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Abstract

For a discounted stochastic game with an uncountable state space and compact metric
action spaces, we show that if the measurable-selection-valued, Nash payo selection cor-
respondence of the underlying one-shot game contains a sub-correspondence having the -
limit property (i.e., if the Nash payo selection sub-correspondence contains its -limits
and therefore is a correspondence), then the discounted stochastic game has a stationary
Markov equilibrium. Our key result is a new xed point theorem for measurable-selection-
valued correspondences having the -limit property. We also show that if the discounted
stochastic game is noisy (Duggan, 2012), or if the underlying probability space satis es
the G-nonatomic condition of Rokhlin (1949) and Dynkin and Evstigneev (1976) (and
therefore satis es the coaser transition kernel condition of He and Sun, 2014), then the
Nash payo selection correspondence contains a sub-correspondence having the -limit
property. Key words and phrases : approximate Caratheodory selections, xed points of
nonconvex valued correspondences, measurable selection valued correspondences, Komlos
limits, Komlos’ Theorem, weak star convergence, discounted stochastic games, stationary
Markov equilibria.
JEL classi cation: C7



1 Introduction

For a discounted stochastic game with an uncountable state space and compact metric
action spaces, we show that if the measurable-selection-valued, Nash payo selection cor-
respondence of the underlying one-shot game contains a sub-correspondence having the
-limit property (i.e., if the Nash payo selection sub-correspondence contains its -

limits and therefore is a correspondence), then the discounted stochastic game has a
stationary Markov equilibrium. We will refer to all such discounted stochastic games as
-class discounted stochastic games. Our key result is a new xed point theorem for

measurable-selection-valued correspondences having the -limit property. The steps in
the logic are as follows: First, we show that if the Nash payo selection correspondence is
a -correspondence, then it is upper semicontinuous and takes nonempty compact values,
with respect to the weak star topology, and if in addition the dominating probability mea-
sure for the game is nonatomic then it takes nonempty compact and contractible values
(i.e., if the Nash payo selection correspondence is a -correspondence and the dominat-
ing probability measure is nonatomic, then the Nash payo selection correspondence is a
- -USCO taking contractible values).1 Because the Nash payo selection correspon-

dence takes contractible values, it is - -approximable and therefore, has xed points.
According to Blackwell’s Theorem (extended to DSGs), in order for the DSG to possess
stationary Markov equilibria it is necessary and su cient that the Nash payo selection
correspondence belonging to the DSG have xed points. We note that our su ciency con-
dition (the limit property) for approximability rules out the key pathology underlying
recent existence counter examples due to Levy (2013) and Levy and McLennan (2014).
In particular, contractibility rules out Nash equilibria homeomorphic to the unit circle.
We also show that if the discounted stochastic game is noisy (Duggan, 2012), or if

the underlying probability space satis es the G-nonatomic condition of Rokhlin (1949)
and Dynkin and Evstigneev (1976) (and therefore satis es the coaser transition kernel
condition of He and Sun, 2014), then the Nash payo selection correspondence contains
a sub-correspondence having the -limit property. Thus, all noisy and all G-nonatomic
discounted stochastic games are -class.

2 Discounted Stochastic Games

In an -player, non-zero sum, discounted stochastic game, players seek to choose strate-
gies that will maximize the sum of their discounted future payo s. The game-theoretic
model we will consider here is essentially the model of Nowak and Raghavan (1992). Our
objective is to show that if a discounted stochastic game is -class, then it has stationary
Markov equilibria. We begin by listing the primitives and assumptions of the Nowak and
Raghavan class of models.

2.1 Primitives and Assumptions

We will use the term correspondence to mean a set-valued mapping, : ( ),
taking nonempty values. Here, ( ) denotes the collection of all nonempty subsets of .
Now to the speci cs.

1Using methods introduced by Nowak (2003) - i.e., by dividing the state space into a nonatomic part
and an atomic part - we can show that if the Nash payo selection correspondence is contractibly-valued
on the nonatomic part, then it is contractibly valued on all of the probability space.
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An -person, non-zero sum discounted stochastic game is de ned by the following
primitives:

:=
©
( ) ( (·) (· ·) ) (·|· ·)ª (1)

where satis es the following list of assumptions [DSG-1]:

(1) is a nite set of players consisting of | | = players,

(2) ( ) is the state space with typical element where is a complete, separable
metric (Polish) space with metric equipped with Borel - eld and probability
measure ;

(3) is the space of actions available to player with typical element where is a
compact, convex subset of a locally convex Hausdor topological vector space ,
metrizable - with metric - for the relative topology inherited from ;

(4) (·) is the feasible action correspondence, a measurable set-valued mapping from
the state space into the nonempty, -compact, convex subsets of with graph

(·) := {( ) × : ( )} (2)

Because (·) is -compact-valued and maps from a separable metric space to a
-compact metric space , the measurability of (·) is equivalent to (·) having a

measurable graph. Thus, the measurability of (·) is equivalent to (·) ×
Letting :=

Q
, equip with the sum metric,

:=
X

,

a metric compatible with the product topology on . Thus, is the -compact, convex
subset of all possible action pro les in :=

Q
with typical element = ( )

. Letting

(·) := 1(·)× · · · × (·) :=Q (·) (3)

(·) is also a measurable set-valued mapping (Lemma 18.4, Aliprantis-Border, 2006) from
the state space into the nonempty, -compact, convex subsets of . In each state

, ( ) is the -compact, convex subset of feasible actions available to
player in state , while ( ) is the -compact, convex subset of feasible action
pro les ( -tuples) available to players in state . Letting (·) denote the graph of
(·), we have

(·) := {( ) × : ( )} × (4)

(5) (· ·) is player 0 real-valued payo function de ned on × , such that for all
players (i) | ( )| for all ( ) × , (ii) (· ) is measurable
on for all , (iii) ( ·) is continuous and ( · ) is linear on for all
( ) ;

(6) (·|· ·) is the law of motion such that (i) for all ( ) × the probability measure
(·| ) de ned on ( ) is absolutely continuous with respect to the probability
measure de ned on ( ) (i.e., (·| ) for all ( ) × ), (ii) for all
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sets , ( |· ·) is measurable on × , and (iii) the collection of probability
density functions

:= { (·| ) : ( ) × }
of (·| ) with respect to is such that for each state the function

:= ( ) ( 0| ) is continuous in and a ne in

a.e.[ ] in 0.

2.2 Continuation Values

Players in a discounted stochastic game are guided in making their strategy choices by
state-contingent prices or values. For each player , this vector of state-contingent values is
given by a function, : , and therefore players’ state-contingent values are given
by a value function pro le, := ( 1 ). As in the literature on discounted stochastic
games (e.g., see Nowak and Raghavan, 1992), the space of players’ value function pro les
is given by

L := L
1
× · · · × L

where for each player = 1 2 , L is space of -equivalence classes of functions,
: , such that ( ) a.e. [ ]. For each player , is the closed

bounded interval, [ ], the same for each player. Players’ payo s (both immediate
and discounted) reside in the closed, bounded, convex subset,

:= 1 × · · · × = [ ]

and thus, players’ value function pro les reside in the space, L , a metrizable, weak star
compact, convex subset of L .
Formally, let L1 ( ) := L1 denote the separable Banach space of -equivalence

classes of -integrable functions, : with norm

k k1 :=
R | |

Also, denote by 1 the prequotient of L1 (i.e., 1 is the space of all real-valued, integrable
functions), and let

L1 := L1 × · · · × L1| {z }
times

denote the separable Banach space of -equivalence classes of -integrable functions, :
, := ( 1 ), with norm

k k1 =
X
=1

k k1

Next, let L denote the Banach space of -equivalence classes of -essentially bounded
functions, : with norm

k k := sup := inf { : { : | ( )| } = 0} .
L is the norm dual of L1 . Equip L with the weak star topology, denoted by or
(L L1 ). We will denote by the prequotient of L .
For = 1 2 , let

L := { L : ( ) a.e. [ ]} .
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Equip L with the compact and metrizable relative weak star topology, denoted by
or (L L1 ).2 To x the metric and hence the notation, let be a metric on L
compatible with the weak star topology. Also, let denote the absolute value metric
on where for and 0 in , ( 0) := | 0|.
Finally, let := 1 × · · · × and consider the Cartesian product,

L := L
1
× · · · × L

equipped with the the sum metric,

:=
P

=1

a metric compatible with the relative weak star product topology, , on L , and equip
with the sum metric

:=
P

=1 .

