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Abstract

We model the structure and strategy of social interactions prevailing at any point in

time as a directed network and we address the following open question in the theory

of social and economic network formation: given the rules of network and coalition

formation, preferences of individuals over networks, strategic behavior of coalitions

in forming networks, and the trembles of nature, what network and coalitional dy-

namics are likely to emerge and persist. Our main contributions are to formulate

the problem of network and coalition formation as a dynamic, stochastic game and

to show that: (i) the game possesses a correlated stationary Markov equilibrium (in

network and coalition formation strategies), (ii) together with the trembles of nature,

this correlated stationary equilibrium determines an equilibrium Markov process of

network and coalition formation, and (iii) this endogenous Markov process possesses

a finite set of ergodic measures, and generates a finite, disjoint collection of nonempty

subsets of networks and coalitions, each constituting a basin of attraction. Moreover,

we extend to the setting of endogenous Markov dynamics the notions of pairwise sta-

bility (Jackson-Wolinsky, 1996) and the path dominance core (Page-Wooders, 2009a).

We show that in order for any network-coalition pair to emerge and persist, it is nec-

essary that the pair reside in one of finitely many basins of attraction. The results

we obtain here for endogenous network dynamics and stochastic basins of attraction

are the dynamic analogs of our earlier results on endogenous network formation and

strategic basins of attraction in static, abstract games of network formation (Page

and Wooders, 2009a), and build on the seminal contributions of Jackson and Watts

(2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).

KEYWORDS: endogenous network dynamics, dynamic stochastic games of net-

work formation, stationary Markov correlated equilibrium, equilibriumMarkov process

of network formation, basins of attraction, Harris decomposition, ergodic probability

measures, dynamic path dominance core, dynamic pairwise stability.
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1 Introduction

1.1 Overview

In all social and economic interactions, individuals or coalitions choose not only with

whom to interact but how to interact, and over time both the structure (the “with

whom”) and the strategy (“the how”) of interactions change. Our objectives here

are to model the structure and strategy of interactions prevailing at any point in

time as a directed network and to shed new light on the co-evolution of network

structure and strategic behavior by addressing the following open question in the

theory of social and economic network formation: given rules of network formation,

preferences of individuals over networks, strategic behavior of coalitions in forming

networks, and trembles of nature, what network and coalitional dynamics are likely to

emerge and persist. Thus, we propose to study the emergence of endogenous network

and coalitional dynamics resulting from the interactions between network structure,

strategic behavior, and the randomness in nature through time.

The main contributions of the paper are (i) to formulate the problem of network

formation as a dynamic, stochastic game, and (ii) to show: (a) that this game pos-

sesses a correlated stationary Markov equilibrium in network and coalition formation

strategies, (b) that together with the trembles of nature, this stationary equilibrium

determines a correlated equilibrium Markov process of network and coalition forma-

tion that respects the rules of network formation and the preferences of individuals

and (c) that although uncountably many networks may form, this correlated equilib-

rium process generates a finite, disjoint collection of nonempty subsets of networks

and coalitions, each constituting a basin of attraction, and possesses a finite, non-

empty set of ergodic measures.

In prior work on the co-evolution of network structure and strategic behavior

using static abstract games of network formation, Page and Wooders (2009a), have

shown that, given the rules of network formation and the preferences of individuals,

these games possess strategic basins of attraction and these contain all networks that

are likely to emerge and persist as the game unfolds. Moreover, Page and Wooders

have shown that when any one of these strategic basins contains only one network,

then that network (i.e., the network contained in the singleton basin) is stable against

all coalitional network deviation strategies - and thus the game has a nonempty path

dominance core. Finally, Page and Wooders have shown that depending on how the

rules of network formation and the dominance relation over networks are specialized

(via additional assumptions), any network contained in the path dominance core is

pairwise stable (Jackson-Wolinsky, 1996), strongly stable (Jackson-van den Nouwe-

land, 2005), Nash (Bala-Goyal, 2000), or consistent (Chwe, 1994).

Here it is shown that there are many parallels between the static abstract game

formulation and the Page-Wooders results for static games and the results obtained

here for the Markovian dynamic game formulation. This is suggested already by the

seminal paper by Jackson and Watts (2002) on the evolution of networks. Jackson

and Watts present to my knowledge the first theory of stochastic dynamic network

formation over a finite set of linking networks governed by a Markov chain generated
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by the myopic strategic behavior of players (following the Jackson-Wolinsky rules of

network formation) and the trembles of nature. Their model builds on the earlier,

nonstochastic model of dynamic network formation due to Watts (2001) - as far as I

know, the first model of network dynamics (see also Skyrms and Pemantle, 2000). By

considering a sequence of perturbed, irreducible and aperiodic Markov chains (i.e.,

each chain with a unique invariant measure) converging to the original Markov chain,

they show that any pairwise stable network is necessarily contained in the support of

an invariant measure - that is, in the support of a probability measure that places all

its mass on sets of networks likely to form in the long run. We show here that similar

conclusions can be reached for directed networks with uncountably many arc types

governed by a Markov process generated endogenously by the farsighted strategic

behavior of players (following arbitrary network formation rules) and the trembles of

nature.

In a general Markov game setting, with farsighted players, what precisely does

it mean for a network to be pairwise stable - or stable in any sense? For example,

if the state space of networks is large, then the endogenous Markov process of net-

work formation is likely to have many invariant measures - and in fact many ergodic

probability measures (i.e., measures that place all their probability mass on a single

absorbing set). Which absorbing set contains networks stable in the sense of pairwise

stability, or strong stability, or Nash stability? These are some of the questions we

answer here in our study of endogenous network dynamics.

In any reasonable dynamic stochastic model of network formation, it should be

the case that the Markov process of network and coalition formation endogenously

determined by a Nash equilibrium possesses ergodic probability measures and gener-

ate basins of attraction. It is shown here, in fact, that the endogenous Markov process

possesses only finitely many ergodic measures and generates only finitely many basins

of attraction - this despite there being uncountably many possible networks. This

endogenous finiteness property of basins in equilibrium has serious implications for

empirical work on networks. In particular, since nature does not afford the empirical

observer multiple observations across states but rather only multiple observations

across time, the fact that only finitely many long run equilibrium sets are possible,

and more importantly, the fact that on these sets (i.e., on these basins of attraction)

state averages are equal to time averages gives meaning and significance to time series

observations which seek to infer the long run equilibrium network. Moreover, to the

extent that networks can truly represent various social and economic interactions,

our understanding of how and why the network formation process moves toward or

away from any particular basin can potentially shed new light on the persistence

or transience of many social and economic conditions. For example, how and why

does a particular path of entrepreneurial and scientific interactions carry an economy

beyond a tipping point and onto a path of economic growth driven by a particular

industry - and why might it fail to do so? How and why does a particular path of

product line-nonlinear pricing schedule configurations lead a strategically competi-

tive industry to become more concentrated - or fade? These are some of the applied

questions which hopefully can be addressed using a model of endogenous network
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dynamics.

1.2 Endogenous Network Dynamics

The approach taken here to endogenous dynamics is motivated by the observation

that the stochastic process governing network and coalition formation through time

is determined not only by nature’s randomness (or nature’s trembles) through time

- as envisioned in random graph theoretic approaches - but also by the strategic

behavior of individuals and coalitions through time in attempting to influence the

networks and coalitions that emerge under the prevailing rules of network formation

and the trembles of nature. Thus, here we develop a theory of endogenous network

and coalitional dynamics that brings together elements of random graph theory and

game theory in a dynamic stochastic game model of network and coalition formation.

While dynamic stochastic games have been used elsewhere in economics (see, for

example, Amir, 1991, 1996; Amir and Lambson, 2003; and Chakrabarti, 2008; Duffie,

Geanakoplos, Mas-Colell, and McLennan, 1994; Mertens and Parthasarathy 1987,

1991; Herings and Peeters, 2004; Nowak, 2003, 2007), their application to the analysis

of the evolution of social and economic networks is new.

The analysis has two parts. In part (1) a dynamic game model of network and

coalition formation is constructed, and then shown to have a correlated stationary

Markov equilibrium. In part (2), the stability properties of the endogenous Markov

process of network and coalition formation induced by this correlated stationary

Markov equilibrium are analyzed in detail.

The existence result presented in part (1) is based on the seminal work by Nowak

and Raghavan (1992) and Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) on

the existence of correlated stationary Markov equilibria.1 Here the dynamic game of

network and coalition formation is formulated in a compact metric space of directed

networks, possibly containing uncountably many networks, and the existence of cor-

related stationary Markov equilibrium in players’ network and coalition formation

strategies is established. In a discounted stochastic game of network and coalition

formation consisting of  players, it is shown that the farsighted strategic behavior

of players in attempting to influence the path of network and coalition formation

generates  + 1 equilibrium Markov processes of network and coalition formation,

one of which - depending on the current state - will prevail as the governing law of

motion in any period. Thus, one of the main contributions of the paper is to provide

a possible theoretical foundation in strategic behavior for the random graph theoretic

approach to social and economic network formation found in the literature.

1Here we will focus on stationary Markov correlated equilibria. Recently, Page (2012) has estab-

lished an existence result for stationary Markov Nash equilibria for the class of discounted stochastic

games treated by Mertens and Parthasarathy (1987) and Nowak and Raghavan (1992). While the

existence of Nash equilibria in stationary Markov strategies for discounted stochastic games with

finite or countable state spaces and compact metric action spaces has long been established (e.g., see

Federgruen, 1978), the existence of such equilibria for discounted stochastic games with uncountable

state spaces and compact metric action spaces has been an open question since such games were first

studied by Himmelberg, Parthasarathy, Raghavan, and Van Vleck (1976).
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The assumptions of our discounted stochastic game model of network formation

are similar to those required to establish the existence of stationary correlated equi-

libria in discounted stochastic games (e.g., Nowak and Raghavan 1992) and subgame

perfect equilibria in discounted stochastic games (e.g., Mertens and Parthasarathy

1987, Salon 1998, and Maitra and Sudderth 2007). Our model has six primitives

consisting of the following: (i) a feasible set of directed networks representing all pos-

sible configurations of social or economic interactions, (ii) a feasible set of coalitions

allowed to form under the rules of network formation for the purpose of proposing

alternative networks, (iii) a state space consisting of feasible network-coalition pairs,

(iv) a set of players and player constraint correspondences specifying for each player

and in each state the set of feasible alternative networks that a player can propose un-

der the rules of network formation as a member of the current or status quo coalition

- and as a nonmember, (v) a set of player discount rates and payoff functions defined

on the graph of players’ product constraint correspondence, and (vi) a stochastic law

of motion. This stochastic law of motion represents nature and specifies the probabil-

ity with which each possible new status quo network-coalition (i.e., new state) might

emerge as a function of the status quo network-coalition pair (i.e., the current state)

and the profile of player-proposed new status quo networks (i.e., the current action

profile). Using these primitives, we construct a discounted stochastic game model of

network formation and show that it possesses a correlated stationary Markov equi-

librium in network proposal strategies. More importantly, we are able to conclude

via classical results due to Blackwell (1965) (also see Himmelberg, Parthasarathy,

and vanVleck (1976)), Nowak and Raghavan (1992), and Duffie, Geanakoplos, Mas-

Colell, and McLennan (1994)) that this correlated equilibrium over Markov stationary

strategies is optimal against player defections to other network proposal strategies

(including history-dependent proposal strategies) - thus showing that our decision to

focus on correlation over stationary strategies (i.e., strategies that depend only on

the status quo network-coalition pair) is well-founded.

In part (2), we analyze the stability properties of the endogenous Markov process

of network and coalition formation. In particular, using methods of stability analysis

essentially due to Nummelin (1984) and Meyn and Tweedie (2009) - and based on the

profound work of Doeblin (1937, 1940) - we will show that the equilibrium Markov

process of network and coalition formation possesses ergodic probability measures and

generates basins of attraction.2 We will then study in some detail the number and

structure of these basins of attraction as well as the structure of the set of invariant

probability measures. More importantly, we will show that, in a state space with

uncountably many networks, the equilibrium process possesses only finitely many

ergodic measures and basins of attraction. Also, in part (2) we will introduce the

notions of dynamic stability and consistency and using these notions extend the

definitions of pairwise stability and path dominance core to the dynamic Markov

setting developed here. We will then show that networks that are stable with respect

2Our stability results for equilibrium Markov processes of network and coalition formation, while

classical in form and appearance, are completely new. Unlike in the classical setting where the state

space is finite or countable, the state space here is uncountable, consisting of uncountably many

networks and coalitions pairs.
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to either of these notions must necessarily reside in the basins of attraction generated

by the endogenous network dynamic. In coming to these conclusions, it will become

clear that in dynamic Markov games of network and coalition formation, stability

has two masters: strategic behavior and the laws of nature - with the laws of nature

being dominate.

