional probability P (Ct,H = 1|St = 1) of a crash being identified

between time t and time t + H, given that we observed a signal at time t.

The higher the probability, the more accurate the model.

4.3 Maximum Likelihood Estimate of p = P (Ct,H |St)

and Likelihood Ratio Test

We use maximum likelihood to estimate the conditional probability P (Ct,H =

1|St = 1) and to test whether it is significantly higher than a random guess.

We obtain a simple analytical solution because the conditional random vari-

able {Ct,H = 1|St = 1} is a Bernoulli trial with probability p = P (Ct,H =

1|St = 1).

To estimate the probability p, we change the indexing to consider only

events along the sequence {St|St = 1, t = 1, . . . T} and denote byX := {Xi, i = 1, . . . , N}

18



the “hit sequence” where xi = 1 if the ith signal is followed by a crash and

0 otherwise. Here N denotes the total number of signals, that is

N =
T∑
t=1

St

The sequence X can be expressed in vector notation as x = (X1, X2, . . . , XN).

The empirical probability p is the ratio n/N .

The likelihood function L associated with the observations sequence X is

L(p|X) :=
N∏
i=1

pXi(1− p)1−Xi

and the log likelihood function L is

L(p|X) := lnL(p|X) =
N∑
i=1

Xi ln p+

(
N −

N∑
i=1

Xi

)
ln(1− p)

This function is maximized for p̂ :=
∑N
i=1Xi
N

= n/N, so the maximum likeli-

hood estimate of the probability p = P (Ct,H |St) is the sample proportion of

correct predictions.

We apply a likelihood ratio test to test the null hypothesis H0 : p =

p0 against the alternative hypothesis HA : p 6= p0. The null hypothesis

reflects the idea that the probability of a random, uninformed signal correctly

predicting crashes is p0. The probability p0 is the probability to identify an

equity market downturn within 252 days of a randomly selected period. To

compute p0 empirically, we tally the number of days that are at most 252

days before a crash identification date and divide by the total number of days
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in the sample.

A significant departure above p0 indicates that the measure we are con-

sidering contains some information about future equity market corrections.

The likelihood ratio is:

Λ =
L(p = p0|X)

maxp∈(0,1) L(p|X)
=
L(p = p0|X)

L(p = p̂|X)
. (4.2)

The test statistic Y := −2 ln Λ is asymptotically χ2-distributed with ν = 1

degree of freedom. We reject the null hypothesis H0 : p = p0 and accept that

the model has some predictive power if Y > c, where c is the critical value

chosen for the test. We perform the test for the three critical values 2.71,

3.84, and 6.63 corresponding respectively to a 90%, 95% and 99% confidence

level.

4.4 Monte Carlo Study for Small Sample Bias

A limitation of this likelihood ratio test is that the χ2 distribution is only

valid asymptotically. In our case, the number of correct predictions follows

a binomial distribution with an estimated probability of success p̂ and N

trials. However, “only” 18 downturns occurred during the period considered

in this study: the continuous χ2 distribution might not provide an adequate

approximation for this discrete distribution. This difficulty is an example of

small sample bias. We use Monte Carlo methods, with K = 10, 000 paths,

to obtain the empirical distribution of test statistics and address this bias.
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4.5 Further Robustness Tests

At a first glance, the statistical validity of the model seems to depend crucially

on the signal construction, and therefore on two parameters: the confidence

level α and the forecasting horizon H. To test the robustness of the models to

the choice of parameters, we proposed a method based on optimal parameter

choice. We refer the reader to the companion paper, available at https://

papers.ssrn.com/sol3/papers.cfm?abstract_id=2698422 on SSRN, for

the full detail. This robustness analysis did not uncover significant weak-

nesses in the models.

5 The Price-to-Earnings Ratio

5.1 Scope of the Study

Practitioners have used the price-to-earnings (P/E) ratio to gauge the rela-

tive valuation of stocks and stock markets since at least the 1930s (for exam-

ple, Graham and Dodd, 1934, discuss the use of the P/E ratio in securities

analysis and valuation).