2.3 The Parameterized Collection of One-Shot Games

We know from Blackwell’s Theorem (1965) - extended to stochastic games - that in
order to nd conditions su cient to guarantee the existence of stationary Markov equilib-
rium, we must focus on the discounted stochastic game’s underlying collection of one-shot
games. This collection of one-shot games is parameterized by states and value func-
tion pro les. Thus, each value function pro le, , identi es a particular collection of
state-contingent, one shot -games. The crux of the problem is to identify the correct
collection of state-contingent -games for players to play - or more speci cally to identify
the correct value function pro le, say . This problem is a xed point problem. Our
main contribution, therefore, will take the form of a xed point result for the nonconvex,
measurable-selection-valued Nash payo selection correspondence. Thus, as a consequence
of Blackwell’s Theorem, our objective will to identify conditions su cient to guarantee
that the Nash payo selection correspondence, induced from the Nash payo correspon-
dence, has xed points. We will then be able to deduce, via our xed point results, that a
correct collection of state-contingent, one-shot -games exists, and via Blackwell’s Theo-
rem, we will be able to conclude that the discounted stochastic game to which this correct
collection of state-contingent -games belongs has a stationary Markov equilibrium.
We begin by discussing a 0 underlying parameterized collection of one-shot

games.

2.3.1 The Ingredients

Given discounted stochastic game,

:=
©
( ) ( (·) (· ·) ) (·|· ·)ª

with dominating probability measure, , and discount rate pro le, := ( 1 ), we
have for each ( ) ×L , a one-shot game given by

G( ) := { ( ) ( (· ·) )} ,

2Because the Borel - eld is countably generated, the space of -equivalence classes of -integrable
functions, L1 , is separable. As a consequence, the set of value function -equivalence classes L is a

compact, convex, and metrizable subset of L for the weak star topology (e.g., see Nowak and Raghavan,
1992).
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where for each action choice pro le, = ( ) , player 0 expected one-shot payo
is

( ( ) )

:= (1 ) ( ( )) +
R

( 0) ( 0| ( ))

= (1 ) ( ( )) +
R

( 0) ( 0| ( )) ( 0)

Letting
( ) := ( 1( 1) ( ),

under assumptions [DSG-1], we can show that in each state, , each player’s expected
payo function, ( ) ( ) , is × -continuous in ( ) × L .
- so that in each state, , the -valued function,

( ) ( )

is × -continuous in ( ) ×L (see the Appendix 1: Mathematical Preliminaries).
A pro le of action choices, ( ), is a Nash equilibrium for the one-shot game,

G( ), if for each player

( ( ) ) = max ( ) ( ( ) ).

Under assumptions [DSG-1] the one-shot game, G( ), always has a nonempty, -
compact set of Nash equilibria, N ( ), and using Berge’s Maximum Theorem it is
straightforward to show that the Nash correspondence,

N (· ·) : ×L ( )

is upper Caratheodory (i.e., N (· ·) is product measurable in and and - -upper
semicontinuous in with nonempty, -compact values). Moreover, it is straightforward
to show that the Nash payo correspondence,

P(· ·) : ×L ( ),

given by
P( ) := { : = ( ) for some N ( )} ,

is also upper Caratheodory (i.e., P(· ·) is product measurable in and and - -upper
semicontinuous in with nonempty, -compact values). We will denote by

UC - := UC( ×L ( )) and UC - := UC( ×L ( ))

the collection of all upper Caratheodory correspondences de ned on ×L taking values
in ( ) and ( ) respectively. Thus, under assumptions [DSG-1],

N (· ·) UC - and P(· ·) UC -

2.3.2 From Action Choices to Strategies

Given a value function pro le, L , the collection of one-shot games becomes a
collection of state-contingent one-shot games,

G( ) := { ( ) ( (· ·) )} ,
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with state contingent Nash correspondence, N ( ), and state-contingent Nash
payo correspondence, P( ). If we then measurably string together, state-by-
state, Nash equilibria from each one-shot -game, G( ), we could construct a pro le of
Nash equilibrium strategies,

( ) := ( 1( ) ( )).

For each , ( ) is a Nash equilibrium for the one-shot -game, G( ), in state .
Thus, for each player , the ( )-measurable function, (·) : , is player
0 action choice strategy. We denote this fact by writing

(·) (N (· )) := (N ),

thus denoting that (·) is a Nash equilibrium strategy for the collection of one-shot state-
contingent, -games, G( ) . Note that (·) (N ) is an everywhere ( )-
measurable selection of the -Nash correspondence, N ( ).3

2.3.3 Payo s and Probabilities under Stationary Markov Strategies

A stationary Markov strategy for player , is a ( )-measurable function, (·) :
, such that ( ) ( ) for all . Thus, the collection of all player station-

ary Markov strategies is given by ( ), the collection of all (everywhere) measurable
selections of (·).4 A Markov strategy pro le is given by,

( 1(·) (·)) ( ),

where
( ) :=

Y
( )

is the collection of all such pro les.
Let

( (·))( ) :=
( ( )) for = 1R
( 0 ( 0)) 1( 0| ( )) for 2

(5)

denote the period expected payo to player under Markov strategy pro le (·)
starting at state given law of motion (·|· ·). Here, for 2, (·| ( )) is de ned
recursively by

( | ( ))

=
R

( | 0 ( 0)) 1( 0| ( ))
(6)

The discounted expected payo to player , with discount rate [0 1), over an in nite
time horizon under Markov strategy pro le (·) starting at state is given by

( (·))( ) :=P =1
1 ( (·))( ) (7)

3Let (P(· )) := (P ) denote the collection of all ( )-measurable selections of the Nash
payo correspondence, P( ). Thus, (·) (P ) if and only if ( ) P( ) for all . By
the Measurable Implicit Function Theorem (Himmelberg, 1975, Theorem 7.1), for (·) (P ), there
exists (·) (N ) such that ( ) = ( ( ) ) for all and (· (·) ) (P ). Conversely, if
(·) (N ), then (· (·) ) (P ).
4Thus, (·) ( ) if and only if

(·) :
is ( )-measurable and ( ) ( ) for all . Such a strategy is stationary because it does not
depend on time (the same strategy applies at all time points). Such a strategy is Markov because the
action choice speci ed by the strategy in a function of the current state - and nothing else.
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A stationary Markov strategy pro le (·) ( ) is a stationary Markov equilibrium
if for all players and in all states ,

( (·) (·))( ) ( 0 (·) (·))( )

for all other strategies, 0 (·) ( ).

2.4 Other Continuity Properties

In the underlying one-shot game, each player’s expected payo function, (· · ·) for
= 1 2 , is given by,

( ) :=

Z
[(1 ) ( ) + ( 0) ( 0| )]| {z }

( ( 0))

( 0). (8)

Let
( ) := ( 1( 1) ( )

and
( ( 0)) := ( 1( 1(

0)) ( ( 0)).

(1) By part (iii) of assumption (6) we have via Sche ee’s Theorem (see Billingsley,
1986, Theorem 16.11) that

sup B( ) | ( | ) ( | )|R | ( 0| ) ( 0| )| ( 0) 0
(9)

for any sequence of action pro les { } in ( ) converging to ( ). Thus,

implies that
sup B( ) | ( | ) ( | )| 0

sometimes written k (·| )) (·| )k 0
(2) As noted above, under assumptions (5) and (6), in each state, , each player’s

expected payo function, ( ) ( ) , is × -continuous in ( )
×L - so that in each state, , the -valued function,

( ) ( )

is × -continuous in ( ) ×L . In fact, we can say more about the collection of
functions, ( · ) : , for ( ) × L . In particular, as has been shown by
Salon (1998), for each state the collection of functions,

{ ( · ) : L } ,

is uniformly equicontinuous on ( ).5 To see this, let

(·) := (1 ) ( ·) + R
( 0) ( 0| ·)) ( 0)

5The collection, ( · ) : L , is uniformly equicontinuous if for any 0 there is a 0
such that for any and 0 in ( ) with ( 0) ,

( ( ) ( 0 )) ,

for all L .
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For xed , we have for each L

| ( ) ( 0)|

(1 ) | ( ) ( 0)|

+
¯̄R

( 0| ) ( 0)
R

( 0| 0) ( 0)
¯̄

Because

( ·) and ( ) :=

Z
( 0| ·) ( 0)

are continuous functions on a compact set, and hence uniformly continuous, for any 2 0
there is a 0 such that for any and 0 in ( ) with ( 0)

| ( ) ( 0))| 2
and

| ( ) ( 0)| 2 .