1.3 Related Literature

To our knowledge, the first paper to study endogenous dynamics in a related model is

the paper by Konishi and Ray (2003) on dynamic coalition formation.3 The primitives

of their model consist of (i) a finite set of outcomes (possibly a finite set of networks),

(ii) a set of coalitional constraint correspondences specifying for each coalition and

each status quo outcome, the set of new outcomes a coalition might bring about if

allowed to do so, and (iii) a discount rate and set of player payoff functions defined on

the set of all outcomes. Konishi and Ray show that their model possesses a stochastic

law of motion governing movement from one outcome to another and a consistent

valuation function such that (a) if a move from one outcome to another takes place

with positive probability, then for some coalition this move makes sense in that no

coalition member is made worse off by the move and no further move makes all

coalition members better off, and (b) if for a given outcome there is another outcome

making all members of some coalition better off and no further outcome makes this

coalition even better off, then a move to another outcome takes place with probability

1 (i.e., the probability of standing still at the given outcome is zero). Stated loosely,

then, Konishi and Ray show that for their model there exists a law of motion which

generates coalitionally improving moves from one outcome to another (i.e., in our

case it would be from one network to another).

Our model differs from the model of Konishi and Ray in several respects. First, in

our model movements from one network (outcome) to another are largely determined

by the strategic behavior of individuals. In our model, equilibrium strategic behav-

ior, together with natures trembles, are central to determining equilibrium network

dynamics.

Second, whereas Konishi and Ray, for technical reasons, restrict attention to a fi-

nite set of outcomes (in our model, a finite set of networks), we allow for uncountably

many networks - this to allow for consideration of networks with a large number of

nodes or networks with uncountably many arc types. This is more than a technical

nicety. In order to capture the myriad and potentially complex nature of interac-

tions between players (say for example in a stock market or in a contracting game

with multiple principals and multiple agents) we must allow there to be uncountably

many possible types of interactions. In our model the set of potential interactions

are represented by a set of arc types (in fact, by a compact metric space of arc types)

with each arc type (or arc label) representing a particular type of interaction (or

connection) between nodes in a directed network. Thus, because we allow for un-

countably many arc types in describing the interactions between nodes, in our model

3More recently, there is the paper by Hannu Vartiainen in the Journal of Economic Theory 146

(2011) 672—698 on dynamic coalitional equilibrium.
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there are uncountably many possible networks (or outcomes, in the language of Kon-

ishi and Ray). Moreover, in order to model large networks (i.e., networks with many

nodes), in our model we can allow there to be infinitely many nodes - although here

we focus exclusively on the finite nodes case. Third, while Konishi and Ray restrict

attention at the outset to Markov laws of motion, we will show that our strategically

determined equilibrium Markov process of network and coalition formation is robust

against all possible alternative dynamics, even those induced by history-dependent

types of strategic behavior. Thus, at least for the class of Konishi-Ray types of mod-

els, we will show that Markov laws of motion are stable and robust with respect to

other forms of history-dependent laws of motion.4

Finally, we take rules of network formation as given primitives of the model. We

show that the interactions of strategic behavior, network structure, and the trembles

of nature generate an equilibrium process of network and coalition formation and

change consistent with these rules. We will also show that this process possesses

a nonempty set of ergodic measures and generates basins of attraction. There are

no rules of coalition formation — rules specifying how the process moves from one

state to another in Konishi-Ray; instead they focus on transitions consistent with

improvement properties for coalitions.

In contrast to Konishi-Ray, Dutta, Ghosal, and Ray (2005) consider strategic

behavior in a dynamic game of network formation over a finite set of undirected

linking networks (rather than directed networks) under a particular set of network

formation rules. They show existence of a Nash equilibrium and identify conditions

under which efficiency can be sustained in equilibrium - thus, continuing in a dynamic

setting the seminal work of Jackson and Wolinsky (1996) and Dutta and Mutuswami

(1997) on equilibrium and efficiency. Here our focus is on equilibrium and stability

rather than equilibrium and efficiency and our analysis is carried out in a dynamic,

stochastic game model of network and coalition formation, admitting all forms of

network formation rules, over an uncountable set of directed networks. Dutta et al.

(2005) restrict attention to Markov network formation strategies and show that there

is an equilibrium in this class. In contrast, we show for the class of all strategies that

there is an equilibrium in correlated stationary Markov strategies; and therefore, by

Blackwell’s classical result (Blackwell, 1965, Theorem 6f) we conclude that this type

of equilibrium is robust against defections by individual players to any other type

of strategy. Moreover, as mentioned above, we show that in general, the resulting

equilibrium Markov process of network and coalitional formation possesses finitely

many ergodic measures and generates finitely many network and coalitional basins

of attraction.

We view the starting point of our research to be the pioneering work of Jackson

and Watts (2002) already discussed briefly above. Our model of endogenous net-

work and coalitional dynamics extends their work on stochastic network dynamics

in several respects. First, in our model players behave farsightedly in attempting

4By a Markov law of motion we mean a stochastic law of motion where probabilistic movements

from one outcome or network to another depend only on the current outcome rather than on some

history of outcomes.
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to influence the path of network and coalition formation - farsighted in the sense of

dynamic programing (e.g., Dutta, Ghosal, and Ray (2005))5. Moreover, in our model

the game is played over a (possibly) uncountable collection of directed networks un-

der general rules of network formation which include not only the Jackson-Wolinsky

rules, but also other more complex rules. In our model the law of motion is such

that the trembles of nature are Markovian rather than i.i.d. as in Jackson and Watt,

and are functions of the current state and the current profile of network and coali-

tion proposals by players. Extending the notion of pairwise stability to a dynamic

setting, one of the benchmarks for our research is to show that in a Markov model

of network and coalition formation, if a network is dynamically pairwise stable, then

in order to persist, it must be contained in one of finitely many basins of attraction,

and therefore, contained in the support of an ergodic probability measure.

2 Primitives

2.1 Directed Connections and Directed Networks

The basic ingredients of our model are as follows:

[A-1] (nodes, arcs, and players)

 = a finite set of nodes, with typical elements  and , equipped with the discrete

metric  ,
6

 = a compact metric space of arc types, with typical element , equipped with
metric ,

 = a finite set of players, with typical element ,
 () = the collection of all nonempty subsets or coalitions of players, with typical
element .

Arcs represent potential types of connections between nodes, and depending on

the application, nodes can represent economic agents (players) or economic objects

such as markets or firms. We will make a distinction between nodes and players -

and thus, we will not assume automatically that the set of nodes  and the set of

players  are one and the same.

We begin by defining the notion of a directed connection.

Definition 1 (Directed Connections)

Given node set  and arc set  a directed connection is an ordered pair

( ( )) ∈ × ( ×) consisting of an arc type  and an order pair of nodes, 

5See Chwe (1994), Page, Wooders, and Kamat (2005), and Page and Wooders (2005) for notions

of farsighted behavior in static, abstract games.
6Under the discrete metric the distance between two nodes  and  in  is given by

 ( ) :=


1 if  6= 
0 if  = 
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and , indicating that nodes  and  are connected by a type  arc from node  to

node . The set of all possible directed connections is given by

 := × ( ×) (1)

Consider an example in which nodes represent traders in an asset market for the

shares of a particular stock, and consider the connection from trader  to trader 

given by ( ( )), where

 = (0 0  ) ∈ ([0 ]× [0 ])× ([0 ]× [0 ])| {z }


⊂ 4+

Here,  is sell arc indicating that trader  is willing to sell to trader  as many as 
shares at a price of  per share. Note that in this example, nodes and players are

one and the same (i.e.,  = ). In some applications of our model the set of nodes

 might consist of the union of two disjoint sets, firms  and markets  , where

the firms are players and the markets are passive in that they do not make strategic

decisions vis-a-vis firms.

Given our assumptions [A-1], the set of all possible directed connections, , is a

compact metric space with product metric


¡
( ( )) (0 (0 0))

¢
:= ( 

0) + ( 
0) + ( 

0) (2)

A directed network is defined as follows:

Definition 2 (Directed Networks)

Given node set  and arc set  a directed network,  is a nonempty, -closed

subset of the set  = × ( ×) of directed connections. The collection of all
directed networks is denoted by  ().

Thus, a network  ∈  () is a nonempty, closed set of connections specifying
the various ways the nodes in  are connected by the arcs in  in network 

Under our definition of a directed network, we allow an arc to go from a given

node back to that given node (i.e., loops are allowed).7 Also, under our definition an

arc can be used multiple times in a given network and multiple arcs can go from one

node to another. However, our definition does not allow a particular arc  to go from

a node  to a node 0 multiple times.
The following notation is useful in describing networks. Given directed network

 ∈  (), let

() := {( ) ∈  × : ( ( )) ∈ } 
and

() := { ∈  : ( ( )) ∈ }

⎫⎬⎭ (3)

Thus, in network 

7By allowing loops we are able to represent a network having no connections between distinct

nodes as a network consisting entirely of loops at each node.
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() is the set of node pairs connected by arc ,
and

() is the set of arcs from node  to node .

If for some arc  ∈ , () is empty, then arc  is not used in network . Also, if
for some node  ∈  , () and () are empty for all  6= , then node  is isolated.

We will also find the following notation useful. Given directed network  ∈
 (), let

+() := { ∈  : ( ( )) ∈  for some  ∈ } 
and

−() := { ∈  : ( ( )) ∈  for some  ∈ }

⎫⎬⎭ (4)

Thus, in network 

+() is the set of nodes  such that there is at least one arc from  to ,

and

−() is the set of nodes  such that there is at least one arc from  to .

Thus, +() is the set of nodes, “you can get to” and −() is the set of nodes
“you can come from” at node  in network . Note that in a directed network with

multiple connections between nodes, the cardinality of +(), denoted by |+()|, is
not the out degree of note .8 Nor is |−()| the in degree of node . The out degree
of node  in network  is given by

P
∈ |()|  Similarly, the in degree of node 

in network  is given by
P

∈ |()| 

2.2 The Space of Directed Networks

In order to analyze the co-evolution of strategic behavior, network structure and

equilibrium dynamics, we must find a topology for the space of directed networks

that is simultaneously coarse enough to guarantee compactness and fine enough to

discriminate between differences across networks that are due to differences in the

ways nodes are connected (via differing arc types) and differences across networks that

are due to the complete absence of connections. We resolve this topological dilemma

by equipping the space of directed networks,  () with the Hausdorff metric .
Because the set of directed connections,  :=  × ( × ), is a compact metric
space, the space of directed networks,  () equipped with the Hausdorff metric
is automatically compact (see Section 7 below, also see Section B.11 in Hildenbrand

1974, or Sections 3.16-3.18 in Aliprantis and Border 2006). Moreover, given the nature

of the discrete metric on the set of nodes, it is easy to show that if the Hausdorff

distance between any pair of networks  and 0 is less than  ∈ (0 1), then the
networks can differ only in the ways a given set of node pairs are connected - and not

in the set of node pairs that are connected. In particular, if for networks  and 0,
(0)    1, then

( ( 0)) ∈  if and only if (0 ( 0)) ∈ 0

8Recall that |()| = 0 if and only if () = ∅
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for arcs  and 0 with ( 
0)  .