In this section, we test the predictive ability of the P/E ratio calculated

using current earnings. The advantage of this definition for the SHCOMP

is that it is available over the entire period from December 19, 1990 to June

30, 2016, a total of 6,243 daily observations. The same is not true for the

SZECOMP. earnings and therefore P/E are only available starting July 2,

2001, a total of 3,640 daily observations.
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5.2 Maximum Likelihood Estimate of p = P (Ct,H |St)

and Likelihood Ratio Test

Table 4 shows that the P/E and logarithm of the P/E generated a total of 18

signals (based on normally distributed confidence intervals) and 19 signals

(based on Cantelli’s inequality) on the SHCOMP. The number of correct

predictions across models reaches 16 to 17. The accuracy of the models is in

the narrow range from 88.89% to 89.47%. The type of confidence interval -

normal distribution or Cantelli’s inequality - only have a minor influence on

the end result.

Next, we test the accuracy of the prediction on the SHCOMP statistically.

To apply the likelihood ratio test, we need to compute the uninformed prior

probability p0 that a day picked at random will precede a crash identification

date by 252 days or less. We find that this probability is very high, at

p0 = 69.57%. This finding is consistent with the stylized facts discussed in

Section 2. The Likelihood ratio test indicates that both the P/E ratio and

the logarithm of the P/E ratio are significant predictors of equity market

downturns markets at the 90% confidence level. Moreover, the P/E ratio,

computed using a standard confidence interval, and the log P/E ratio, based

on Cantelli’s inequality, are significant at the 95% confidence level. Thus,

we cannot rule out that the P/E and log P/E/ have helped predict equity

market downturns over the period.

The P/E and logarithm of the P/E generated a total of 8 to 9 signals, with

7 to 8 correct signals on the the SZECOMP. The accuracy of the models is in

a narrow range from 87.50% to 88.89%. Here as well, the type of confidence
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interval - normal distribution or Cantelli’s inequality - only have a minor

influence on the end result.

[Place Table 4 here]

5.3 Monte Carlo Study for Small Sample Bias

We continue our analysis with a Monte Carlo test for small sample bias,

presented in Table 5. We compute the critical values at the 90%, 95% and

99% confidence level for the empirical distribution. Because we only have

a limited number of signals, the distribution is lumpy, making it difficult

to obtain meaningful p-values. Still, we find that the Monte Carlo analysis

is in broad agreement with our earlier conclusions about significance of the

P/E ratio and its logarithm, as both measures are significant at the 90%

confidence level. We conclude that small sample bias only has a very small

effect on these measures and on their statistical significance.

The uninformed prior probability p0 that a day picked at random will

precede a crash identified date by 252 days or less is 58.49%. The Likeli-

hood ratio test indicates that both P/E ratio measures and the logarithm of

the P/E ratio calculated using a standard confidence interval are significant

predictors of equity market downturns markets at the 95% confidence. The

remaining measure, the logarithm of the P/E ratio calculated with Cantelli’s

inequality is significant at the 90% confidence level. The results of the Monte

Carlo analysis, presented in Table 5, indicate that small sample bias only has

a minor effect on the statistical significance of the measures. All the measures

are still significant at the 90% confidence level.
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[Place Table 5 here]

6 The Cyclically-Adjusted Price-to-Earnings

Ratio and the Bond-Stocks Earnings Yield

Differential Model

6.1 Scope of the Study

The P/E ratio calculated using current earnings might be overly sensitive to

current economic and market conditions. Graham and Dodd (1934) warned

against this risk and advocated the use of a P/E ratio based on average

earnings over ten years. In their landmark survey, Campbell and Shiller

(1988) found that the R2 of a regression of log returns on the S&P 500 with

a 10 year horizon against the log of the price-earnings ratio computed using

average earnings over the previous 10 and 30 years equals 0.566 and 0.401

respectively, hinting at a link between average past earning and future stock

prices. This later led Shiller to suggest the use of a Cyclically Adjusted Price-

to-Earnings ratio (CAPE), or a price-to-earnings ratio using 10-year average

earnings, to forecast the evolution of the equity risk premium (Shiller, 2005).