2.5 Nash Payo Selections

2.5.1 The De nition

A Nash payo selection is a function, (·) L such that P( ) a.e. [ ] for some
xed value function pro le, L . Given parameterized games, {G( )}( ) ×L ,

satisfying assumptions [DSG-1] with Nash payo correspondence, P(· ·) UC - , the
induced Nash payo selection correspondence is given by

(P ) :=
©

(·) L : P( ) a.e. [ ]
ª
.

Thus, for each value function pro le , S (P ) is the set of all -equivalence classes of
measurable selections of the measurable correspondence,

P ( ) := P( ).

Recall that (P ) denotes the prequotient of (P ) while (P ) denotes the set of
all everywhere measurable selections of P (·) (for a given ).6 Because the Nash payo
correspondence, P ( ), is ( )-measurable with nonempty compact values in
, by the Kuratowski-Ryll-Nardzewski Selection Theorem (1965), P (·) has ( )-

measurable selections (i.e., (P ) 6= ).

2.5.2 Decomposability

In general, a subset S of L is said to be decomposable if for any two functions 0
(·) and

1
(·) in S and for any , we have

0
(·) (·) + 1

(·) \ (·) S.

For the Nash payo correspondence, P(· ·) : ×L ( ), an upper Caratheodory
correspondence, for each L , the induced Nash payo selection correspondence,
S (P(·)), takes decomposable values. Moreover, for each , S ( ) is k·k1-closed (or
L1 -closed) in L . Thus, for any sequence { (·)} in S (P ) converging in L1 -norm

6A ( )-measurable function, (·), is an everywhere measurable selection of P (·) provided
P ( ) for all .
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to 0
(·) L , we have 0

(·) S (P ). We will denote by 1S (P ) the L1 -closure of

S (P ) in L . By Lemma 1 in Pales and Zeidan (1999), we know that, in addition to
S (P ) being decomposable, S (P ) is L1 -closed in L . Thus, we have

1S (P ) = S (P ).

We also know by Corollary 1 in Pales and Zeidan (1999) that

1S (P ) =
n

(·) L : { (·)} S (P ) such that lim
°°° (·) (·)

°°°
1
= 0

o
.

Finally, note that L is L1 -closed in L and decomposable.

2.5.3 Sequences of Nash Payo Selections and Sequences of Nash Equilibria

Consider a sequence,
n
( (·)

o
(P(·)) L ×L , where for each , (·) L

is a Nash payo selection, that is, P( ) a.e. [ ]. Let be the exceptional set
(i.e., the set of -measure zero) such that for each

P( ) for all \ .

For each , we have by the Measurable Implicit Function Theorem (e.g., Himmelberg,
1975, Theorem 7.1) a ( )-measurable function, (·) : , such that for each
and \ , ( ) N ( ). Thus, we have for each and \ ,

= ( ( ) ) for all \ , (10)

where
( ( ) ) := ( 1( ( ) 1 ) ( ( ) ))

Note that under assumptions [DSG-1], the sequence { (·)} L1 is k·k1-bounded.

2.6 The Problem

As we have discussed in the introduction, by Blackwell’s Theorem (1965) we know that a
stationary Markov strategy pro le, (·) := ( 1(·) (·)) (N ) is a Nash equi-
librium of a discounted stochastic game if and only if there exists a pro le of continuation
values (or value functions), := ( 1 ) L such that ( ) P( ) for all ,
i.e., such that, (·) := ( 1(·) (·)) (P ), and such that together the pair,

( (·) (·)) (N )× (P )

Equivalently, (·) is a stationary Markov equilibrium if and only if the pair, ( (·) (·)),
satisfy the following system of equations:

for players = 1 2 and for all initial states

( ) = (1 ) ( ( )) +

Z
( 0) ( 0| ( )) ( 0)| {z }

( ( ) )

(11)

and
( ( ) ( ) ) = max ( ) ( ( ) ). (12)

Thus, if for the given strategy pro le, (·), (·), satis es state-by-state for each player
the Bellman equations (11), and if for the given value function pro le, (·), (·), satis es

9



state-by-state for each player the Nash conditions (12), then together, ( (·) (·)),
satisfy Blackwell’s conditions, and by Blackwell’s Theorem, (·) is a stationary Markov
equilibrium of the discounted stochastic game with underlying state-contingent, collection
of one-shot games, {G( )} .
Note that if ( ) N ( ) is the Nash equilibria correspondence for the one-shot

game, ( ) G( ), and if ( ) P( ) is the induced Nash equilibria payo
correspondence given by

P( ) := { : = ( ) and some N ( )}
then by Blackwell’s Theorem (1965) the discounted stochastic game with underlying col-
lection of one-shot games,

G( )( ) ×L
has a stationary Markov equilibrium if and only if there is a value function pro le, ,
such that

( ) P( ) a.e. [ ],

or equivalently, if and only if there is a value function pro le, , such that

S (P(· )),

where for each , S (P(· )) is the set of -equivalence classes of measurable selections
of the Nash payo correspondence, P( ). Once we have found a xed point,

S (P ) := S (P(· ))

or equivalently a solution to the Bellman inclusion and in particular, a L such that

( ) P( ) a.e. [ ],

we can easily deduce the existence of an everywhere measurable selection (P(· ))
such that = a.e. [ ] and from this we can easily deduce the existence of the strat-
egy pro le, (·), such that (·) (N (· )) using the Measurable Implicit Function
Theorem (e.g., Himmelberg, 1975, Theorem 7.1). Thus, in order to establish the exis-
tence of a stationary Markov equilibrium for our discounted stochastic game it follows
from Blackwell’s Theorem (1965) that it is both necessary and su cient that there ex-
ists a xed point, , of the corresponding the Nash payo selection correspondence,

S (P(· )) or equivalently, that the Bellman inclusion have a solution. Formally,
we have the following variation on Blackwell’s Theorem (1965):

Theorem 1 (Necessary and su cient conditions for the existence of stationary Markov
equilibria):
Let

:=
©
( ) ( (·) (· ·) ) (·|· ·)ª

be a discounted stochastic game satisfying assumptions [DSG-1], with Nash payo
correspondence, P(· ·), for the underlying one-shot game. Then DSG has a stationary
Markov equilibrium if and only if the Nash payo selection correspondence,

S (P(· )),

has a xed point.

As a consequence of Theorem 1 above, our su cient conditions for existence will
take the form of a new xed point theorem for nonconvex, measurable-selection-valued
correspondences.
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3 -Class Discounted Stochastic Games

While the Nash payo selection correspondence,

S (P )

takes nonempty, decomposable, L1 -norm closed values in L (see Pales and Zeidan,
1999). In general, S (P(·)) is neither -closed valued nor convex-valued. This makes the
xed point problem we must solve in order to establish existence very di cult. However,
we will show that if the Nash payo selection correspondence, S (P(·)), contains a sub-
correspondence, (·) having the -limit property (i.e., if S (P(·)) contains a sub-
correspondence (·) that is a -correspondence), then this sub-correspondence, (·),
is a - -USCO and if, in addition, the dominating probability measure is nonatomic,
then (·) is a - -USCO taking contractible values. By dividing the state space
into a nonatomic part and an atomic part, we can then show (using methods introduced
by Nowak, 2003) that if the Nash payo selection correspondence is contractibly-valued
on the nonatomic part, it is contractibly valued on all of the probability space. Due to
contractibility, we will be able to conclude via results due to Gorniewicz, Granas, and
Kryszewski (1991) that (·), is - -approximable and therefore has xed points.

3.1 Approximable Sub-Correspondences

Let {G( )}( ) ×L be the collection of one-shot games underlying discounted stochas-

tic game, , satisfying [DSG-1] having Nash correspondence, N (· ·) UC - , and
Nash payo correspondence, P(· ·) UC - .
Consider the induced Nash payo selection correspondence,

S (P ) :=
©

(·) L : P( ) a.e. [ ]
ª
.