To illustrate the sensitivity of the Hausdorff metric topology to absence or pres-

ence of connections across networks, consider the following example. Suppose that

the set of nodes is given by  := {1 2 3}, while the set of arcs types is given by
 = [0 1]. We can think of arc types  ∈ [0 1] as representing intensity levels or flow
levels from one node to another or as expressing the probabilities with which one

node interacts with another.9 Consider the three networks, 1, 2, and 3 depicted

in Figure 1.

i1

i2 i3

1
11

1

G1 G2

G3

1

11

.001

1

i1

i2 i3

1
11

1

1

11

0

1

i1

i2 i3

1
11

1

1

111

Figure 1

Note that the three networks differ only in the nature of the connection from node

1 to node 2. In network 1 this connection is inactive (i.e., has a zero intensity

level), that is, (0 (1 2)) ∈ 1. In network 2 the connection from 1 to 2 is weak,

that is, (001 (1 2)) ∈ 2. However, in network 3, there is no connection at all

9 In the context of linking networks, this class of networks (i.e., networks with constrained, variable

link strength) has recently been used to investigate the endogenous formation of efficient and reliable

communications networks by Bloch and Dutta (2009). See Page and Wooders (2009b) for a further

discussion of differences between linking networks with variable length strength and directed networks

with heterogeneous arc types.
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from 1 to 2. Under the network metric  (see 51), networks 1 and 2 are close,

while networks 1 and 3 as well as networks 2 and 3 are far apart. In particular,

(1 2) = 001, while
(1 3) = 2

and

(2 3) = 2− 001

In the analysis to follow, one of our main objectives will be to better understand

the emergence and stability properties of equilibrium network dynamics generated

by the endogenous interplay between network structure and strategic behavior in the

formation of networks over time. In order to achieve this objective, we must allow

for the emergence of networks where some connections are absent altogether (i.e.,

where some node pairs are not connected in any direction by any arc types, as in

network 3 in Figure 1). The Hausdorff metric topology on the space of networks is

particularly well suited for the type of analysis required to achieve this objective.10

2.3 The Feasible Set of Networks: Definition, Examples, and Com-

ments

In formulating our game of network and coalition formation, it will often be useful

to restrict attention to a particular subset of feasible networks.

Definition 3 (Feasible Networks)

Given node set  and arc set  a feasible set of networks G is a nonempty,

-closed subset of the collection of all directed networks  ().

In the examples to follow we will exhibit several types of restrictions on the set

of networks  () leading to feasible sets G which are useful in applications.
10Another way to see this: rather than think of a network  as a nonempty, closed subset of the

Cartesian product of arcs and node pairs,

 ⊂  := × ( ×)

think of network  as a set-valued function, ,

 :  →  ()

from the subset  ⊆  × of node pairs connected in  into the space  () of nonempty,
closed subsets of the set of arcs . If network  is incomplete (i.e., has some node pairs without

connections) then the domain of definition, , of function  will be a proper subset of the

set of all node pairs  ×  . Now consider the space of all such functions (i.e., the space of all

networks). Because domains can vary across functions, , (i.e., because domains are not fixed and
constant across functions) it is very difficult to define a topology on such a function space (called

a space of partial functions). One way around the variable domain problem is to equip function

space with a graph topology (e.g., see Naimpally 1966 or Beer 1993). This is precisely the role

played by the Hausdorff metric topology in the space of networks,  () where each network is
represented by a nonempty, closed subset of the space of connections  and where the set of node

pairs involved in connections can vary across networks. The Hausdorff metric topology in  () is
a graph topology, and as is the case with graph topologies in spaces of partial functions, it solves

the variable connections problem by making the variability of connections part of the topology (i.e.

part of the way we measure the distance between networks).
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2.3.1 The Cardinality of Connections and Arc Feasibility

Cardinality and arc type restrictions specify for each node pair ( 0) ∈  × how

many and what types of arcs can be used in making a connection from node  to

node 0
Suppose that the feasible set of networks G is given by

G := { ∈  () : ∀( 0) ∈  × , (0) ≤ |(0)| ≤ (0)} ,
where |(0)| is the cardinality of the set of arcs from node  to node 0 in network
 and (·) and (·) are nonnegative integer-valued functions defined on the set of
node pairs,  × , such that (0)  0 for some node pair. Thus, for each network
 in G there is a minimum number (0) of arcs and a maximum number (0)
of arcs (of different types) from node  to node 0. It is easy to show that G is an

-closed subset of  ().
If the functions (·) and(·) are constants, for example, if (0) = 0 and(0) =

1 for all node pairs, then  ∈ G01 if and only if each node pair ( 0) is either
not connected at all or is connected by at most one arc type. Alternatively, if the

functions (·) and (·) are equal, positive constants across node pairs, for example,
if (0) = (0) = 1 for all ( 0), then  ∈ G1 if and only if each node pair ( 0) is
connected by one and only one arc type.

Suppose that the feasible set of networks G is given by

G := { ∈  () : ∀( 0) ∈  × , (0) ⊆ (0)} ,
where (0) is the feasible set of arc types that can be used in making connections
from  to 0. It is easy to show that if (0) is -closed for all ( 0) ∈  ×  ,

then G is an -closed subset of  (). Note that here we are not ruling out the
possibility that in some networks in G some node pairs may not be connected (i.e.,

for some  ∈ G, (
0) = ∅ for some node pairs, ( 0) ∈  ×).

Combining feasible sets G and G, suppose that the feasible set of networks is

given by

G := { ∈ G : ∀( 0) ∈  × , (0) ⊆ (0)} .
If (0) = (0) = 1 for all ( 0) ∈ × , then the feasible set of networks, denoted

by G1 is given by

G1 := { ∈ G1 : ∀( 0) ∈  × , (0) ⊆ (0)} .
Each network  in G1 has the property that each and every ordered pair of nodes

is connected by one and only one arc type. Alternatively, if the feasible set is given

by

G01 := { ∈ G01 : ∀( 0) ∈  × , (0) ⊆ (0)} ,
then each network  in G01 has the property that each and every ordered pair of

nodes is either not connected or is connected by one and only one arc type.

In the example depicted in Figure 1 above, the set of arc types, given by  = [0 1],
represents connection intensity levels and for all node pairs ( 0), (0) = [0 1]. Note

12



that all three networks in Figure 1 are contained in G01, while networks 1 and 2
are contained in G1. In network 1 the connection from node 1 to node 2 is

inactive, that is,

(0 (1 2)) ∈ 1

In network 2 the connection from 1 to 2 is weak, that is, (001 (1 2)) ∈ 2. In

network 3, there is no connection at all from 1 to 2 - thus, network 3 is contained

in G01 but not in G1.

2.3.2 Complete, Unitary Networks

The set of networks G1 is special because for all networks in G1 all node pairs

are connected in one and only one way (the connection may be inactive, but it is

present). We will refer to the networks in G1 as complete, unitary networks (i.e.,

CU networks).11 CU networks can be particularly useful in applications because each

network  in G1 has a unique matrix representation [] given by

[] :=

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 1 · · · 1
...

...
...

1 · · ·  · · · 
...

...
...

1 · · ·  · · · 

⎞⎟⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎝
· · · 1 · · ·

...

· · ·  · · ·
...

· · ·  · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
where for each  ∈  ,  := (1     ) is the 

 row of [], and where for each
( ) ∈  ×  ,  ∈ () is the  entry in matrix [] if and only if (  ( ))
is the unique connection from node  to node  in network . Denoting by AG1 (or
when no confusion is possible, by A) the set of matrices corresponding to feasible set
of networks G1, equip AG1 with the max metric,

A([] [
0]) := max

()∈×
(  

0
)

It is easy to see thatAG1 is A-closed and that for any sequence of networks {} ⊂
G1 with corresponding sequence of matrices {[]} ⊂ AG1 ,

( ) −→ 0 if and only if A([
] []) −→ 0

Consider a feasible set of CU networks where the structure of connections between

distinct nodes (i.e., node pairs ( ) with  6= ) remains fixed across networks in the

set, but where loop connections can vary across networks in the set. This feasible

set of CU networks, which we will call CU diagonal networks and will denote by G,

is similar to the feasible set considered by Ballester, Calvo-Armengol, and Zenou

(2006).

11Referring back to our discussion of the Hausdorff metric topology on the space of networks

 (), observe that for the -closed subset of CU networks, G1 ⊂  (), the variable connections
problem is absent. In particular, the set of node pairs involved in connections across networks in

G1 does not vary - it is fixed and equal to  × .
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If nodes and players are one in the same, then we can think of player 0 choice
of a loop arc type  as player 

0 choice of an effort level, or a level of spending
on public goods (if player  is a jurisdiction), or as player 0 choice of a contract
or a contract offer. If the feasible set of networks consists of CU diagonal networks,

G, then we have  ∈ G if and only if for all ( ) ∈  ×  , |()| = 1 and
() ⊆ () ⊆ , and for all  and 0 in G and for all ( ) ∈  × with  6= ,

( ) = 0( ) = {} ∈ ().

Here for each node pair, ( ), () is a nonempty, -closed subset of the compact
metric space of arc types . Thus, each network  in G is uniquely determined by

its loop profile, {}∈ .
Suppose  := [] and that for each node  ∈  ,

() = [ ] ⊆ [] for all  ∈  .

Consider the subset of networks, M ⊂ G1, given by

M :=

⎧⎨⎩ ∈ G1 :  ≤
X
∈

 ≤ 

⎫⎬⎭ .
M is an -closed subset of G1. If  := [0 1] and if  =  = 1 for all  ∈  , then

the resulting collection of networks, denoted by M1, consists of Markov networks. It

is easy to see thatM1 is an -closed subset of G1 with () = [0 1] for all  and that
each network ∈M1 has a unique representation via a Markov matrix, [ ] ∈ A (we
will usually use  rather than  to denote Markov matrices. For example, consider

the directed Markov network,  ∈M1, in Figure 2.

i2i1
.5

.5 1

Figure 2: Markov network 

This network has a unique matrix representation given by the Markov matrixµ
5 5
0 1

¶
Note that each row in this matrix sums to 1. Note also that the probability that
node 2 initiates an interaction with node 1 is zero.

2.3.3 Club Networks and CU Club Networks

An interesting class of directed networks is the collection of club networks. As an

example, consider the following marketing network. Letting  ⊂  be the set of

firms and  ⊂  be the set of markets, the set of marketing networks is given by

K :=  (× ( ×)).
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Here the set of nodes is given by

 := {1 2     512} ,
where the initial nodes,  := {1 2     5}, represent firms and the terminal nodes,
 := {12} represent markets or market locations (for example, suppose 1 =
New York and 2 = Paris). Figure 3 depicts a marketing network.

f1

f2

f3

f4

f5

m1
m2

C12

C42

C52

C11

C21

C31

C41

Figure 3: Marketing Network 0

In marketing network 0 the arc labeled 12 ∈ , indicates that firm 1 offers

product line 12 in the Paris market, 2. Note that here because  ∩  = ∅,
marketing network 0 fits the usual definition of a bipartite network. Under our
definition of a club network, we do not require that  and  be disjoint. Also, note

that here the set of players is given by the set of firms,  , while the set of nodes is

given by  =  ∪ . Thus, here the set of nodes is not equal to the set of players.
An interesting subclass of club networks is the collection of complete, unitary

club networks (also, see Page and Wooders, 2007 and 2010). By way of an example,

suppose that the set of nodes is given by  = ∪ where  is a finite set of players

and  is a finite set of clubs, and consider the feasible set of CU club networks K

given by

K := { ∈  ([0 1]× ( × )) : ∀( ) ∈  ×  |()| = 1} ,
where  ([0 1]× (×)) is the collection of all nonempty subsets of [0 1]×(×).
In a CU club network,  ∈ K each player is a member of each club. Thus for

each player club pair, the connection, ( ( )) is contained in  for some unique

 ∈ [0 1]. For example, if arc types represent membership intensity levels, then the
connection, (0 ( )) ∈  would mean that in CU club network , player  is an

inactive member of club .

Next consider the subset of CU club networks given by

K := { ∈ K : ∀( ) ∈  × , () =  ∈ [0 1] and
P

  = 1} ,
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where membership intensity is measured by the percent of time a player allocates

to a particular club. We will call these networks, club time allocation networks. In

a club time allocation network  ∈ K, a connection ( ( )) ∈  means that in

network  player  allocates  percent of his time to club .

Each club time allocation network  has a unique, alternative representation as

the union of CU player club time allocation networks. For each player , a CU club

time allocation network  is a nonempty closed subset of [0 1]× ({}×) such that
for all clubs  ∈ ,

|()| = 1, () ∈ [0 1], and
X


() =
X


 = 1

Let K denote the collection of all CU club time allocation networks, , for player

. Each time allocation network  ∈ K, can be written uniquely as

 = ∪00 where 0 ∈ K

Thus, any club time allocation network  has unique representation as the union,

∪00 , of player club time allocation networks (0)0∈, and conversely, the union of
any collection of CU player club time allocation networks , ∪00 , is a CU club time
allocation network. Note that each player’s set of CU club time allocation networks,

K, is nonempty, convex, and compact.