The BSEYD, the second model we test, relates the yield on stocks (mea-

sured by the earnings yield, which is also the inverse of the P/E ratio) to

that on nominal Government bonds.

BSEYD(t) = r(t)− ρ(t) = r(t)− E(t)

P (t)
, (6.1)
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where ρ(t) is the earnings yield at time t and r(t) is the current 10-year

government bond yield r(t). The BSEYD was initially developed for the

Japanese market in 1988, shortly before the stock market crash of 1990,

based on the 1987 stock market in the US (Ziemba and Schwartz, 1991).

The BSEYD has since been used successfully on a number of international

markets (see the review article Lleo and Ziemba, 2015b), and the 2007-2008

SHCOMP meltdown (Lleo and Ziemba, 2012).

We test the forecasting ability of four measures:

1. PE0: P/E ratio based on current earnings. This is the measure we

tested in Section 5;

2. CAPE10: CAPE, which is a P/E ratio computed using average earn-

ings over the previous 10-years;

3. BSEYD0: BSEYD based on current earnings;

4. BSEYD10: BSEYD using average earnings over the previous 10-years.

We also test the logarithm of these measures: logPE0, logCAPE10, log-

BSEYD0 and logBSEYD10. The logBSEYD is defined as:

logBSEYD(t) = ln
r(t)

ρ(t)
= ln r(t)− ln

E(t)

P (t)
. (6.2)

Because the CAPE10 and BSEYD10 require 10 years of earnings data,

and the Bloomberg data series for 10-year government bonds only starts

on October 31, 2006, we cannot use the full range of stock market data.

The analysis in this section covers the period between October 31, 2006
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and September 30, 2015. Over this period, the SHCOMP experienced seven

declines of more than 10%, while the SZECOMP had nine.

We omit from the discussion results related to Cantelli’s inequality be-

cause of space constraints. These results are nearly identical to the results

we obtain for measures based on a standard confidence interval.

6.2 Maximum Likelihood Estimate of p = P (Ct,H |St)

and Likelihood Ratio Test

Table 7 displays results for the eight measures calculated with a confidence

interval based on a normal distribution on both stock market indexes.

Looking at the SHCOMP, none of the measures produced more than 5

signals. The CAPE, logCAPE and BSEYD10 generated 3 signals each. The

accuracy of the measures reaches a low of 40% for logBSEYD0 and a high of

100% for CAPE10 and logCAPE10. Only five of the eight measures are 75%

accurate or better. By comparison, the uninformed prior probability that a

day picked at random will precede a crash identification date by 252 days or

less is p0 = 70.99%. Because of the relatively short period and small number

of downturns, only CAPE10 and logCAPE10 appear significant. However,

these two models only predicted three of the six crashes.

Overall, none of the models perform convincingly on the SHCOMP. The

PE0 and logPE0 ratio, which we found to be significant predictors over the

entire dataset in the previous section, are not significant over this restricted

time period. With a 75% accuracy, they have a small edge over the uniformed

prior p0, but this edged is not significant. What’s more, the BSEYD-based
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models do not perform as well as the P/E-based models. This is a puzzle

because the BSEYD model contains additional information that is not in the

P/E, namely government bond yields.The BSEYD and logBSEYD models

have also been shown to perform better than the P/E ratio and CAPE on

the American market (Lleo and Ziemba, 2017).

The situation on the SZECOMP is markedly different: all the measures,

but one, have a 100% accuracy on the six or seven signals that they generated.

The remaining measure, logBSEYD10, had six correct predictions out of

seven signals, which implies a 85.71% accuracy. Although this is much higher

than the uniformed prior p0 at about 67%, the sample is to small for the

difference in accuracy to be statistically significant. The discrepancy between

the results observed on the SHCOMP and SZECOMP raises a number of

questions. Is the difference in accuracy merely statistical, resulting from the

small number of equity market downturns in the sample, or does it reveal

a divergence in the microstructure of the two indexes? While the results

computed in Section 5 for the P/E ratio seem to hint at the former, the

latter is also a possibility, especially in light of the second Stylized Fact in

Section 3.2.