The Nash payo selection correspondence, S (P(·)), is in general not a - -USCO,
nor is it convex valued. But it may contain a sub-correspondence that is a - -USCO -
and not only that, but S (P(·)) may contain a sub-correspondence which is contractibly
valued. Are there conditions su cient to guarantee that S (P(·)) contains a contractibly
valued - -sub-USCO?
We say that a correspondence

(·) : L (L )

is a sub-correspondence belonging to S (P(·)), denoted by
(·) SC[S (P(·))],

if
(·) S (P(·)),

where
(·) := ©( (·)) L × L : (·) ( )

ª
,

and
S (P(·)) :=

©
( (·)) L × L : (·) S (P )

ª
.

De nition 1 (Approximable Sub-Correspondences)
We say that a Nash payo selection sub-correspondence,

(·) SC[S (P(·))],

11



is - -approximable if for each 0, there exists a - -continuous function,

(·) : L L

such that for each ( (·)) L × L (i.e., for each ( (·)) L × L , with

(·) = ( ) L ) there exists

( (·)) (·) L × L

(i.e., there exists (·) ( )) such that

( ) + ( (·) (·)) . (13)

Equivalently, for any 0

× ( (·)).

Thus, the graph of the continuous function : L L is contained in the × -
open ball of radius about the graph of (·). If S (P(·)) contains an - -approximable
sub-USCO, (·), then S (P(·)), is - -approximable.

3.2 -Class Games

We have the following formal de nition of the -limit property.

De nition 2 (The -Limit Property and -Correspondences):
The Nash payo selection correspondence, S (P(·)), has the -limit property or is a
-correspondence if there exists a sub-correspondence, (·) SC[S (P(·))], such that

for any -converging sequence,

{( (·))} L × L

with (·) ( ) for all and -limit, (b b(·)) L × L ,

b
(·) (b).

If the graph of the Nash payo selection correspondence, S (P(·)) L × L ,
contains a -closed subset,

S (P(·)) L × L

such that for all L ,

( ) :=
©

(·) L : ( (·))
ª 6=

then the induced mapping, ( ), is a - -sub-USCO belonging to S (P(·)).
Given sub-correspondence, (·) SC[S (P(·))], consider a sequence,n

( (·)
o

(·) L × L ,

where for each , (·) L is a Nash payo selection, that is,

P( ) a.e. [ ].

12



Let be the exceptional set (i.e., the set of -measure zero) such for \ ,
P( ) for all . For each , we have by the Measurable Implicit Function Theorem

(e.g., Himmelberg, 1975, Theorem 7.1) a ( )-measurable function, (·) : ,
such that for each and \ , ( ) N ( ). Thus, we have for each and

\ ,
= ( ( ) ) P( ) a.e. [ ],

and in fact, we have

{( (· (·) )} (·) L × L .

an alternative statement of the -limit property is

S (P(·)), has the -limit property or is a -correspondence if there exists a
sub-correspondence, (·) SC[S (P(·))], such that for any -converging sequence,

{( (· (·) ))} L × L

with (· (·) ) ( ) for all and -limit, (b b(·)) L × L ,

b ( { ( ) b) a.e. [ ],
where

( { ( ) b) := { ( b) : { ( )}}.

By Page’s (1991) lower closure result for -limits (Proposition 1 in Page, 1991), we
know that b { } := ( { ( ) b) a.e. [ ]. (14)

This fact will be very useful in connecting our results on stationary Markov equilibria to
recent results by Duggan (2012) and He and Sun (2015).
If the parameterized collection of one-shot games, {G( )}( ) ×L , belonging to

a DSG satisfying [DSG-1] has a Nash payo selection correspondence having the -limit
property we will refer to the DSG as being -class.

3.3 A Fixed Point Theorem for -Class Discounted Stochastic
Games

In this section, we will show that if the Nash payo selection correspondence, S (P(·)),
has a sub-correspondence,

(·) SC[S (P(·))]
that is a -correspondence, then this sub-correspondence is in fact a - -sub-USCO
belonging to S (P(·)). Moreover, if the probability measure, , on the state space, ,
is nonatomic, then (·) takes contractible values. In fact, by dividing the state space
into a nonatomic part and an atomic part, we can, using methods introduced by Nowak
(2003), show that if the Nash payo selection correspondence is contractibly-valued on the
nonatomic part, then it is contractibly valued on all of the probability space. Thus, the
limit property alone is su cient to show that a sub-correspondence, (·), belonging

to S (P(·)) is a contractibly-valued sub-USCO. But here we will explicitly assume that
is nonatomic and provide a proof that (·) is contractibly-valued with respect to the

metric on L - a metric compatible the relative weak star topology on L

13



Theorem 2 (Any sub-correspondence, (·), belonging to S (P(·)) having the -limit
property is a contractibly-valued USCO)
Let {G( )}( ) ×L be the parameterized one-shot game underlying a discounted

stochastic game satisfying assumptions [DSG-1] and let

S (P(·)) : L (L ),

be the Nash payo selection correspondence. If

(·) SC[S (P(·))]

is a -correspondence (i.e., has the -limit property), then
the following statements are true:
(1) The sub-correspondence, ( ), is a - -USCO belonging to S (P(·)), that
is,

(·) U - [S (P(·))]

(2) For (·) SC[S (P(·))], if the underlying probability measure, , is nonatomic,
then for each L , ( ) is contractible (with respect to the topology).

PROOF: (1) Because (·) has the -limit property, it follows from Komlos Theorem
and Theorem A2.3(1) that for each L , ( ) is -compact. Therefore, to show
that (·) U - , it su ces to show that (·) is × -closed in L × L . Let
{( (·))} be any sequence in (·) such that

b and (·) b
(·).

Thus, {( (·))} is a sequence of payo selections (rather than a sequence of payo

graph selections). By Theorem A2.3(1), we have and (·) (·) with = b
and b(·) = (·) a.e. [ ]. Also, we have for each ,

P( ) a.e. [ ].

By the -limit property of (·), we have that
b
(·) (b),

and given that b(·) = (·) a.e. [ ], we have

(·) (b).
Given that = b a.e. [ ], we have P( ) = P( b) a.e. [ ]. Thus, (·) ( ) (i.e.,

implying that ( (·)) (·).
(2) Next, for (·) U - , we will show that if the dominating probability measure,

, is nonatomic, then for each , ( ) is contractible.
First, if the dominating probability measure, , is nonatomic, then as shown by

Fryszkowski (1983), Liapunov’s Theorem (1940) on the range of a vector measure guar-
antees the existence of a family of measurable sets, { } [0 1], such that

0 0 , 0 = and 1 = , and
( ) = ( ) = .

¾
(15)
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Using the properties of this system of measurable sets and the decomposability of ( )
for each L , we will show that for each the function (· ·) given by

( ) := 1
(·) (·) + (·) \ (·) ( ) for all ( ) ( )× [0 1] (16)

is a homotopy (and in particular, a contraction of ( ) to 1). Here L is xed,
(·) is the indicator function of set and 1

(·) is any xed selection in ( ).

It su ces to show that (· ·) is ×|·|- -continuous. Let {( (·) )} be such a
sequence such that

(·) (·) and

We must show that
( (·) ) ( (·) ) ( ).

It su ces to show that for all L1 with k k1 1,

=
R ¡

1 ( ) 1 ( )
¢
( )
®

( )

+
R ¡

\ ( ) \ ( )
¢
( )
®

( ) 0

Rewriting, expression , we have

=

Z ¡
1 ( ) 1 ( )

¢
( )
®

( )| {z }
( )

+

Z ¡
\ ( ) \ ( )

¢
( )
®

( )| {z }
( )

+

Z ¡
\ ( ) \ ( )

¢
( )
®

( )| {z }
( )

Because , we haveR ¡
\ ( ) \ ( )

¢
( )
®

( )

+
R h( ( ) ( )) ( )i ( )

=
R h( ) ( )i ( ) 0

Thus, ( ) 0. Given that = [ ] for all , we note that each of the expressions
( ) and ( ) is less than or equal to 2 k k1 ( M ), and given that k k1 1, we
have ( ) + ( ) 4 ( M ). We have, then,R ¡

1 ( ) 1 ( )
¢
( )
®

( )

+
R ¡

\ ( ) \ ( )
¢
( )
®

( )

4 ( M ) +
R ¡

\ ( ) \ ( )
¢
( )
®

( )
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and as goes to in nity

4 ( M )

+
R ¡

\ ( ) \ ( )
¢
( )
®

( ) 0.