2.4 Players and Feasible Coalitions

The path taken by a network through time depends in large measure on the actions

taken by groups of players in attempting to influence how the network changes across

time. Thus, coalitions will play a central role in our model. Recall that  denotes the

set of players (a set not necessarily equal to the set of nodes) with typical element

 and  () denotes the collection of all coalitions (i.e., nonempty subsets of )
with typical element denoted by . We will assume that the set of players  has

cardinality  (i.e., || = ).

In many applications it is useful to restrict attention to a particular feasible subset

of coalitions. Often restrictions on the feasible set of coalitions are the result of the

rules of network formation.

Definition 4 (Feasible Coalitions)

Given finite player set  a feasible set of coalitions is a nonempty subset F of he

collection of all coalitions  ().

Examples of feasible sets of coalitions include the set,

F2 = { ∈  () : || = 2} 

where each feasible coalition consists of 2 players, the set,

F≤2 = { ∈  () : || ≤ 2} 
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where each feasible coalition consists of, at most, 2 players, and the set

F1 = { ∈  () : || = 1} 

where each feasible coalition consists of 1 player.

We will equip the feasible set of coalitions F with the discrete metric F (i.e.,

F(0 ) = 0 if 0 = , and F(0 ) = 1 if 0 6= ).

2.5 The State Space

We shall take as the state space the set Ω := G×F of all feasible network-coalition

pairs. Each state  ∈ Ω has the following interpretation: if  = () is the current
state, then  is the current status quo network of social interactions and it is coalition

’s turn to move in the game of network formation. We will refer to the coalition

whose turn it is to move as the status quo coalition.

The state space G×F is a compact metric space under the product metric Ω
given by

Ω((
0 0) ()) := (0) + F (

0 )

Letting (Ω) := (G× F) be the Borel -field generated by the metric Ω, we will
equip the state space (G×F  (G×F)) with the product probability measure

 =  ×  (5)

where the probability measure  on feasible coalitions is such that ()  0 for all
 ∈ F and where the probability measure  on feasible networks is such that the set

of, at most, countably many disjoint atoms12 is given by

{A1A2   } = {A}∞=1 ⊂ G. (6)

Thus, we have as our state space, the probability space

(Ω (Ω) ) = (G×F  (G×F)  × ) (7)

a compact metric space with metric Ω = + F and typical element  = ().

2.6 Feasible Actions and the Feasible Action Correspondence

In each move of the game, each player takes an action in an effort to optimally

influence the path of network change governed by the law of motion. In our game,

each player’s action takes the form of a network recommendation or network proposal.

12A set of networks A ∈ (G) is an atom of the probability space (G (G) ) if (A)  0
and for all subsets B ⊆ A, B ∈ (G), (B) = (A) or (B) = 0 The set of networks G contains
at most countably many disjoint atoms, {A}∞=1, and G can be written as

G = NA∪ [∪∞=1A] 
where the set NA contains no atoms. We say that the probability space (G (G) ) is atomless or
nonatomic if it contains no atoms.
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In particular, given current state  = () ∈ Ω, each player  ∈  has available

a nonempty subset of network proposals Φ() ⊆ G that can be put forth by player
 for consideration by nature. However, only players who are members of the status

quo coalition  (i.e., the coalition whose turn it is to move) are allowed to propose

substantive changes. If 0 ∈ Φ() is proposed by player  ∈  (and therefore, by

a member of the status quo player coalition ), this means that if player 0 proposal
is chosen by nature (i.e., by the law of motion), then under the rules of network

formation, player  acting in concert with some or all the members of coalition 

has the power and ability to implement the proposed network (i.e., change the status

quo network  to network 0). Moreover, because players who are not members of
the status quo coalition are not allowed to propose substantive changes, these players

(i.e., players  ∈ ) can only propose that the status quo network be maintained.

Thus, players’ feasible action correspondences, Φ(·), are the formal expressions of
the rules of network formation (see Page and Wooders, 2009a, for a discussion of

rules of network formation in static games).

A state-action profile pair () is contained in the graph of Φ(·), denoted
by Φ(·), if  ∈ Φ(). We will assume the following concerning feasible action
correspondences, Φ(·).

[A-2] (feasible action correspondence)

(1) For all states  = (), Φ() ⊆  is -closed with

(a)  ∈ Φ(),
and

(b) {} = Φ() for all  ∈ 

⎫⎬⎭ (8)

(2) Φ(·) has a measurable graph, that is, Φ(·) ∈ (Ω)×(G).

In general, Φ(·) is measurable if

Φ−1 (E) := { ∈ Ω : Φ() ∩ E ∈ ∅} ∈ (Ω)

for E ⊂ G open (sometimes called weak or lower measurability). Because G is

compact, the following statements are equivalent:

(1) Φ(·) is measurable.
(2) Φ−1 (F) ∈ (Ω) for F ⊂ G closed.
(3) Φ(·) ∈ (Ω) × (G). (see Aliprantis and Border 2006, Nowak 1984, or

Wagner 1977).

Under [A-2] the feasible proposal profile correspondence

 −→ Φ() :=
Y
∈
Φ() (9)

is measurable with nonempty, -closed values in G.
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2.7 Payoff Functions

Players decide which feasible networks to propose, in part, based on their payoff

functions. We shall assume that

[A-3] (payoff functions)

Each player  ∈  has a payoff function defined on states and proposal profiles,

(· ·) : Ω×G −→ [− ], (10)

such that

(1) (· ·) is jointly measurable on Φ(·); and
(2) ( ·) is continuous in proposal profiles, , on Φ() for all  ∈ Ω.

Thus, if the current state is  = () (i.e., if the status quo network is  and

it is coalition ’s turn to move) and if players propose networks  ∈ Φ(), then
player 0 payoff is given by

() := ( ( −))

2.8 The Law of Motion

2.8.1 Definition and Assumptions

Given the current state,  ∈ Ω, if the network proposal profile is given by  ∈ Φ(),
then nature chooses the next state (i.e., the next network-coalition pair) according

to the probability measure,

(·|) ∈ P(Ω) (11)

The function,

() −→ (·|)

relating current states and proposal profiles to the probability measures governing

the generation of states is called the law of motion, a mapping defined on the graph

of Φ(·) with values in the space of probability measures on the state space (Ω (Ω)).
We have the following list of assumptions concerning the law of motion:

[A-4] (the law of motion)

(1) For each  ∈ (Ω), the function (|· ·) is jointly measurable on Φ(·), and
for each () ∈ Φ(·) the probability measure (·|) is absolutely
continuous with respect the probability measure  =  ×  defined on (Ω (Ω))
(i.e., (·|)¿  for all () ∈ Φ(·)).
(2) The collection of probability densities

 := {(·|) : () ∈ Φ(·)} (12)

of (·|) with respect  is such that [] in 0 and for all states 

 −→ (0|) is -continuous in  on Φ().
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(3)  is -integrably bounded, that is, there exists a -integrable function

(·) : Ω −→ +

such that for all (·|) ∈ 

0 ≤ (0|) ≤ (0) [] in 0 (13)

For existence, we will require that assumptions [A-4](1) and (2) hold, and for

stability we will require that assumptions [A-4](1), (2), and (3). Call these sets of

assumptions [A-4] and [A-4]* respectively.

2.8.2 Observations Concerning Stochastic Continuity

The continuity of the function (0| ·) in  on Φ(), [] in 0, implies via
Scheffee’s Theorem (see Billingsley, 1986, Theorem 16.11) that

sup∈(Ω) |(|
)− (|∗)|

≤ RΩ |(0|
)− (0|∗)| (0) −→ 0

⎫⎬⎭ (14)

for any sequence of network proposal profiles {
} in Φ() converging to ∗ ∈

Φ(). Sometimes this is written,  −→


∗ implies that

k(·|
)− (·|∗)k∞ −→ 0

Our stochastic continuity assumptions, [A-4](2), is stronger than the usual narrow

(or weak continuity) assumption. Under weak continuity, we would have for any

sequence {()} in Φ() with


−→ ∗ ∈ Φ(),
and any closed  ∈ (Ω),

lim sup ( | ) ≤ ( | ∗)
or equivalently,R

Ω (
0)(0| ) −→ R

Ω (
0)(0| ∗),

for any bounded, continuous function (·). With our stochastic continuity assumption
(on densities), we have strengthened weak continuity so that for any such sequence,

lim ( | ) = ( | ∗)

or equivalently (by Delbaen’s Lemma (1974)),R
Ω (

0)(0| ) −→ R
Ω (

0)(0| ∗),
for any bounded, measurable function (·). Therein lies the real importance of our
stochastic continuity assumption: it makes the function,  −→

R
Ω (

0)(0| ),
continuous on Φ() for any bounded measurable function (·). This fact is critical
to our being able to establish the existence of a correlated stationary Markov equi-

librium.
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2.9 Strategies

2.9.1 Stationary Markov Strategies

A Markov strategy for player  is a measurable function,  −→ (·|), which spec-
ifies in each state  the probability measure, (·|), governing player 0 choice of
a network proposal  from feasible set Φ(). Under Markov strategy (·|·), in
each state  player 0 probability measure (·|) ∈ P(G) concentrates all of its
probability mass on the set Φ() of feasible network proposals available to player 
in state . Denote this set of probability measures by P(Φ())̇. Thus, the function
 −→ (·|) is a Markov strategy if and only if the function (·|·) is measurable
and (·|) ∈ P(Φ())̇ for all .13 Under Markov behavioral strategy (·|·) in
state , the probability with which player  proposes a feasible network  ∈ Φ()
contained in measurable subset of networks E ∈ (G) is given by (E|). Note that
if E ∩ Φ() = ∅, then (E|) = 0.

We will denote by

 := Σ(P(Φ(·))) (15)

the set of all measurable selections from the mapping P(Φ(·)), and therefore, the
set of all Markov behavioral strategies. By Theorem 3 in Himmelberg and Van Vleck

(1975), each player’s feasible probability measure correspondence, P(Φ(·)), is mea-
surable (upper hemicontinuous) if and only if the feasible action correspondence,

Φ(·), is measurable (upper hemicontinuous). The measurability of the feasible prob-
ability correspondences, P(Φ(·)), implies via the Kuratowski and Ryll-Nardzewski
Theorem (see 18.13 in Aliprantis and Border, 2006), that the set of Markov strategies

 is nonempty.

We will denote by

 :=
Y


 :=
Y


Σ(P(Φ(·))), (16)

the set of all profiles (or -tuples) of Markov strategies.

Definitions 5 (Stationary Markov Strategies)

A stationary Markov strategy for player  ∈  is a constant sequence of measurable

functions ((·) (·)   ) ∈ ∞ , where the function, (·) ∈ , is a Markov

strategy.

13Sometimes we will write (·) rather than (·|·). We say that (·) is (lower or weakly) mea-
surable if for all open subsets  ∈ (P(G))

−1 () := { ∈ Ω|() ∈ } ∈ (Ω)

where (P(G)) is the Borel -field in the space of probability measures P(G) generated by the com-
pact and metrizable narrow topology (i.e., the topology of weak convergence of measures). Because

the space of probability measures P(G) is a compact metric space, lower measurability is equivalent
to

−1 ( ) := { ∈ Ω|() ∈ } ∈ (Ω)

for all closed subsets  ∈ (P(G))
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A stationary Markov strategy profile for players is a constant sequence of profiles

((·) (·)   ) ∈ ∞ , where the function, (·) ∈ , is an -tuple of Markov

strategies.