[Place Table 7 here]

6.3 Monte Carlo Study for Small Sample Bias

The results of the Monte Carlo analysis for small sample bias, presented in

table 8 support the conclusions of the asymptotic maximum likelihood test.

In the case of the SZECOMP, the Monte Carlo analysis for small bias is not
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informative because most measure have an infinite test statistic.

[Place Table 8 here]

7 Conclusion And Summary of the Main Re-

sults

The Chinese stock market is certainly one of the most interesting and com-

plex equity markets in the world. Its size, scope, structure and the the

rapidity of its evolution make it unique. These characteristics inevitably af-

fect its behavior and returns. Although the Shanghai Stock Exchange and

the Shenzhen Stock Exchange are among the largest stock exchanges in the

world, their behavior is much more volatile than that of more mature eq-

uity markets in Europe, and North America. The market is so volatile that

the following straddle strategy is widely recommended by brokerage firms:

buy at-the-money puts and calls. The idea is that market volatility raises

the probability that either the call or the put will move deep in-the-money,

making the strategy profitable (Ziemba, 2015).

Overall, the studies in this paper support the application of crash pre-

diction models to the Chinese market, and reveals further research questions

both on the behavior of Chinese equity markets, and on crash prediction

models.

Our investigation of fundamental crash predictors reveals that the P/E

and its logarithm have successfully predicted crashes on both the Shanghai

Composite Index and the Shenzhen Composite index over the entire duration
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of the study. These results are not overly sensitive to changes in the two key

parameters of the model: the confidence level α and the forecasting horizon

H.

A comparison of the BSEYD, PE and CAPE and their logarithm over a

shorter 9-year period, is less conclusive. On the SHCOMP, measures based

on the BSEYD do not perform as well as measures based on the P/E and in

particular, the CAPE. This is a puzzle because the BSEYD contains more

information than the P/E and has been more successful in other markets since

1988. However, all measures perform surprisingly well on the SZECOMP.

Two possible explanations for this situation are that (i) the sample is small

so any correct or incorrect prediction has a large impact on the accuracy

of the measure and its statistical test, and (ii) the market microstructure

of the SHCOMP and SZECOMP differ because the Shanghai and Shenzhen

stock exchanges were created for two different types of companies: public

companies in Shanghai and privately-owned companies in Shenzhen. Both

explanations open up avenues for further research.
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Descriptive Statistics SHCOMP SZECOMP
Daily Weekly Monthly Daily Weekly Monthly

Number of observations 6,242 1,318 308 6,235 1,291 302

Mean 0.0541% 0.2497% 1.0326% 0.04784% 0.2345% 1.0644%
Median 0.0693% 0.0652% 0.7122% 0.05933% 0.1938% 0.8864%
Minimum -17.9051% -22.6293% -37.3283% -23.3607% -33.5690% -31.2383%
Maximum 71.9152% 90.0825% 101.9664% 27.2210% 51.9035% 60.9060%
Standard deviation 2.3848% 5.5872% 12.8898% 2.2808% 5.1795% 11.5411%
Variance 0.000569 0.000031 0.000166 0.000520 0.002683 0.013320
Skewness 5.1837 5.3543 2.3414 0.3517 1.2229 0.8724
Kurtosis 148.5003 78.5864 20.7742 17.2496 17.2522 6.6661
Jarque-Bera statistics 5,534,005 320,053 4,336 52,879.47 11,248.32 207.43
(p-value) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16) (< 2.2e− 16)

Table 1: Descriptive statistics for daily, weekly and monthly log
returns on the SHCOMP and SZECOMP
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(a)

(b)