Thus, the ×|·|- -continuous function given in (16) for each L , together with
the properties of the Liapunov system (15) specify a homotopy for the set of measurable
selections, ( ) - and thus for each , ( ) is contractible. Q.E.D.
Our proof that ( ) is contractible for each is a modi ed version of the proof given

by Mariconda (1992) showing that if the underlying probability space is nonatomic then
any decomposable subset of -valued, Bochner integrable functions in L1 is contractible
(where is a Banach space). In Mariconda’s result, the space of functions is equipped
with the norm in L1 , while here our space of functions (with each function taking values
in ) is equipped with the metric, , a metric compatible with the topology.

3.3.1 Approximable Nash Payo Selection Correspondences

The importance of the -limit property derives from the fact that it guarantees - -
contractibility and this in turn guarantees approximability, as our next result shows.

Theorem 3 (If (·) SC[S (P(·))] is a correspondence and nonatomic, then (·)
is - -approximable)
Let {G( )}( ) ×L be the parameterized one-shot game underlying a discounted

stochastic game satisfying assumptions [DSG-1] and let

S (P(·)) : L (L ),

be the Nash payo selection correspondence. If (·) SC[S (P(·))] is a
-correspondence, and if the dominating probability measure, , is nonatomic, then the

Nash payo selection sub-correspondence,

( )

is a - -approximable

PROOF: By Corollary 5.6 in Gorniewicz, Granas, and Kryszewski (1991), because the
sub-USCO, (·), is de ned on the ANR (absolute neighborhood retract) space of value
functions L taking nonempty, compact, and contractible values in L (and hence -
proximally connected values - see Theorem 5.3 in Gorniewicz, Granas, and Kryszewski,
1991), the sub-USCO, (·), is a mapping. Therefore, by Theorem 5.12 in Gorniewicz,
Granas, and Kryszewski (1991), (·) is - -approximable. Q.E.D.
We can now state our main xed point result.

Theorem 4 (Fixed points for Nash payo selection correspondences)
Let {G( )}( ) ×L be the parameterized one-shot game underlying a discounted

stochastic game satisfying assumptions [DSG-1] and having a Nash payo selection
correspondence,

S (P(·)) : L (L ),

If (·) SC[S (P(·))] is a -correspondence, and if the dominating probability
measure, , is nonatomic, then S (P(·)) has a xed point (i.e., there exists L
such that S (P )).
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PROOF: By Theorem 3 above, (·) is - -approximable. Therefore, we have for
each , a - -continuous function,

(·) : L L
such that for each ( ) L ×L (i.e., for each ( ) L ×L , with

= ( ) L ) there exists

( ) (·) L × L
(i.e., there exists ( )) such that

( ) + ( (·) (·))
1
2 . (17)

Equivalently, for any positive integer, ,

× ( 12 (·)).
Thus, the graph of the continuous function : L L is contained in the × -
open ball of radius 1

2 about the graph of (·).
Because each of the functions, , is - -continuous and de ned on the -compact

and convex subset, L , in L , taking values in L , it follows from the xed point
theorem of Schauder (see Aliprantis and Border, 2006), that each has a xed point,

L (i.e., for each there exists some L such that = ( )) Let { } be
a xed point sequence corresponding to the sequence of - -continuous approximating
functions, { (·)} . Expression (17) can now be rewritten as follows: for each in the
xed point sequence, there is a corresponding pair, ( (·)) (·), such that

( ) + ( ( ) (·))
1
2 ,

and therefore such that

( )| {z }+ ( (·))| {z } 1
2 .

(18)

By the -compactness of L , we can assume WLOG that the xed point sequence,
{ } L , -converges to a limit L . Thus, by part A of (18), as we
have

and

and therefore by part B of (18), as we have

.

Because (·) is × -closed in L × L ,

{( )} S (P(·)),
and and imply that

( ) (·).
Therefore,

( ) S (P ).

Q.E.D.
Given assumptions [DSG-1] it follows from Theorem 1 (Blackwell’s Theorem) and

Theorems 4 above that all -class discounted stochastic games have stationary Markov
equilibria (remember, as a consequence of Nowak, 2003, the -limit property is su cient
to guarantee that S (P(·)) has xed points).
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4 Examples of -Class

Thus far we have shown that if the graph of the Nash payo selection correspondence,
S (P(·)), contains a -closed subset , L ×L whose domain is all of L (i.e.,

L ( ) = L ), then

( ) :=
©

(·) L : ( (·))
ª

is a - -sub-USCO taking contractible values belonging to S (P(·)). Are there condi-
tions su cient to guarantee the existence of a -closed set, , with

S (P(·)) L × L ?

We now consider two rich classes of examples of -class discounted stochastic games:
G-nonatomic DSGs, and noisy DSGs.

4.1 G-Nonatomic Discounted Stochastic Games
In this subsection we will de ne the notion of G-nonatomic DSGs and we will show
that all G-nonatomic DSGs have Nash payo selection correspondences that are -
correspondences. This conclusion rests upon a measure theoretic condition introduced
by Rokhlin (1949) and Dynkin and Evstigneev (1976) ensuring the existence of a convex
set of conditional selections of a measurable, closed valued correspondence. We will call
this condition the G-nonatomic condition.
The G-nonatomic condition led He and Sun (2015) to study a sub-class of DSGs which

we will call here, G-nonatomic sub-class. In this subsection, using (14) and Dynkin and
Evstigneev (1976) we will show that all G-nonatomic DSGs are -class. He and Sun (2013)
call the sub-class of G-nonatomic DSGs, games with a coarser transition kernels. Whatever
its name, the usefulness of this sub-class in establishing the existence of stationary Markov
equilibria follows from an extension of Lyapunov’s Theorem (1940) due to Dynkin and
Evstigneev (1976). In what we do here, we go back to the de nitions and results of
Dynkin and Evstigneev (1976) - rather than He and Sun (2015). Recall that here we have
assumed that the state space is a Polish space, equipped with the Borel - eld, ,
and a probability measure, , de ned on . Also, recall that when is Polish, is
nonatomic if and only if ({ }) = 0 for all (see Hildenbrand, 1974). Suppose now
that G is a sub- - eld of . Denote by G(·) a regular G-conditional probability given
sub- - eld G. Following Dynkin and Evstigneev, is G-atom if ( ) 0 and for
any such that ©

: 0 G( )( ) G( )( )
ª
= 0.

Let : ( ) be an arbitrary measurable correspondence taking nonempty,
closed values in . We will denote by

SG ( ) := { ( |G) L (G) : S ( )}
the collection of all -equivalence classes of regular G-conditional expectations of -
essentially bounded a.e. measurable selections of . The following extension of Lyapunov’s
Theorem is due to Dynkin and Evstigneev (1976).

Theorem 5 (An extension of Lyapunov’s Convexity Theorem)
Let : ( ) be a measurable correspondence taking nonempty, closed values in
. If for some sub- - eld, G, of , contains no G-atoms, then

SG ( ) = SG ( ),

where denotes the convex hull.
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He and Sun (2015) give a slightly di erent de nition of G-atoms - one implied by
Dynkin and Evstigneev’s de nition - and they show that if the state space underlying the
game is nonatomic and has no G-atoms, then the the discounted stochastic game has a
stationary Markov equilibrium. Our next result, Theorem 6, shows that our condition,
the -limit property, is implied by the absence of G-atoms.
Theorem 6 (All G-nonatomic are -class nonatomic )
Let {G( )}( ) ×L be the parameterized one-shot game underlying a discounted

stochastic game, , satisfying assumptions [DSG-1] and having a Nash payo
selection correspondence,

S (P(·)) : L (L ).

If the underlying probability space, ( ), is such that for some sub- - eld, G, of
, contains no G-atoms, then SG (P(·)) has the -limit property, and in fact, is a

convex-valued, - -sub-USCO of S (P(·)).

PROOF: Let {( (·))} be any sequence contained in (S (P(·))) such that
L . We have for each , ( ) P( ) a.e. [ ]. By the compactness of

L , we can assume WLOG that the sequence, {( (·))} , converges with limit

(b b(·)) L × L . We have

b ( ) :=
1X

=1

( ) b( ) a.e. [ ],
and by the properties of conditional expectations (see Ash, 1972),

(b |G)( ) := 1X
=1

( |G)( ) (b |G)( ) a.e. [ ].
By Proposition 1 in Page (1991) - i.e., by Page’s lower closure result,

(b |G)( ) { ( |G)( )} a.e. [ ].
By Dynkin and Evstigneev (1976),

{ ( |G)( )} = { ( |G)( )} a.e. [ ].
and by the properties of conditional expectations, { ( |G)(·)} SG (P ). Thus,

(b |G)( ) { ( |G)( )} a.e. [ ],
i.e., SG (P(·)) has the -limit property. In fact, SG (P(·)) is a convex-valued, and by
Theorem A2.3 is a - -sub-USCO of S (P(·)). Q.E.D.