2.9.2 Correlated Stationary Markov Strategies

A correlated Markov strategy consists of + 1 measurable functions

(·) : Ω −→ [0 1]

such that
P

=0 
() = 1 for all  and + 1 Markov strategy profiles,

(·) = ((·))∈ ∈ 

A Markov correlated strategy is given by ((·) (·))=0, and we will denote such a
strategy by

(·) =
X
=0

(·)(·) (17)

where for each state , () is the product probability measure on Φ() given by

() := 1(·|)× · · · × (·|) (18)

Observe that for  ∈ [0 1], and 1(·) and 2(·) in  and −(·) in \{}, we have
for all 

(1() −()) + (1− )(2() −())

= (1() + (1− )2() −())

= 1() + (1− )2()× −()

Definitions 6 (Correlated Stationary Markov Strategies)

A correlated stationary Markov strategy is a constant sequence of measurable

functions ((·) (·)   ), where each function, (·) is given by

(·) =
X
=0

(·)(·)

where

(·) := 1(·)× · · · × (·),
and (·) ∈  for each player 
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2.9.3 History-Dependent Strategies

A history-dependent strategy  for player  ∈  in period  is a history-dependent

measurable function defined on the state space Ω taking values in the set of probability
measures defined on networks, P(G). Under history-dependent strategy  in period
 given the history of states and proposal -tuples (i.e., the (−1)-sequence of state
and action -tuple pairs)

−1 := (1 1 
2 2     

−1 −1
 )

and given the current (period ) state  ∈ Ω, the probabilities with which player 
will propose various feasible networks is given by the probability measure

(
−1 ) ∈ P(Φ()) ⊆ P(G) (19)

Let H−1 denote set of all (− 1)-histories and let

 := ΣH−1(P(Φ(·))) (20)

denote the set of all measurable functions, (−1 ) −→ (
−1 ) ∈ P(G)

such that (
−1 ) ∈ P(Φ()) for all  ∈ Ω. We will denote by


 :=

Y





the set of period  history-dependent strategy profiles

Definition 7 (History-Dependent Strategies)

A history-dependent strategy for player  ∈  is a sequence of measurable functions

(·) = (1(·) 2(·)   ) ∈ ∞ :=
∞Y
=1


 

where for each  the function, (·) ∈ 
 , is a history-dependent strategy.

A history-dependent strategy profile for players is a sequence of measurable functions

(·) = (1(·) 2(·)   ) ∈ ∞ :=
∞Y
=1




where for each  the function, (·) ∈ 
, is a history-dependent strategy profile for

period .

2.10 Expected Payoffs Under Markov Correlated Strategies

For any profile (or -tuple) of feasible probability measures  ∈
Q

P(Φ()),
player 0 immediate expected payoff in state  is

( ) =

Z
G

()() (21)
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where  := ()∈ ∈ Φ() := Π∈Φ(), and where

() := 1(1)× · · · × ()

Under Markov correlated strategy (·), (· (·)) is (Ω)-measurable and
player 0 immediate expected payoff in state  ∈ Ω is

( 

()) =

R
G ()


(|)

=
R
G ()

P
=0 

()(|)

=
R
G ()

P
=0 

()(1(1|)× · · · × (|))

=
P

=0 
()

£R
G ()(


1(1|)× · · · × (|))

¤


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

If in state , stationary Markov strategy profile (·|) is chosen by the public
randomization device (),  = 0 1 2    , and if network proposal profile  is

chosen by the product measure (|) induced by probability measure profile
(·|), then given the law of motion (·|· ·) nature chooses the next state (i.e., the
next network-coalition pair) according to the probability measure (·|).

Let

 (

)() :=

⎧⎨⎩
( 


()) for  = 1R

Ω (
0 (

0))−1(0| ()) for  ≥ 2
(23)

denote the  period expected payoff to player  under Markov correlated strategy

(·) starting at state  given law of motion (·|· ·). Here, for  ≥ 2, (·| ())
is defined recursively by

(| ())

=
R
Ω 

−1(|0 (0))(0| ())

=
R
Ω (|0 (0))−1(0| ())

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (24)

where

(| ()) =
Z
G

(|)

(|)

The discounted expected payoff to player , with discount rate  ∈ [0 1), over an
infinite time horizon under Markov correlated strategy (·) starting at state  is
then given by

(

)() :=

∞X
=1

−1 

 (


)() (25)
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3 Correlated Stationary Markov Equilibrium

A discounted stochastic game over stationary Markov strategies is given by

G := (Ω (·)(·) )∈ 

Definition 8 (Correlated Stationary Markov Equilibria)

A correlated Markov strategy

∗ (·) =
X
=0

∗(·)∗(·)

is a correlated stationary equilibrium of the discounted stochastic game G, if no
player  can unilaterally benefit by deviating from any of the Markov strategies

∗ (·) ∈  assigned to him (under correlated strategy ∗ (·)) to any other Markov
strategy or any history dependent strategy.

Thus, a correlated stationary Markov strategy ∗ (·) is a dynamic correlated
equilibrium of the discounted stochastic game G if no player has an incentive to

unilaterally change his part, ∗ (·), of the Markov correlated strategy ∗ (·) to any
other strategy.

Theorem 1 (The Existence of Correlated Stationary Markov Equilibrium)

Any discounted stochastic game of network and coalition formation,

G := (Ω (·)(·) )∈ 

satisfying assumptions [A-1]-[A-4] has a correlated stationary Markov equilibrium,

∗ (·) =
X
=0

∗(·)∗(·) (26)

where each Markov strategy profile ∗(·) is such that for each state 

∗(·|) ∈ N∗()

where N∗() ⊂
Q

P(Φ()) is the set of Nash equilibria of the one-shot game
G∗() given by

G∗() := (P(Φ()) ( ·)(∗))∈  (27)

with player payoff functions given by

 −→ ( )(
∗
) := (1− )( ) + 

Z
Ω
∗(

0)(0| ) (28)

25



Our approach to proving existence follows the broad outlines of the approach

introduced by Nowak and Raghavan in their seminal 1992 paper. For the convenience

of the reader we include a proof (see the appendix). The basic objective of the proof

is to show that there exists a stationary correlated strategy

∗ (·) =
X
=0

∗(·)∗(·)

with corresponding -tuple of value functions, ∗(·) : Ω−→[− ] such that for
each player  ∈  and for all states  ∈ Ω,

(1) ∗() = ( 
∗
 ())(

∗
), where 

∗
 :=

∗
1− ,

and

for  = 0 1    

(2) ( (
∗
 () 

∗
−())(

∗
) = max∈P(Φ()) ( ( 

∗
−())(

∗
),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(29)

4 Equilibrium Markov Processes of Network and Coali-

tion Formation

4.1 Equilibrium Transitions

Under the equilibrium correlated stationary Markov strategy, ∗ (·), the Markov
process of network and coalition formation,

{ ∗
} = {(∗ ∗)}∞=1 

is governed by the equilibrium Markov transition,

∗(|) = (| ∗ ())

=
R
G (|0)∗ (0|)

Thus,
Pr
©
 ∗

+1 ∈ | ∗
 = 

ª
= ∗(|)

and

Pr { ∗
 ∈ | ∗

0 = } = ∗(|) = (| ∗ ())
where the -step transition ∗(·|·) is defined recursively as follows: for all  ∈ Ω and
 ∈ (Ω),

∗(|) =
Z
Ω
∗(|0)∗−1(0|) =

Z
Ω
∗−1(|0)∗(0|) (30)

for  = 1 2   , and ∗0(·|) = (·) is the Dirac measure at .
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4.2 Absorbing Sets and Invariant and Ergodic Probability Measures

A set  ∈ (Ω) (of network and coalition pairs) is called a ∗-absorbing set if
∗(|) = 1 for all network-coalition pairs  ∈ . Let L∗ ⊆ (Ω) denote the collec-
tion of all ∗-absorbing sets. A ∗-absorbing set ∈L∗ is said to be indecomposable
if it does not contain the union of two disjoint absorbing sets. Note that the set of

all absorbing sets is closed under countable unions and intersections.

A probability measure (·) on the state space of feasible network-coalition pairs
(Ω (Ω)) is invariant for Markov transition ∗(·|·) (i.e., is ∗-invariant) if

() =

Z
Ω
∗(|)() for all  ∈ (Ω) (31)

Thus, if probability measure (·) is ∗-invariant, then for any set of network-coalition
pairs ∈(Ω), if the current status quo network-coalition pair  = ( ) is
chosen according to probability measure (·) - so that the probability that  lies
in  is just () - then the probability that next period’s network-coalition pair
+1 = (+1 +1) lies in  is also () =

R
Ω 

∗(|)(). Denote by I∗ the
collection of all ∗-invariant measure

A ∗-invariant measure (·) is said to be ∗-ergodic if () = 0 or () = 1 for
all ∈L∗. Denote by E∗ the collection of all ∗-ergodic measures. Because the ∗-
ergodic probability measures are the extreme points of the (possibly empty) convex

set I∗ of ∗-invariant measures (see Theorem 19.25 in Aliprantis and Border 2006),

each measure (·) in I∗ can be written as a convex combination of the measures in
E∗.

4.3 Visitations and Hitting Times

The number of visitations by the process { ∗
} = {(∗ ∗)}∞=1 to the set of

network-coalition pairs  ∈ (Ω), is given by

∗ :=
∞X
=1

(
∗
), (32)

where (
∗
) = 1 if  ∗

 ∈  and zero otherwise. Thus, the expected number of

visitations to  starting from network-coalition pair  = () is given by

∗() := ∗[
∗
] =

∞X
=1

∗(|) (33)

The probability that the network-coalition formation process { ∗
} visits  infi-

nitely often (denoted by i.o.) is given by

∗() := Pr { ∗
 ∈  i.o.| ∗

0 = } = Pr {∗ =∞| ∗
0 = }

= Pr {∩∞=1 ∪∞= ( ∗
 ∈ | ∗

0 = )} for all  ∈ Ω

⎫⎬⎭ (34)
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The hitting time for set  is given by

∗ := inf { ≥ 1 : ∗
 ∈ } . (35)

Following Tweedie (2001),

∗() := Pr {∗ ∞| ∗
0 = } = Pr {∪∞=1 ( ∗

 ∈ | ∗
0 = )} (36)

is the probability that the process { ∗
} hits (or reaches) in finite time the set of

network-coalition pairs  starting from network-coalition pair  ∈ Ω given transition
∗(·|·). By Proposition 9.1.1 in Meyn and Tweedie (2009), if for any  ∈ (Ω),
∗() = 1 for all  ∈ , then

∗() = ∗() for all  ∈ Ω. (37)

4.4 Recurrence, Transience, and Irreducibility

The set of network-coalition pairs  is recurrent if

∗() := ∗[
∗
] =

∞X
=1

∗(|) = +∞

By Proposition 8.1.3 in Meyn and Tweedie (2009), for any state  ∈ Ω,
∗( {}) = +∞ if and only if ∗( {}) = 1.

A set of network-coalition pairs ∈(Ω) is transient if (i)  is the disjoint union
of countably many uniformly transient sets  , that is, sets ∈(Ω) such that
 = ∪ and if (ii) for each set there is a finite constant  , such that for all

network-coalition pairs  ∈  ,

∗[
∗
 ] =

∞X
=1

∗( |)    (38)

The set of network-coalition pairs  is said to be ∗-inessential if

∗() = 0 for all  ∈ Ω (39)

Thus, a set of states  is inessential if the probability that the network-coalition

formation process visits the set  infinitely often is zero stating from any state. If a

set of states is inessential, then if the process visits the state at all, it leaves the state

for good after finitely many moves. The union of countable many inessential states

is called an improperly ∗-essential set  Any other set is called properly ∗-essential 
Finally, the network-coalition formation process { ∗

} governed by ∗(·|·) is said
to be -irreducible if for some probability measure (·) on (Ω),14

()  0 implies ∗()  0 for all  ∈ Ω.
14Here, the probability measure (·) is a maximal irreducibility measure (see Section 4.2.2 in Meyn

and Tweedie (second edition, 2009).
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Thus if the process { ∗
} governed by ∗(·|·) is -irreducible, then it hits all the

“important” sets of network-coalition pairs (i.e., the sets  ∈ (Ω) such that () 
0) with positive probability starting from any network-coalition pair in the state space
Ω = G×F .

The network-coalition formation process { ∗
} governed by ∗(·|·) is said to be

-recurrent if,

()  0 implies ∗() = 1 for all  ∈ Ω.