Figure 1: Sample mean excess loss against the threshold for the SHCOMP
(a) and SZECOMP (b).
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SHCOMP SZECOMP
Threshold 4 6
Number of observations 211 85
Scale parameter (standard error) 1.8214 (0.1821) 1.7141 (0.2829)
Shape parameter (standard error) 0.1292 (0.0731) 0.2176 (0.1266)
AIC 734 303
BIC 740 307

Table 2: Parameters of the Generalized Pareto distribution fitted to the tail
of the SHCOMP and SZECOMP. The estimation is performed via maximum
likelihood against 100× the loss to improve numerical stability.
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Figure 2: Sample autocorrelation of the daily log returns on the SHCOMP
and SZECOMP up to lag 20
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1 2 3 4 5 6 7

SHCOMP
LogLikelihood 14,464 16,514 16,827 16,887 16,895 17,183 17,194
AIC -28,924 -33,013 -33,625 -33,728 -33,723 -34,273 -34,265
BIC -28,910 -32,966 -33,531 -33,573 -33,494 -33,956 -33,847
Number of parameters 2 7 14 23 34 47 62

SHCOMP
LogLikelihood 14,726 16,053 16,225 16,298 16,331 16,346 16,389
AIC -29,447 -32,091 -32,422 -32,550 -32,593 -32,598 -32,653
BIC -29,434 -32,044 -32,328 -32,395 -32,364 -32,598 -32,235
Number of parameters 2 7 14 23 34 47 62

Table 3: Hidden Markov Model fitting for the daily log returns on the
SHCOMP and SZECOMP

40



Model Total num-
ber of signals

Number
of
correct
predic-
tions

ML Estimate
p̂

L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

SHCOMP

PE (confidence) 19 17 89.47% 1.67E-03 0.1159 4.3100* 3.79%
PE (Cantelli) 18 16 88.89% 1.88E-03 0.1486 3.8131† 5.09%
logPE (confi-
dence)

18 16 88.89% 1.88E-03 0.1486 3.8131† 5.09%

logPE (Cantelli) 19 17 89.47% 1.67E-03 0.1159 4.31* 3.79%

SZECOMP

PE (confidence) 9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%
PE (Cantelli) 9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%

logPE (confi-
dence)

9 8 88.89% 4.33E-02 0.1313 4.0607* 4.39%

logPE (Cantelli) 8 7 87.5% 4.91E-02 0.1980 3.2387† 7.19%

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 4: SHCOMP and SZECOMP: Maximum likelihood estimate
and likelihood ratio test for the PE and logPE The Total Number of

SignalS is calculated as the sum of all the entries of the indicator sequence S.

The Number of Correct Predictions is the tally of crashes preceded by the signal.

It is calculated as the sum of all the entries of the indicator sequence X. The

Maximum Likelihood estimate p̂ is the probability of correctly predicting a crash

that maximises the likelihood function of the model. It is equal to the ratio of the

number of correct prediction to the total number of signals. L(p̂) is the likelihood

of the crash prediction model, computed using the maximum likelihood estimate

p̂. The likelihood ratio Λ = L(p0|X)
L(p=p̂|X) is the ratio of the likelihood under the

null hypothesis p = p0 to the likelihood using the estimated probability p̂. The

estimated test statistics, equal to −2 ln Λ, is asymptotically χ2-distributed with 1

degree of freedom. The p-value is the probability of obtaining a test statistic higher

than the one actually observed, assuming that the null hypothesis is true. The

degree of significance and the p-value indicated in the table are both based on this

distribution. The critical values at the 95%, 99% and 99.5% level are respectively

3.84, 6.63 and 7.88.
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Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

SHCOMP
PE (confidence) 19 89.47% 2.38 4.31 7.61 4.3100†

PE (Cantelli) 18 88.89% 2.38 4.31 7.61 3.8131†

logPE (confidence) 18 88.89% 2.99 3.81 6.99 3.8131†

logPE (Cantelli) 19 89.47% 2.99 3.81 6.99 4.3100*

SZECOMP
PE (confidence) 9 88.89% 2.31 4.06 4.92 4.0607†

PE (Cantelli) 9 88.89% 2.31 4.06 4.92 4.0607†

logPE (confidence) 9 88.89% 2.31 4.06 8.86 4.0607†

logPE (Cantelli) 8 87.50% 2.31 4.06 8.86 3.2387†

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 5: SHCOMP: Monte Carlo likelihood ratio test for the PE and
logPE The Total Number of Signal is calculated as the sum of all the entries of

the indicator sequence S. The Maximum Likelihood estimate p̂ is the probability

of correctly predicting a crash that maximises the likelihood function of the model.