4.2 Noisy Discounted Stochastic Games

Another interesting class of discounted stochastic games is the class of noisy DSGs recently
studied by Duggan (2012). By specializing primitives and assumptions of our discounted
stochastic game model above, we can easily make our model a noisy stochastic game
model. We need only modify assumptions (2) and (6) as follows:
In a noisy DSG (i.e., NDSG) the state space is given by := × with typical element

:= ( ), where both and are complete separable metric spaces with metrics and
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, equipped with the Borel - elds and . By structuring the state space in this
way, we can analyze situations where part of the riskiness is controllable (in a stochastic
sense) and part of the riskiness is only indirectly controllable or not controllable at all. In
particular, we can think of as being the stochastically controllable regular state, and
we can think of as being the indirectly stochastically controllable (or uncontrollable)
noisy state.
In an NDSG, the law of motion

(( )|{z} ) (·|( )|{z} )

is given by
( ( 0 0)|( ) ) := ( 0| 0) ( 0|( ) )

or
( ( 0 0)| ) := ( 0| 0) ( 0| )

where = ( ) denotes the current state and 0 = ( 0 0) denotes the coming state - and
depending on the regular state 0 chosen by the probability measure, ( 0| ), in current
state = ( ) given action pro le ( ), the noisy state 0 will be chosen according
to the probability measure, ( 0| 0). Thus, while regular states are directly stochastically
controllable via the stochastic kernel, ( 0| ), noisy states are only indirectly stochas-
tically controllable via ( 0| 0). In this sense, we say that the discounted stochastic game
is noisy.
To complete our formal description of the noisy discounted stochastic game model,

assume that for all 0 , the probability measure, ( 0| 0), governing the choice of
the coming noisy state 0 is absolutely continuous with respect to a probability measure,
( 0), de ned on the measurable space, ( ), of noisy states.7 Also, assume that for all
( ) × ( ), the probability measure, ( 0| ), governing the choice of the coming
regular state 0, given current state, := ( ) and action pro le ( ), is absolutely
continuous with respect to a probability measure, ( 0), de ned on the measurable space,
( ), of regular states. Thus, the noisy DSG has dominating probability measure given
by the product measure, := × By the Corollary in Rao and Rao (1972), if is
nonatomic, then is nonatomic.8

Let
:= { ( | ) : ( ) × } ,

be the collection of probability density functions of (·| ) with respect to such that
for each state := ( ), the function

( ) ( 0|( ) )

is continuous in and a ne in a.e. [ ] in 0. Also, let

:= { ( 0| 0) : 0 } ,
be the collection of probability density functions of (·| 0) with respect to such that the
function

0 ( 0| 0)
7Duggan assumes that the dominating probability measure, , is nonatomic - but we will show that

this is not required for existence of stationary Markov equilibria.
8 is an atom of relative to (·) if the following implication holds: if ( ) 0, then

implies that ( ) = 0 or ( ) = 0. If contains no atoms relative to (·), is said to be atomless
or nonatomic. Because is a complete, separable metric space (·) is atomless (or nonatomic) if and
only if ({ }) = 0 for all (see Hildenbrand, 1974, pp 44-45).
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is measurable in 0 a.e. [ ] in 0.
Specializing (2) and (6) in our list of assumptions, [DSG-1], above, label the new list

of assumptions [NSG-1].
The key result connecting Duggan’s noisy DSGs to our -class DSGs is due to He

and Sun (2015).

Theorem 7 (All Noisy Are G-Nonatomic)
If {G( )}( ) ×L is the parameterized one-shot game underlying a discounted

stochastic game, , satisfying assumptions [NSG-1](i.e., if is noisy), then
is G-nonatomic.

Thus, by Theorems 6 and 7 we have,

{all noisy } {all G-nonatomic } {all -class }
He and Sun (2013) were the rst to investigate G-nonatomic discounted stochastic

games - only they used a weaker version of the Dynkin-Evstigneev-Rokhlin condition.
They called their condition - implied by the Dynkin-Evstigneev-Rokhlin condition - the
coarser transition kernel condition. Both G-nonatomic discounted stochastic games, as
well as discounted stochastic games with coarser transition kernel are examples of -class
discounted stochastic games. The key ingredient allowing the G-nonatomic condition as
well as the coarser transition kernel condition to deliver an existence result for stationary
Markov equilibria is the extension of Lyapunov’s Theorem (1940) due to Dynkin and
Evstigneev (1976). In what we did here, we went back to the de nitions and results of
Dynkin and Evstigneev (1976) - rather than He and Sun (2015).9

5 Conditions Su cient to Guarantee That a Is
-Class

6 Appendix 1: Mathematical Preliminaries

6.1 Hyperspaces

Let be a nonempty, closed subset of and let ( ) denote the hyperspace of all
nonempty, closed (and hence compact) subsets of . Equip ( ) with the Hausdor
metric generated by the sum metric, , on .10 Because ( ) is a compact metric
space, so too is the hyperspace, ( ( ) ).

9He and Sun (2015) give a slightly di erent de nition of G-atoms - one implied by Dynkin and
Evstigneev’s de nition - and they show that if the state space underlying the game is nonatomic and
has no G-atoms, then the the discounted stochastic game has a stationary Markov equilibrium.
10The Hausdor metric, , on ( ) is de ned as follows: for all and 0 in ( ), the Hausdor

distance between and 0 is given by
( 0) := max { ( 0) ( 0 )}

where
the excess of over 0 is given by
( 0) := sup ( 0),

and
the excess of 0 over is given by
( 0 ) := sup 0 0 ( 0 ),

and where
the distance from to 0 is given by

( 0) := inf 0 0 ( 0)
while the distance from 0 to is given by

( 0 ) := inf × ( 0 )
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Also, let ( (L ) ) denote the hyperspace of nonempty, -closed subsets of
L equipped with the Hausdor metric generated by the underlying metric . Because
(L ) is a compact metric space, the hyperspace, ( (L ) ), is a compact
metric space.
Finally, let (L × ) denote the collection of all nonempty, × -closed subsets of

L × , where × denotes the sum metric, + on L × .11 Equip (L × )
with Hausdor metric, × , generated by the metric, × , on L × . Again,
because (L × × ) is a compact metric space, so too is ( (L × ) × ).

6.2 Upper Caratheodory Correspondences

The correspondence,
(· ·) : ×L ( ),

is upper Caratheodory if (· ·) is product measurable on ×L and - -upper semi-
continuous on L and for all

( ) := ( ( 1 )) ×L ,

( ) ( ).
For the correspondence, (· ·), and subset of , let

( ) := {( ) ×L : ( ) 6= }

The correspondence, (· ·), is product measurable if for each open subset, , of ,
( ) × , where is the Borel product - eld, := 1 × · · · × in
. For xed , the correspondence, ( ·) := (·), is - -upper semicontinuous if
( ) := ( ) is -closed for each closed subset, , of .12 The correspondence,
(· ·), is upper Caratheodory if it is product measurable in and and - -upper
semicontinuous in for each (when no confusion is possible we will write upper semi-
continuous rather than - -upper semicontinuous)
Let be the Borel - eld in L generated by the weak star open (i.e., the -open)

subsets of L . A function
: L

is ( )-measurable (or just measurable) if for any Borel measurable subset E
of L ,

{ : ( ) E} .

Similarly, a function
:

is ( )-measurable (or just measurable) if for any Borel measurable subset of ,

{ : ( ) } .

11Thus, for ( ) and ( 0 0) in L × ,

× (( ) ( 0 0)) := ( 0) + ( 0)

12Equivalently, ( ·) is - -upper semicontinuous (usc) if given any open subset of , the set

+( ) := L : ( )

is -open in L .
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6.3 USCOs

Consider the correspondence,

(·) : L ( ).