5 Stability of EquilibriumMarkov Processes of Network

and Coalition Formation

In addition to modeling the emergence of endogenous network dynamics from the

co-evolution of strategic behavior and network structure, one of our main objectives

is to study the dynamic stability properties of the resulting equilibrium process of

network and coalition formation. A key component of our analysis is the notion of

a dynamic basin of attraction. Intuitively, a set of network-coalition pairs  is a

basin of attraction if the network and coalition formation process { ∗
} reaches 

in finite time with probability 1 and once there, stays there. The question we wish

to answer is this: does the process of network and coalition formation { ∗
} that

emerges from the equilibrium interplay of strategic behavior, network structure, and

the trembles of nature generate basins of attraction. We begin by considering the

classical notion of a Maximal Harris set of network and coalition pairs.

5.1 Dynamic Basins of Attraction: Maximal Harris Sets

A set of network-coalition pairs ∈(Ω) is called a maximal Harris set if there exists
some probability measure (·) on (Ω) such that ()  0,

()  0 implies ∗() = 1 for all  ∈ ,

and

∗() = 1 implies that  ∈ 

Note that a maximal Harris set is a maximal absorbing set and is indecomposable.

Moreover, if  and  0 are distinct Maximal Harris sets, then they are disjoint.
Finally, note that if the network-coalition formation process reaches a particular

Harris set then it remains there for all future periods. By Proposition 9.1.1 in Meyn

and Tweedie (2009), because we have ∗() = 1 for all  ∈ ,

∗() = ∗() = 1 for all  ∈ .

Thus, if the set of network-coalition pairs  is maximal Harris, then process { ∗
}

restricted to  is -irreducible and Harris recurrent - where Harris recurrence means

that ∗() = 1 for all  ∈ .

The fact that a maximal Harris set is a maximal absorbing set makes it a good

candidate for a basin of attraction. But in order to fully qualify as a basin of attraction

we must show that - or identify conditions under which - the process reaches such a

set in finite time with probability 1.
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5.2 The Fundamental Conditions for Stability: Drift and Global

Uniform Countable Additivity

Given the equilibrium Markov transition ∗(·|·) what can be said concerning stability?
What conditions guarantee that the equilibrium process of network and coalition

formation reaches a Harris set in finite time with probability 1. It turns out that the

Tweedie Conditions (2001) do just that:

The Tweedie Conditions (2001):

There exists a measurable set of network-coalition pairs  ⊆ Ω, a nonnegative
measurable function

 (·) : Ω−→[0∞]
and a finite real number  such that

(1) (the drift condition) for all  ∈ ΩZ
Ω
 (0)∗(0|) ≤  ()− 1 + ()

and

(2) (uniform countable additivity) for any sequence {} ⊂ (Ω) decreasing to ∅
(i.e.,  ↓ ∅),

lim
−→∞ sup∈

∗(|) = 0

We say that the Markov transition ∗(·|·) satisfies global uniform countable addi-

tivity if for any sequence {} ⊂ (Ω) decreasing to ∅ (i.e.,  ↓ ∅),

lim
−→∞ sup∈Ω

∗(|) = 0 (40)

and we will say that the Tweedie conditions are satisfied globally if both conditions

(1) and (2) hold with  = Ω
Using results due to Meyn and Tweedie (2009), Tweedie (2001), and Costa and

Dufour (2005), we will show below that if the equilibrium Markov transition ∗(·|·)
governing the equilibrium process of network and coalition formation is globally uni-

formly countably additive, then the equilibrium process possesses some striking sta-

bility properties - analogous to those demonstrated in Page and Wooders (2009a) for

static abstract games of network formation.

To begin, let us recall our strengthening of our assumptions [A-4](1) and (2)

concerning the law of motion by adding assumption [A-4](3).

[A-4](3) The collection of probability densities  is bounded by a -integrable

function, (·) : Ω −→ +.

By [A-4](3), we have for all (·|) ∈ , 0 ≤ (0|) ≤ (0) a.e. [] in 0.

Recall that [A-4]* denotes [A-4](1), (2), and (3). We have our main result on

global uniform countable additivity.

30



Theorem 2 (Global Uniform Countable Additivity)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]∗ hold. Then ∗(·|·) is globally
uniformly countably additive

Proof. For any sequence {} ⊂ (Ω) decreasing to ∅ (i.e.,  ↓ ∅),

∗(|) =
R


(0| ∗ ())

=
R
G
R


(0|0)∗ (0|)

=
R
G

³R


(0|0)(0)
´
∗ (

0
|)

≤ R
(0)(0) −→ 0 as  ↓ ∅,

where (·) is the -integrable function bounding the set of densities 

By Theorem 2, under assumptions [A-1], [A-2], [A-3], and [A-4]* the equilibrium

Markov transition ∗(·|·) governing the process of network and coalition formation is
globally uniformly countably additive. Moreover, letting  = Ω,  () = 1 for all
 ∈ Ω, and  = 2, the drift condition is also satisfied. Thus, by strengthening the
stochastic continuity properties of the law of motion (·|· ·) mildly beyond what is
required to guarantee the existence of an equilibrium Markov transition, ∗(·|·), we
are able to conclude in Theorem 2 that the Tweedie conditions are satisfied globally

(i.e., with  = Ω).

6 Basins of Attraction, Invariance, and Ergodicity

We now have our main result concerning stochastic basins of attraction and the

stability of the equilibrium network-coalition formation process

{ ∗
} = {(∗ ∗)}∞=1

governed by ∗(·|·).

Theorem 3 (Basins of Attraction: The Finite Decomposition of the State Space)

Under assumptions [A-1], [A-2], [A-3], and [A-4]* the equilibrium network-coalition

formation process

{ ∗
} = {(∗ ∗)}∞=1

governed by the equilibrium Markov transition ∗(·|·) = (·|· ∗ (·)) generates a
decomposition of the state space of network-coalition pairs Ω = G×F into a finite

number of disjoint basins of attraction and a disjoint transient set. In particular,

this decomposition is of the form

Ω=
¡∪=1

¢ ∪  , (41)
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where each  is a basin of attraction (i.e., maximal Harris) and  is transient,

and has the property that for every network-coalition pair  ∈ Ω

∗(∪) = 1. (42)

By Theorem 3 the equilibrium network-coalition formation process { ∗
} is such

that starting at any network-coalition pair not contained in a basin of attraction (i.e.,

a maximal Harris set), the process will reach in finite time with probability 1, one of

finitely many basins of attraction , and once there will stay there. An analogous

conclusion is reached in Page and Wooders (2009a) for static, abstract games of

network formation over finitely many networks. There it is shown that no matter what

rules of network formation prevail, given any profile of player preferences, the feasible

set of networks contains a finite, disjoint collection of sets, each set representing a

strategic basin of attraction in the sense that if the game is repeated - each time

starting at the status quo network reached in the previous play of the game - the

process of network formation generated by repeating this static game will reach a

strategic basin of attraction in finitely many moves and once there will stay there.

Because in our model the Tweedie conditions hold globally, it follows from Theo-

rem 2 in Tweedie (2001) that the entire state space Ω admits a finite decomposition,

Ω=
¡∪=1

¢ ∪ 
consisting of a finite number of indecomposable, Maximal Harris sets,  and a

transient set  . The key step in establishing this finite decomposition is to show that

because the equilibrium Markov transition,

 −→ (·| ∗())

is globally, uniformly countably additive, the state space contains at most a finite

number of disjoint absorbing sets (see Tweedie 2001, Lemma 2). Moreover, by The-

orem 2 in Tweedie (2001), this decomposition is such that ∗(∪=1) = 1 for
all  ∈ Ω. Thus, governed by the equilibrium Markov transition, (·|· ∗(·)), the
process of network and coalition formation is such that no matter where the process

begins (no matter what network-coalition pair is the starting point), it reaches in

finite time with probability 1 one of finitely many basins of attraction, , and once

there, stays there. Thus, the proof of our Theorem 3 follows from Theorem 2 in

Tweedie (2001) and the fact that the equilibrium Markov transition, (·|· ∗(·)), is
globally uniformly countably additive.

Our next result establishes that the equilibrium Markov transition possesses a

finite number of ergodic measures, one for each basin of attraction.

Theorem 4 (Invariance and Ergodicity of the Process of Network and Coalition

Formation)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold. Let

{ ∗
} = {(∗ ∗)}∞=1
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be the equilibrium network-coalition formation process governed by the equilibrium

Markov transition ∗(·|·) = (·|· ∗ (·)), and let

Ω=
¡∪=1

¢ ∪  ,
be the corresponding finite decomposition into basins of attraction.

The following statements are true:

(1) Corresponding to each basin of attraction , there is a unique ∗-invariant
probability measure (·) with () = 1. Moreover, for each network-coalition pair
 = (),

∗()(|) := 1



X
=1

∗(|) −→
X
=1

∗()( ∩), for all  ∈ (Ω) (43)

where ∗(|) is defined recursively, see (30).
(2) The set of all ergodic probability measures is given by

E∗ = {(·)}=1 

Moreover, a probability measure (·) on (Ω (Ω)) is ∗-invariant, i.e. (·) ∈ I∗, if
and only if (·) is given by

() =
X


()( ∩), for all  ∈ (Ω) (44)

(3) E∗ is a singleton (i.e., E∗ = {(·)}) if and only if the network-coalition
formation process { ∗

} is -irreducible, in which case for each network-coalition
pair  = () and for every set of network-coalition pairs ∈(Ω)

1



X
=1

∗(|) −→ ().

Proof. (1) Under our assumptions [A-1], [A-2], [A-3], and [A-4]* (see the proof

of Theorem 2 above), ∗(·|·) satisfies the Tweedie conditions globally. As a result,
the first statement in part (1) is an immediate consequence of Lemma 5 in Tweedie

(2001). The second statement also follows from the fact that in our model the Tweedie

conditions hold globally and Theorem 1 in Tweedie (2001) (also, see Chapter 13 in

Meyn and Tweedie 2009).

(2) Again because the Tweedie Conditions are satisfied globally, the first state-

ment in part (2) follows from Lemma 2 in Tweedie (2001), Theorem 2.18 part (1) in

Costa and Dufour (2005), Theorem 3.8 in Costa and Dufour, and the proof of Propo-

sition 5.3 in Costa and Dufour. The second statement in part (2), that (·) ∈ I∗
implies (44), follows from the proof of Proposition 5.3 in Costa and Dufour (2005).

The fact that (44) implies (·) ∈ I∗ follows from observation (but also, see Theorem

19.25 in Aliprantis and Border 2006 and Theorem 2 in Villareal 2004).
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(3) Finally, because the Tweedie Conditions are satisfied globally, necessary and

sufficient conditions for E∗ to be a singleton, given in terms of -irreducibility follow
from Theorem 3 in Tweedie (2001). The convergence result in part (3) follows from

the convergence result in part (1) of the Theorem and the fact that if there is only one

basin of attraction (i.e., one maximal Harris set), then by Theorem 3, ∗() = 1
for all  ∈ Ω

Note that the probability measures in E∗ are orthogonal, that is, for all  and 0

in {1 2     } with  6= 0

(Ω\) = 0 () = 0

6.1 Ergodic Properties of Strategic Values

For each starting network-coalition pair  = () ∈ Ω, ∗() (:= ∗()
1− ) is the

strategic value to player  of following his parts of the correlated stationary Markov

strategy {∗ (·)}=0, given that all other players follow their parts of the strategy

{∗−(·)}=0. Because each Markov strategy profile ∗(·) is Nash (for  = 0 1   ),
we know that this is the best that player  can do relative to all other strategies,

even those that are history dependent. Strategies ∗(·) together with the trembles of
nature determine the equilibrium Markov process of network and coalition formation

via the transition ∗(·|·) = (·|· ∗ (·)). The questions we wish to address in this
section concern the properties of players’ strategic values across time and states given

the equilibrium process of network and coalition formation.

We begin by considering time averages. Let

∗()∗() :=
1



X
=1

Z
Ω
∗(

0)∗(0|) =
Z
Ω
∗(

0)∗()(0|)

where recall,

∗() = (
∗
 )() :=

P∞
=1 

−1
 


 (

∗
 )()

= ( 
∗
 ()) + 

R
Ω

∗
(

0)(0| ∗ ())
and

∗()(|) := 1


P
=1 

∗(|) = 1


P
=1

R
Ω 

∗(|0)∗−1(0|)

Here, ∗(|) is the probability that process reaches the set of network-coalition
pairs  starting at network-coalition pair  = () in  periods or moves if players
follow the Markov strategies assigned via the correlated equilibrium strategy, ∗ ().