It is equal to the ratio of the number of correct prediction to the total number of

signals. Colums 4 to 6 report the critical values at the 95%, 99% and 99.5% confi-

dence level for the empirical distribution generated using K = 10, 000 Monte-Carlo

simulation. The test statistics in column 7 is equal to −2 ln Λ(p0) = −2 ln L(p0|X)
L(p=p̂|X)

and that in column 9 is −2 ln Λ
(

1
2

)
= −2 ln

L( 1
2
|X)

L(p=p̂|X) . The level of significance

indicated for both tests are based on the empirical distribution. The p-value is

the probability of obtaining a test statistic higher than the one actually observed,

assuming that the null hypothesis is true. The degree of significance indicated in

the test statistics column and the p-value indicated in the table are both based on

and empirical distribution generated through Monte-Carlo simulations.
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Confidence 0.8 0.85 0.9 0.925 0.95 0.975 0.99

P/E ratio
Number of signals 21 21 22 22 19 16 15
Number of correct signals 15 18 18 19 17 15 15
Proportion of correct signals 71.43% 85.71% 81.82% 86.36% 89.47% 93.75% 100%
Test statistics 0.0348 2.9770† 1.7190 3.4022† 4.3100* 5.7847* -
p-value 85.2% 8.45% 18.98% 6.51% 3.79% 1.62% -

logP/E ratio
Number of signals 21 21 21 19 18 14 11
Number of correct signals 15 17 18 17 16 14 11
Proportion of correct signals 71.43% 80.95% 85.71% 89.47% 88.89% 100% 100%
Test statistics 0.0348 1.4050 2.9770† 4.3100* 3.8131† - -
p-value 85.2% 23.59% 8.45% 3.79% 5.09% - -
† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 6: SHCOMP and SZECOMP: Accuracy and statistical sig-
nificance of the P/E ratio and logP/E ratio as a function of the
confidence level α. The numbers presented in this table are based on a
forecasting horizon H = 252 days. With this choice, the uninformed proba-
bility that a random guess would correctly identify an equity market down-
turn is p0 = 67.64% Row 1,2 and 3 respectively report the total number of
signals generated by the P/E ratio, the number of correct signals, and the
proportion of correct signals computed as the ratio of the number of correct
signals to the total number of signals. Rows 4 and 5 respectively report the
test statistics and p-value for the P/E ratio. The subsequent rows present
the same information for the log P/E ratio.
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Signal Model Total num-
ber of signals

Number
of
correct
predic-
tions

ML Estimate
p̂

L(p̂) Likelihood
ratio Λ

Test statistics
−2 ln Λ

p-value

SHCOMP
BSEYD0 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
logBSEYD0 5 2 40.00% 3.46E-02 0.7901 0.4713 49.24%
PE0 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
logPE0 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
BSEYD10 3 2 66.67% 1.48E-01 0.9228 0.1606 68.86%
logBSEYD10 5 3 60.00% 3.46E-02 0.9778 0.0449 83.23%
CAPE10 3 3 100.00% - - - -
logCAPE10 3 3 100.00% - - - -