We say that a correspondence (or a set-valued mapping) (·) is an USCO if (·) is
upper semicontinuous (usc) with nonempty, compact values. Here, because is compact,
(·) is an USCO if (·) is upper semicontinuous (usc) with ( ) ( ) for all .
We will denote by

U - := U(L ( ))

the set of all USCOs de ned on L with values contained in ( ) (see Anguelov and
Kalenda, 2009, Crannell, Franz, and LeMasurier, 2005 and Hola and Holy, 2009). Note
also that because is compact, (·) is a USCO if and only if (·) is × -closed
(i.e., (·) (L × )).13 Note that if ( ) ( ) is an upper Caratheodory
mapping, then for each , the mapping,

( ) := ( )

is an USCO.
Finally, we will denote by

U - := U(L (L ))

the collection of all USCOs,

(·) : L (L ),

de ned on L taking nonempty, -closed (and hence -compact) values in L .
Given an USCO, (·), we say that (·) is a sub-USCO belonging to (·) if (·) is an

USCO and the graph of (·), denoted by (·) is contained in the graph, (·), of the
USCO (·). Note that (·) is a sub-USCO of itself.

6.4 - -USCOs

We say that a set-valued mapping (or a correspondence),

(·) : L (L ),

is - -upper semicontinuous if

( ) := { L : ( ) 6= }
is -closed for each -closed subset, , of L .14

We say that (·) is a - -USCO if (·) is - -upper semicontinuous ( - -usc)
with nonempty, -compact values. Here, because L is -compact, (·) is an USCO
if (·) is - -upper semicontinuous with

( ) (L ) for all L .

13 ( ·) is closed if for any sequence {( )} in ( ·), and imply that

( ) ( ·).
14Equivalently, (·) is - -upper semicontinuous (usc) if given any -open subset of L , the set

+( ) := L : ( )

is -open in L .
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We will denote by
U - := U(L (L ))

the set of all - -USCOs de ned on L with values contained in (L ). Note that
because L is -compact, (·) is a - -USCO if and only if (·) is × -closed.15

6.5 Continuous Functions

A function : is said to be - -continuous at if for every -
open subset of such that ( ) there is a -open set containing such
that ( ) . The function is - -continuous if it is - -continuous at every

.
A function : is said to be -k·k1-continuous at if for every
0 there is a 0 such that for all ( ) , k ( ) ( )k1 . The

function is -k·k1-continuous if it is -k·k1-continuous at every .
Finally, a function : is said to be - -continuous at if for

every 0 there is a 0 such that for all ( ) , ( ( ) ( )) .
The function is - -continuous if it is - -continuous at every .
We will denote by C - := C(L ) the collection of all - -continuous functions

de ned on L with values in , by C -k·k1 := C(L L ) the collection of all -k·k1-
continuous functions de ned on L with values in L , and by C - := C(L L ) the
collection of all - -continuous functions de ned on L with values in L .

Continuity Theorem A1.1 (Continuity of Players’ Payo Pro le Function)
Let be a discounted stochastic game satisfying assumptions [DSG-1] with players’
payo pro le function,

( ) ( ) := ( 1( 1) ( ).

If {( )} is a sequence in L × such that and , then in

each state ,
( ) ( ).

Proof. Let {( )} be a sequence such that and . Let be given

and xed, and observe that for each players :

| ( ) ( )|

| ( ) ( )|| {z }+ | ( ) ( )|| {z }
We will carry out our proof for one player , keeping in mind that the argument holds

for all players simultaneously. Consider rst. We have

=

¯̄̄̄Z
( 0) ( 0| )

Z
( 0) ( 0| )

¯̄̄̄
15 (·) is × -closed if for any sequence {( )} in (·), and imply

that ( ) (·).
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Let (·| ) be a density of (·| ) with respect to . Given that , we have,R
( 0) ( 0| ) =

R
( 0) ( 0| ) ( 0)R

( 0) ( 0| ) ( 0) =
R

( 0) ( 0| )

Thus, 0. Next, consider . We have

(1 )| ( ) ( )|| {z }
1

+

¯̄̄̄Z
( 0) ( 0| )

Z
( 0) ( 0| )

¯̄̄̄
| {z }

2

Continuity of ( ·) and imply that 1 0. To see that 2 0,

observe that ¯̄R
( 0) ( 0| )

R
( 0) ( 0| )

¯̄
k (·| ) (·| )k 0

Q.E.D.

7 Appendix 2: -Convergence

7.1 The Relevant Function Spaces

Let ( ) be a probability space where is Polish (complete, separable, metric) and
is a probability measure de ned on the Borel - eld .
We have

L L1
and

L L L1 .

We note that if a sequence, { } , in L converges in L1-norm to , then L - thus,
L is L1-norm closed in L (see Pales and Zeidan 1999). Recall that a sequence { }
in L -converges (or converges weak star) to L if for each 1 L1 ,

1
®
:=
R

( ) 1( )
®

( )
R

( ) 1( )
®

( ) := 1
®
.

The space of value function pro les, (L ), is a compact, convex, metric space. We
will denote by sequential convergence in L with respect to the metric - and

therefore, convergence in L with respect to the -topology.

7.2 -Convergence in L1
Consider a sequence { (·)} 1 with corresponding sequence of arithmetic mean
functions,

©
1
P

=1 (·)ª , and for any subsequence, { (·)} , of { (·)} , let the
corresponding subsequence of arithmetic mean functions be given by(

1X
=1

(·)
)
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Finally, for each let b (·) := 1
P

=1 (·) and for each , let b (·) := 1
P

=1 (·).
De nition A2.1 ( -Sequences, -Convergence, and -Limits)
We say that a sequence { } 1 is -convergent (or is a -sequence) if there

exists a -limit function b 1 such that,

(a) the corresponding sequence of arithmetic mean functions, {b (·)} , converges
pointwise a.e. [ ] to b(·), that is,

b ( ) b( ) a.e. [ ],
and
(b) for any subsequence, { (·)} , of { (·)} , the corresponding subsequence of
arithmetic mean functions, {b (·)} , converges pointwise a.e. [ ] to b(·) as well, that
is, b ( ) b( ) a.e. [ ].
We will often refer to set of -measure zero where pointwise arithmetic mean conver-

gence fails for a particular subsequence as the subsequence’s exceptional set.
A sequence, { (·)} , of functions in L1 is norm-bounded provided

sup k k1 := sup
P

=1 k k1 .

For the convenience of the reader we state the Theorem of Komlos (1967) as well as a
variation on Artstein’s Proposition C (1978) due to Page (1991).

Theorem A2.1 (Komlos Theorem, 1967):
If { (·)} L1 is k·k1-bounded, then { (·)} has a -convergent subsequence.
Theorem A2.2 (Page’s Theorem, 1991):
If the sequence { (·)} L1 is k·k1-bounded and K-converges to some integrable

-valued function, b(·), then
b( ) { ( )} a.e. [ ]

and there exists an integrable -valued function, (·), such that ( ) { ( )}
a.e. [ ] and Z

( ) ( ) =

Z b( ) ( ).

We say that a set of functions, H L1 , is -compact if every sequence, { } H,
has a -convergent subsequence with -limit contained in H. By Komlos’ Theorem
any k·k1-bounded subset H of L1 is relatively -compact (i.e., has a -converging
subsequence with -limit contained in L1 ).

7.3 -convergence and -Convergence in L
Our next results concern the relationships between -convergence and weak star ( -
convergence) in L .

Theorem A2.3 ( -Convergence and -Convergence):
Suppose the primitives satisfy assumptions [DSG-1]. Let { } be any sequence in L .
Then the following statements are true:
(1) If { } -converges to b , then { } L -converges to b L
(2) If { } L -converges to L , then each -convergent subsequence of
{ } has a -limit, b such that b= a.e. [ ]
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Before proceeding to the proof, some comments on notation: In the statement of the
Theorem above, we write { } L , to indicate that rather than viewing the sequence
{ } as a sequence of speci c functions - which we will denote by { } - we
are instead viewing the sequence as a sequence of -equivalence classes in L indexed
by the speci c functions, . Thus, we write b L to denote the -equivalence class
in L determined by the speci c function, b.
PROOF: We will prove part (2) rst. Assume that { } L -converges to

L , and that the subsequence, { } , -converges to b . For each
1 we have

1X
=1

h ( ) ( )i hb( ) ( )i a.e. [ ]

and by the Dominated Convergence Theorem also in L1 -norm. Thus, for each 1 ,R hb( ) ( )i ( )

:= lim 1
X
=1

R h ( ) ( )i ( )

=
R h ( ) ( )i ( )

and hence b( ) = ( ) a.e. [ ].
Now we will prove part (1). Assume that { } -converges to some b .