The function ∗()∗(·) specifies for each starting network-coalition pair, player
’s -period time average expected strategic value (i.e., the average value of following

his parts of the correlated stationary Markov strategy ∗ (·) for  moves). We can
think of lim 

∗()∗(·) therefore as specifying for each starting network-coalition
pair, player ’s time average expected value.
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By part (1) of Theorem 4 above, we have for all  ∈ Ω and  ∈ (Ω)

∗()(|) = 1



X
=1

∗(|) −→
X
=1

∗()(∩) = () (45)

where (·) ∈ I∗ for all  ∈ Ω and E∗ = {(·) :  = 1 2     }. Because ∗()(·|)
converges setwise for all , by Delbaen’s Lemma (1974) we have for all  ∈ Ω

∗()∗() −→
X
=1

∗()

Z


∗(
0)(

0) (46)

Thus, we obtain one of the fundamental principles of equilibrium dynamics: the

equality of time averages and state averages.

Theorem 5 (The Equality of Time Average Values and State Average Values)

Under assumptions [A-1], [A-2], [A-3], and [A-4]* the equilibrium network-coalition

formation process

{ ∗
} = {(∗ ∗)}∞=1

governed by the equilibrium Markov transition ∗(·|·) = (·|· ∗ (·)) is such that:
(1) for each player  starting at any network-coalition pair  = () contained in
a basin of attraction  the time average value of the correlated strategy ∗ (·) is
equal to state average value of the correlated strategy, that is, for all basins of

attraction  and for all initial states  = () ∈ ,

lim


∗()∗()| {z }
time average

=

Z


∗(
0)(

0).| {z }
state average

(47)

Moreover, for all initial states  = () ∈ Ω,

lim


∗()∗() =
X
=1

∗()

Z


∗(
0)(

0) (48)

(2) For all invariant measures (·) ∈ I∗Z
Ω
∗ (

0)(0) =
Z
Ω
∗(

0)(0), (49)

where

∗ () :=
X
=1

∗()

Z


∗(
0)(

0) for all  ∈ Ω. (50)
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Proof. (1) Part (1) is an immediate consequence of part (1) of Theorem 4, Delbaen’s

Lemma (1974), and the fact that for all basins and all states  ∈ , 
∗() = 1.

(2) Let invariant probability measure (·) =P
=1 ()(·) ∈ I∗ be given. We

haveR
Ω

∗
(

0)(0) =
P

=1 ()
R
Ω

∗
(

0)(0) =
P

=1 ()
R


∗(
0)(0)

andR
Ω 

∗
 (

0)(0) =
P

=1 ()
R
Ω 

∗
 (

0)(0) =
P

=1 ()
R


∗ (
0)(0).

Letting
R


∗(
0)(0) := ∗(), we haveR


∗ (

0)(0) =
R


hP
=1 

∗(0)
∗
()

i
(

0)

Moreover, because for all 0 ∈ , 
∗(0) = 1 and ∗(00) = 0, for all 

0 6= ,

R


hP
=1 

∗(0)
∗
()

i
(

0) = ∗() =
R


∗(
0)(0).

Thus we have for each R


∗ (
0)(0) =

R


∗(
0)(0)

and thus,R
Ω 

∗
 (

0)(0) =
P

=1 ()
R


∗ (
0)(0)

=
P

=1 ()
R


∗(
0)(0)

=
R
Ω

∗
(

0)(0)

The results above are essentially Birkhoff’s Ergodic Theorems (pointwise and

mean) for equilibrium Markov network and coalition formation processes (see for

example, Theorems 2.3.4 and 2.3.5 in Hernandez-Lerma and Lasserre 2003).

By part (1) of Theorem 5, each player’s time average value lim 
∗()∗() =

∗ () is constant with respect to the starting network-coalition pair on each basin of
attraction. In particular,

lim


∗()∗() =
Z
Ω
∗(

0)(0) =
Z


∗(
0)(

0) for all  ∈ 

By part (2) of Theorem 5, for any given invariant probability measure each player’s

average of time averages over the entire state space is equal to his state average over

the entire state space with respect to the given measure.
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7 Strategic Stability and Dynamic Consistency

Under the equilibrium Markov dynamics determined by strategic behavior and the

trembles of nature, in order for a set of network-coalition pairs to be stable, not only

must the network-coalition pairs contained in the set be favored and therefore chosen

by the behavioral strategies of players, but they must also be favored by nature’s

law of motion (i.e, stated loosely, in order for a set of network-coalition pairs to be

stable, the network-coalition pairs contained in the set must not only be chosen but

they must also be lucky).

Again let ∗ (·) be an equilibrium Markov correlated strategy of the dynamic

network-coalition formation game with corresponding equilibrium Markov transition

∗(·|·) = (·|· ∗ (·)), and let
Ω=

¡∪=1

¢ ∪  ,
be the finite decomposition of the state space generated by ∗(·|·) with basins of
attraction {1    } and transient set  . Finally, let E∗ = {(·)}=1be the
corresponding set of ergodic probability measures with () = 1 for all .

Player 0 parts of the correlated strategy ∗ (·)
 = () −→ ∗ (·|),  = 0 1    

govern the way in which player  tries to influence the process of network and coali-

tion formation across time (as directed by the public randomization device, (·)),
and for each given status quo coalition , the  + 1 transitions, ∗ (·|· ) are the
equilibrium Markov transitions on networks governing player ’s network proposal

process. For each status quo coalition , we will refer to the equilibrium Markov net-

work transitions, (∗ (·|· )=0)∈, as the -proposal transitions and we will refer to
the induced equilibrium Markov network-coalition transition, ∗(·|·) = (·|· ∗ (·)),
as the state transition.

To begin, let L∗ denote the set of absorbing sets corresponding to player ’s -
proposal transition ∗ (·|· ), and let L∗ := ∩=0L∗ denote the set of absorbing sets
common to all player ’s -proposal transition ∗ (·|· ) under correlated strategy
∗ (·). We will refer to the collection of absorbing sets L∗ as player 0 correlated
absorbing sets. If the set of networks E is a correlated absorbing set for player ,
then for any status quo network  ∈ E, it is optimal for player  ∈  to propose

with probability 1 either the status quo network or a new network 0 in E no matter
which -proposal transition ∗ (·|· ),  = 0 1    , governs player 0 network
proposal choice. Moreover, by assumption A-2(2) if  ∈ , then player  is constrained

to propose only the status quo network. Thus, for any player  not in coalition

, ∗ ({}|) = 1 for all status quo networks  under all player 0 proposal
transitions.15 If in addition, the set of network proposals E is a correlated absorbing
15Thus, for all states  = () and for all players  ∈ , the singleton sets {} are absorbing for

the + 1, -proposal transitions
(∗ (·|· ))=0.
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set for all players in , that is, if

E ∈ ∩∈L∗ := ∩∈ [∩L∗ ]
then for all status quo networks  ∈ E, it is optimal for all players in  to propose

a network contained in E with probability 1 no matter which -proposal transition

∗ (·|· ) governs player 0 network proposal choice. Note, however, that unless E
is a singleton (i.e., E = {} for some network  ∈ G), players may not agree on
their individual network proposals. However, if E is a correlated absorbing set for
all members of  then at least all members will agree that their proposals should be

drawn from E. Thus, we can think of the sets in ∩∈L∗ as being strategically stable
for coalition  - as long as coalition  is the status quo coalition. We will denote by

L∗ the intersection ∩∈L∗ and we will refer to L∗ as an -strategically stable set.

Let C be a subcollection of the feasible coalitions F . We will say that a set of
networks E is C-strategically stable if it is -strategically stable for all coalitions

 ∈ C, that is, if
E ∈ ∩∈CL∗ := L∗C ,

and we will say that E is strategically stable if C = F . Thus, if E is C-strategically
stable, then in any status quo state  = () with  ∈ E and  ∈ C, all players in
 will find it in their best interest to propose networks in E, while all players not in 
will be constrained (under the rules of network formation) to propose the status quo

network  - also a network in E. Moreover, the same will be true in any other state
0 = (0 0) with 0 ∈ E and 0 ∈ C, that is, all players in 0 will find it in their
best interest to propose networks in E, while all players not in 0 will be constrained
to propose the status quo network .

Finally, suppose the C-strategically stable set of networks E is such that nature
chooses with probability 1 network-coalition pairs from E×C starting from any status
quo network-coalition pair contained in E × C; that is, suppose that in addition
to E being C-strategically stable, that E × C is absorbing for the state transition
∗(·|·) := (·|· ∗ (·)). We will refer to a C-strategically stable set of networks E
as being C-dynamically consistent if E × C is absorbing for ∗(·|·). Thus, a set of
networks E ∈ L∗C is C-dynamically consistent if E×C ∈ L∗, where as before L∗ is the
collection of all absorbing sets corresponding to the state transition ∗(·|·).

We have the following formal definitions.

Definitions 8 (C-Strategic Stability and C-Dynamic Consistency)
(1) (C-Strategic Stability)
A set of networks E ∈ (G) is C-strategically stable if all players  ∈  in all states

() ∈ E×C propose networks in E with probability 1, that is, if for all players
 ∈ 

∗ (E|) = 1 for all () ∈ E×C and  = 0 1    

(2) (C-Dynamic Consistency)
A C-strategically stable set of networks E ∈ (G) is C-dynamically consistent if in
all states () ∈ E×C nature chooses states in E×C with probability 1, that is, if

∗(E×C|) = 1 for all () ∈ E×C
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(3) (Strategic Stability and Dynamic Consistency)

An F-strategically stable set of networks E ∈ (G) is dynamically consistent if it is
F-dynamically consistent.

The following result gives necessary conditions for dynamic strategic stability and

dynamic consistency. The proof is straightforward.

Theorem 6 (Dynamic Consistency and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{ ∗
} = {(∗ ∗)}∞=1

be the equilibrium network-coalition formation process governed by the equilibrium

Markov transition ∗(·|·) := (·|· ∗ (·)).
If E ∈ (G) is dynamically consistent, then starting at any network-coalition pair
contained in  := E×F , the network-coalition formation process will reach in finite
time with probability 1 a nonempty subset of network-coalition pairs  ∩, where

 is a basin of attraction and once there will remain there. Moreover, there exists

a ∗-invariant probability measure which assigns positive measure to  ∩.

Note that ∩ is absorbing for the state transition 
∗(·|·); that is, ∩ ∈ L∗.

Moreover, note that it is possible for  to intersect more than one basin of attraction,

but because each basin of attraction is indecomposable, each basin of attraction can

intersect only one such set  := E×F where E is dynamically consistent. It is

also possible for  to intersect the transient set - but it is not possible for  to be a

subset of the transient set. If  intersects basins  and 0 , and (·) is a ∗-invariant
measure such that () = 1, then by part (2) of Theorem 5 above we have,

() =
X
00

(00)00( ∩00) = ()( ∩) + (0)0( ∩0)

Thus, under any ∗-invariant measure (·) the measure of any absorbing set  is a

weighted sum of the probability masses the invariant measures (·) assigns to each
basin 

7.1 Dynamic Path dominance Core and Dynamic Pairwise Stability

One way to extend the definition of the path dominance core introduced in Page and

Wooders (2009a) to the dynamic setting considered here is as follows:

Definition 9 (The Dynamic Path Dominance Core)

A network ∗ ∈ G is in the dynamic path dominance core if the set {∗} is
dynamically consistent, that is, if {∗} ∈ L∗F and {∗} × F ∈ L∗.

We have the following result giving necessary conditions for a network to be in

the path dominance core.
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Theorem 7 (The Dynamic Path Dominance Core and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{ ∗
} = {(∗ ∗)}∞=1

be the equilibrium network-coalition formation process governed by the equilibrium

Markov transition ∗(·|·) := (·|· ∗ (·)).
If network ∗ ∈ G is in the dynamic path dominance core, that is, if {∗} is
dynamically consistent, then starting at any network-coalition pair contained in

{∗} × F , the network-coalition formation process will reach in finite time with
probability 1 a nonempty subset of network-coalition pairs ({∗} × F) ∩, where

 is a basin of attraction and once there will remain there. Moreover, there exists a

∗-invariant probability measure which assigns positive measure to ({∗} × F) ∩.