SZECOMP
BSEYD0 6 6 100.00% - - - -
logBSEYD0 7 7 100.00% - - - -
PE0 6 6 100.00% - - - -
logPE0 6 6 100.00% - - - -
BSEYD10 7 6 85.71% 5.67E-02 0.5266 1.2826 25.74%
logBSEYD10 7 7 100.00% - - - -
CAPE10 6 6 100.00% - - - -
logCAPE10 5 5 100.00% - - - -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 7: SHCOMP and SZECOMP: Maximum likelihood estimate
and likelihood ratio test for the BSEYD0, PE0, BSEYD10 and
CAPE10 and their logarithmThe Total Number of Signals is calculated

as the sum of all the entries of the indicator sequence S. The Number of Correct

Predictions is the tally of crashes preceded by the signal. It is calculated as the sum

of all the entries of the indicator sequence X. The Maximum Likelihood estimate

p̂ is the probability of correctly predicting a crash that maximises the likelihood

function of the model. It is equal to the ratio of the number of correct prediction

to the total number of signals. L(p̂) is the likelihood of the crash prediction

model, computed using the maximum likelihood estimate p̂. The likelihood ratio

Λ = L(p0|X)
L(p=p̂|X) is the ratio of the likelihood under the null hypothesis p = p0 to

the likelihood using the estimated probability p̂. The estimated test statistics,

equal to −2 ln Λ, is asymptotically χ2-distributed with 1 degree of freedom. The

p-value is the probability of obtaining a test statistic higher than the one actually

observed, assuming that the null hypothesis is true. The degree of significance and

the p-value indicated in the table are both based on this distribution. The critical

values at the 95%, 99% and 99.5% level are respectively 3.84, 6.63 and 7.88.
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Signal Model Total number of signals ML Estimate p̂ Critical Value Test statistics −2 ln Λ(p0)
90% confidence 95% confidence 99% confidence

SHCOMP
BSEYD0 4 75% 4.74 4.74 6.44 0.6654
logBSEYD0 5 40% 2.62 5.92 8.05 0.4713
PE0 4 75% 4.74 4.74 6.44 0.6654
logPE0 4 75% 4.74 4.74 6.44 0.6654
BSEYD10 3 66.67% 3.55 4.83 4.83 0.1606
logBSEYD10 5 60% 2.62 5.92 8.05 0.0449
CAPE10 3 100.00% 3.55 4.83 4.83 -
logCAPE10 3 100% 3.55 4.83 4.83 -

SZECOMP
BSEYD0 6 100.00% 4.81 4.81 6.48 -
logBSEYD0 5 100.00% 4.31 5.61 5.61 -
PE0 6 100.00% 4.81 4.81 6.48 -
logPE0 6 100.00% 4.81 4.81 6.48 -
BSEYD10 7 85.71% 4.31 5.61 5.61 1.2826
logBSEYD10 7 100.00% 4.31 5.61 5.61 -
CAPE10 6 100.00% 4.81 4.81 6.48 -
logCAPE10 5 100.00% 4.01 4.01 4.66 -

† significant at the 10% level;
* significant at the 5% level;
** significant at the 1% level;
*** significant at the 0.5% level.

Table 8: SHCOMP and SZECOMP: Monte Carlo likelihood ratio
test for the BSEYD0, PE0, BSEYD10 and CAPE10 and their log-
arithm The Total Number of Signal is calculated as the sum of all the entries of

the indicator sequence S. The Maximum Likelihood estimate p̂ is the probability

of correctly predicting a crash that maximises the likelihood function of the model.

It is equal to the ratio of the number of correct prediction to the total number of

signals. Colums 4 to 6 report the critical values at the 95%, 99% and 99.5% confi-

dence level for the empirical distribution generated using K = 10, 000 Monte-Carlo

simulation. The test statistics in column 7 is equal to −2 ln Λ(p0) = −2 ln L(p0|X)
L(p=p̂|X)

and that in column 9 is −2 ln Λ
(

1
2

)
= −2 ln

L( 1
2
|X)

L(p=p̂|X) . The level of significance

indicated for both tests are based on the empirical distribution. The p-value is

the probability of obtaining a test statistic higher than the one actually observed,

assuming that the null hypothesis is true. The degree of significance indicated in

the test statistics column and the p-value indicated in the table are both based on

and empirical distribution generated through Monte-Carlo simulations.
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