In order to show that { } -converges to b, by -compactness and metrizability, it
su ces to show that the -equivalence class in L containing b is the only limit point of
the sequence of -equivalence classes, { } L . Let be any -limit point of the
sequence { } and let { } be a subsequence -converging to . By K-convergence
we know that this subsequence also K-converges to b and hence by part (2) we know that

= b a.e. [ ]. Q.E.D.
7.4 -Compactness and Metrizability of L for the Topology

In this subsection, we prove that L is -compact and metrizable. By Theorem V.1 in
Castaing and Valadier (1977) (also see, Theorem 7.14 in Kahn, 1985), the space L of
all equivalence classes of ( )-measurable functions taking values in a.e. [ ] is a
-compact subset of L .

Theorem A2.4 (Metrizability of L )
The convex set L of all equivalence classes of ( )-measurable functions taking
values in a.e. [ ] is compact and metrizable for the weak star topology.

PROOF: By Theorem 6.30 in Aliprantis and Border (2006), it su ces to show that (the
quotient) L1 is (norm) separable. Recall (i) that the - eld, , is countably generated
and (ii) that is separable. Hence, let { } =1 be the countable collection of subsets
of generating ( ), and let { } =1 be a countable dense subset of . Note that
the set of vectors { } =1 in separates the vectors in (i.e., for and 0 in ,
h i = h 0 i for all implies that = 0), and for each and de ne (·) 1
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as follows: ( ) := ( ) where (·) is the indicator function for the set . For
let h i be given by

h i := R h ( ) ( )i ( ) =
R

( ) ( )
®

( ).

Finally, observe that the set of functions { : and in N} 1 is (norm) dense in
L1 and separates the functions in , i.e., if

h i = h 0 i for all and , then ( ) = 0( ) a.e. [ ]

Because L is k·k -bounded, given the separability of L1 by Theorem 6.30 in Alipran-
tis and Border (2006) L L is metrizable for the -topology in L (i.e., the
(L L1 ) topology). Thus, L is -compact and metrizable for the relative -
topology inherited from L . QED
To x the notation, let be a metric compatible with the relative -topology (the

(L L1 ) topology) on L and let a metric on .

8 Appendix 3: Metric Topology

8.1 Basics

Throughout assume that ( ) and ( ) are compact metric spaces.16 Because the
space is compact, for any collection { } of open sets in where = and
ranges over an arbitrary set , there exists a nite subcollection, 1 such that
=

1
· · · (i.e., the Borel-Lebesgue condition - every open cover of contains

a nite subcover). The Borel-Lebesgue condition is equivalent to the Riesz condition:
if { } is a collection of closed sets in such that = , then there is a nite
subcollection, 1 such that 1 · · · = (see Kuratowski, 1972).
Let C( ) denote the collection of continuous functions de ned on taking values

in . If C( ) is one-to-one, from onto , and if its inverse, 1, is also
continuous, then we say that is a homeomorphism and that the metric spaces and
are homeomorphic. If ( ) is compact, then any continuous, one-to-one mapping
from onto is a homeomorphism. A function, : is an embedding if
: ( ) is a homeomorphism. In this case we can think of as a topological

subspace of by identifying with its image ( )

8.2 Continua

Given metric space ( ), a set is connected if cannot be written as the union
of two disjoint open sets (or two disjoint closed sets). A set is locally connected
at if each neighborhood of contains a connected neighborhood of . is
locally connected if it is locally connected at each .17

16More detail on the topics covered in this Appendix can be found in Willard (1970) and Illanes and
Nadler (1999).
17Local connectedness di ers from connectedness. To see this, note for example that the set in

given by
= [0 1) (1 2]

is locally connected but not connected (because is equal to the union of two disjoint, half open intervals).
While the set in 2 given by

:= {( 0) (
1
) : 0 1 and = ±1 ±2 } {(0 ) (1 ) : }

is connected but not locally connected (because only the point (0 0) and (1 0) in possess a collection
of connected neighborhoods). These examples are taken from Willard (1970), Chapter 8.
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If the metric space, ( ), is compact and connected it is called a continuum. Given
any continuum, ( ), a point is called a cut point of if \{ } is not connected.
A nonempty closed, connected subset of is called a subcontinuum. If in addition, the
continuum, ( ), is locally connected it is called a Peano continuum.
A subset, , of metric space ( ) is called an -cell if it is homeomorphic to
:=
Q

=1[0 1] := [0 1] . If in particular, is homeomorphic to the interval [0 1] it is
called an arc (i.e., an arc, then, is a 1-cell). An end point of arc is either one of the two
points of that are the images of the end points of [0 1] under any homeomorphism of
[0 1] onto . A continuum is arcwise connected if any two points, 1 and 2, in can
be joined by an arc in with endpoints 1 and 2.
We close this subsection by noting that in any metric space ( ) the condition of

being (i) a locally connected continuum (i.e., a Peano continuum) and (ii) the continuous
image of an interval are equivalent (this is the Mazurkiewicz-Moore Theorem - see Ku-
ratowski, 1972). Thus, a Peano continuum (with or without an M-convex metric) is the
continuous image of the unit interval, [0 1].

8.3 Homotopies

We begin by recalling the notion of a homotopy - a function that essentially provides us
with a way to index a set of continuous functions.

De nition A3.1 (Homotopies) Let ( × [0 1] ) denote the collection of all
continuous functions, : × [0 1] , de ned on × [0 1] taking values in . A
function ( × [0 1] ) is called a homotopy and each homotopy speci es an index
set of continuous functions,

H ( ) := { (· ) : [0 1]}

The indexed collection, H ( ), can be thought of as an arc, , in the continuum of
continuous functions, C( ), equipped with the sup metric. The continuous functions,
and in C( ) are homotopically related or homotopic, if and are the endpoints

of an arc whose arc type is identi ed by some function, C( × [0 1] ), called
a homotopy. In particular, if C( ) are homotopic, then there is an arc of type

C( × [0 1] ) running from continuous function (·) = (· 0) to continuous function
(·) = (· 1). We denote this -arc from to by writing [ ] or by writing

(and if the orientation is in the opposite direction, then we write [ ] or ).
Constant functions form a special class of homotopy arc end points. Let C( )
denote the constant function (i.e., ( ) = for all ). If and are homotopic (i.e.,

if [ ] , that is, if for some ), then is said to be inessential. Moreover,
if for some pair of compact metric spaces, ( ) and ( ), all pairs of functions,
C( ), are homotopic, then in particular, C( ), are homotopic for some -arc
and some - and this means that for this pair of compact metric spaces, ( ) and
( ), all functions , C( ), are inessential (i.e., for each C( ), there is

( (· ·) ) (C( × [0 1] ) ), ).

8.4 -Spaces and -Spaces

A space is an absolute retract, denoted , if whenever is embedded in some
a metric space, say , then the embedded copy, ( ), of in - with homeomorphism
: ( ) , is a retract of . A space is an absolute neighborhood retract,

denoted , if whenever is embedded in some a metric space, say , then the
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embedded copy, ( ), of in - with homeomorphism : ( ) , is a retract
of some neighborhood of ( ) in .

8.5 Contractible Spaces

If , then is contractible in if for some homotopy C( × [0 1] ), there is
an -arc running from the identity (or inclusion) mapping, C( ) to a constant
mapping, C( ), for some . Thus, (·) = (· 0) where ( ) = for all

is the inclusion mapping (i.e., ( ) = = ( 0) for all ) and (· 1) is the
constant mapping (i.e., ( 1) = for all for some ).
We say that is contractible if is contractible in . Note that if is contractible,

then for any , is contractible in . By far the most useful facts related to the
contractibility of continua are the following:
(1) If is contractible and is a retraction of , then is also contractible.

Thus if :
onto

, C( ) where ( ) = for all , then is also contractible.
(2) If is contractible, then is unicoherent (see Corollary A.12.10 in van Mill, 2001)

- implying that all pairs of functions, C( 1), are homotopic, for the unit circle,
1 :=

n
= ( 1 2) : ( 1)

2
+ ( 2)

2
= 1

o
. Thus, if is contractible, then all continuous

functions, : 1 are inessential and we can conclude that contains no simple
closed curves.

8.6 -Spaces

A space is called an -space, denoted , if there exists a sequence of compact,
nonempty AR spaces, { } such that

+1 for every
and

= =1

If is compact, then we have the following inclusion ordering over the topological prop-
erties of :

contractible .

Note that if is an space, it is an space.
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