Note that if for some network ∗ ∈ G and some coalition ∗ ∈ F , {∗} ∈ L∗∗
and {(∗ ∗)} ∈ L∗, so that {∗} is {∗}-dynamically consistent, this does not
necessarily imply that ∗ is in the dynamic path dominance core, even if {(∗ ∗)}
basin of attraction, because {∗} may not be dynamically consistent. Why? Because
while nature will choose with probability 1 the network-coalition pair (∗ ∗) if the
status quo is (∗ ∗), if the status quo coalition is not ∗, that is, if the status quo
state is (∗ 0) for some coalition 0 ∈ F not equal to ∗, some players in 0 may
propose a network other than ∗ (i.e., it may be the case that ∗ ∈ L∗0 for some
player  ∈ 0 or it may be the case that ∗ ∈ L∗0 for some  = 0 1 2    )
and in turn nature may choose a state other than (∗ ∗). Moreover, if ∗ is not
strategically stable, but nonetheless {∗} × C ∈ L∗ for some subset of coalitions
C ⊆ F , then if the equilibrium network-coalition formation process reaches any state

(∗ ) ∈ {∗} × C, the process will remain in the set {∗} × C - despite network
proposals to the contrary by players, even players in coalitions in C. In such a case,
the state transition overrides the wishes of the players. This leads to the following

alternative notion of dynamic path dominance core.

Definition 10 (The State Transition Core)

(1) (State Transition Core) A network ∗ ∈ G is in the state transition core if the
set of states {∗} × F ∈ (Ω) is an absorbing set for the state transition ∗(·|·).
(2) (Weak State Transition Core) A network ∗ ∈ G is in the weak state transition
core if the set of states {∗} × C ∈ (Ω) is an absorbing set for the state transition
∗(·|·) for some subset of coalitions C ⊆ F .

Under the definition of weak state transition core, for any basin of attraction ∗
of the form ∗ = {(∗ ∗)}, ∗ is in the weak state transition core. Moreover, if
for some state transition absorbing set , ∩∗ is nonempty but  is disjoint from

the other basins, then starting at any network-coalition pair in , the process will

reach in finite time with probability 1 the network-coalition pair (∗ ∗) and will
remain there.

Finally, note that if ∗({∗} × C|∗ ) = 1 for all  ∈ C ⊆ F , then because the
law of motion

(·|() )
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is absolutely continuous with respect the probability measure  =  ×  for all

(() ) ∈ Φ(·), ∗ must be an atom of the probability measure , that is,

∗ ∈ {A1A2   } = {A}∞=1 ⊂ G.

To extend the definition of the pairwise stability introduced in Jackson and Wolin-

sky (1996) to the dynamic setting considered here, we begin by specializing the fea-

sible set of coalitions to coalitions of size no greater than 2.

Definition 11 (Dynamic Pairwise Stability)

Suppose the feasible set of coalitions is given by

F≤2 = { ∈  () : || ≤ 2} 

(i.e., all feasible coalitions consist of at most two players). Then a network ∗ ∈ G
is dynamically pairwise stable if the set {∗} is dynamically consistent, that is, if
{∗} ∈ L∗F≤2 and {∗} × F≤2∈ L∗.

We have the following characterization

Theorem 8 (Dynamic Pairwise Stability and Invariance)

Suppose assumptions [A-1], [A-2], [A-3], and [A-4]* hold and let

{ ∗
} = {(∗ ∗)}∞=1

be the equilibrium network-coalition formation process governed by the equilibrium

Markov transition ∗(·|·) := (·|· ∗ (·)).
If network ∗ ∈ G is dynamically pairwise stable, that is, if {∗} is dynamically
consistent, then starting at any network-coalition pair contained in {∗} × F≤2, the
network-coalition formation process will reach in finite time with probability 1 a

nonempty subset of network-coalition pairs ({∗} × F≤2) ∩, where  is a basin

of attraction and once there will remain there. Moreover, there exists a ∗-invariant
probability measure which assigns positive measure to ({∗} × F≤2) ∩.

Our conclusion that for some basin of attraction , ({∗} × F≤2) ∩  is con-

tained in the support of some ∗-invariant measure is similar to the conclusion reached
by Jackson and Watts (2002) for a stochastic process of network formation over a

finite set of linking networks governed by Markov chain generated by myopic players.

They reach their conclusion by considering a sequence of perturbed irreducible and

aperiodic Markov chains (i.e., each with a unique invariant measure) converging to

the original Markov chain. This method is similar to a method introduced into games

by Young (1993) which in turn is based on some very general perturbation methods

found in Freidlin and Wentzell (1984). Here we have reached similar conclusions using

very different methods.
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8 Appendix

8.1 The Hausdorff metric topology for the Space of Directed Net-

works

Because the set of directed connections,  := ×(×) is a compact metric space,
we can equip the space of networks  () with the Hausdorff metric , making

it a compact metric space (see Aliprantis and Border (2006), sections 3.16-3.18).

Formally, the Hausdorffmetric is defined as follows: First, define the distance between

a connection ( (0 1)) ∈  and a network  ∈  () as follows:

(( (0 1)) ) := inf
(0(00

0
1))∈


¡
( (0 1)) (

0 (00 
0
1))
¢


where


¡
( (0 1)) (

0 (00 
0
1))
¢
:= ( 

0) +  (0 
0
0) +  (1 

0
1)

is the product metric on . The Hausdorff metric  is then defined as

(0)
:= max

n
sup((01))∈ (( (0 1)) 

0) sup(0(0001))∈0 ((
0 (00 01)) )

o
,
(51)

for directed networks  and 0 in  ()
16

To better understand how the distance between networks is measured using the

Hausdorff metric, consider the notion of a sequence of networks converging to a

limit network. Convergence in the space of directed networks ( () ) can be
characterized via the notions of limit inferior and limit superior. Let {} be a
sequence of directed networks. The limit inferior of this sequence, denoted by (),
is defined as follows:

connection ( ( 0)) ∈ () if and only if there is a sequence of connections
{( ( 0))} such that ( ( 0)) ∈  for all  and

( ( 0)) −→


( ( 0))

The limit superior, denoted by (), is defined as follows:

connection ( ( 0)) ∈ () if and only if there is a subsequence of connections
{(  (  0))} such that (  (  0)) ∈  for all  and

(  (  0)) −→


( ( 0))

A directed network  ∈  () is said to be the limit of networks {} if
() =  = ()

16 It is important to note that because the space of connections is compact, all metrics compatible

with the product topology on  :=  × ( ×) generate the same Hausdorff metric topology on
 () (see Theorem 3.87 in Aliprantis and Border, 2006).
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Moreover, because the set of connections  × ( × ) is a compact metric
space,

() =  = () if and only if ( ) −→ 0

(i.e., the sequence of networks {} converges to network  ∈  () under
the Hausdorff metric  - see Theorem 3.93 in Aliprantis and Border (1999)).17

8.2 The Existence of Correlated Stationary Markov Equilibrium

8.2.1 The Continuity Lemma

A key ingredient in proving the existence of a correlated stationary Markov equilib-

rium is the one-shot, state-contingent game given by

G() := (P(Φ()) ( ·)())∈ (52)

where for each state  ∈ Ω, player 0 strategy set is P(Φ()) and player 0 payoff
function is

 −→ ( )() := (1− )( ) + 

Z
Ω
(

0)(0| ) (53)

Here  = () ∈ V is the -tuple of player value functions. Each player’s set of

value functions is given by V, the set of all -equivalence classes of (Ω)-measurable
functions, (·) : Ω−→[-M,M]-field (Ω) countably generated, the
space of -equivalence classes of -integrable functions, L1(Ω (Ω) ), is separable.
As a consequence the set of value functions V is a compact, convex, and metrizable
subset of L∞(Ω (Ω) ) for the weak star topology (L∞L1). Letting

V = V× · · · × V| {z }
:=|| times



V equipped with the product topology (L∞L1) is also compact, convex, and
metrizable. We will denote by  −→

∗
∗ convergence in weak star product topology

(L∞L1).
In order to establish existence, we must show that in each state  ∈ Ω and for

each -tuple of player value functions,  = () ∈ V, the one-shot game G()
has a nonempty, compact set of Nash equilibria, N(). But more importantly,

we must show that N(·) is measurable in  for each  and that N(·)() is upper
hemicontinuous in  for each . In order to accomplish the latter, we will first show

that

( ) −→ (( ·)(·))
is continuous for each  ∈ Ω.
17Both () and () are networks, that is, both () and () are contained in  ().

Moreover, in general,

() ⊆ ().
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Lemma (The Continuity Lemma)

Suppose assumptions [A-1]-[A-4] hold and let {( )} be any sequence in
V ×Q P(Φ()).
If  −→

∗
∗ and  −→ ∗ narrowly,then for each player 

( 

)(

) −→ ( 
∗
)(

∗) for all  ∈ Ω.

Proof. Let {( )} be a sequence such that  −→∗ ∗ and  −→ ∗ narrowly.
Let  be given and fixed, and observe that for all players :

|( )( )− ( 
∗
)(

∗
)|

≤ |( )( )− ( 
∗
)(


 )|| {z }



+ |( ∗)( )− ( 
∗
)(

∗
)|| {z }





We will carry out our proof for one player , keeping in mind that the argument

can easily be made to hold for all players simultaneously. Consider  first. We have

 = 

¯̄̄̄Z
Ω
 (

0)(0| ∗)−
Z
Ω
∗(

0)(0| ∗)
¯̄̄̄


Let (·| ∗) be a density of (·| ∗) with respect to . Given that  −→∗ ∗, we
have (by the very notion of weak star convergence),R

Ω 

 (

0)(0| ∗) =
R
Ω 


 (

0)(0| ∗)(0)

−→ R
Ω 

∗
(

0)(0| ∗)(0) =
R
Ω 

∗
(

0)(0| ∗)
Thus,  −→ 0.

Next, consider . We have

 ≤ (1− )|( )− ( 
∗
)|| {z }

1

+

¯̄̄̄Z
Ω
 (

0)(0| )−
Z
Ω
 (

0)(0| ∗)
¯̄̄̄

| {z }
2



Continuity of ( ·) and  −→ ∗ imply that 

1

−→ 0. To see that 
2

−→ 0,
observe that by Scheffee’s Theorem we have¯̄̄̄Z

Ω
 (

0)(0| )−
Z
Ω
 (

0)(0| ∗)
¯̄̄̄

| {z }

2

≤ k(·| )− (·| ∗)k∞
−→ 0
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8.2.2 Proof of Existence of a Correlated Stationary Markov Equilibrium

Again consider the one-shot game G() and let N() denote the set of Nash equi-
libria of G().

The proof will proceed in 6 steps:

Step 1 : ( −→ N() is measurable)
Following Nowak and Raghavan (1992) let

 ( )() :=
P



¡
( ( −))()−max∈P(Φ()) ( ( −))()

¢


and consider the correspondence

 −→ N() := { ∈ P(Φ()) :  ( )() = 0}  (54)

Note that  = () ∈ N() if and only if for each player  ∈ 

( ( −))() ≥ ( ( −))() for all  ∈ P(Φ()).
Given that ( | ·) is continuous on Φ() for closed  ∈ (Ω), it follows from
Delbaen’s Lemma (1974) that the function

 −→
Z
Ω
(

0)(0| ( −))

is also continuous on Φ() for all players , states  ∈ Ω, and value functions
(·) ∈ V. Therefore, by weak continuity, the function

 −→
Z
Ω
(

0)(0|  −)

is continuous on P(Φ()) for all players , states  ∈ Ω, and value functions (·) ∈
V. Moreover, because each player’s payoff function,

 −→ ( ( −))()

is continuous and affine on P(Φ()), and because the feasible sets, P(Φ()), are
compact and convex, the game G() has a Nash equilibrium ∗ ∈

Q
P(Φ()).

Thus, N() is nonempty and compact. Finally, because  −→  ( )() is
continuous, it follows from Theorem 6.4 in Himmelberg (1975) that  −→ N() is
measurable.

Step 2 : (Properties of the Nash Correspondence  −→ N())
The correspondence  −→ N() has a closed graph for all  ∈ Ω. To see this,

let {( )} be a sequence such that  ∈ N() for all  and let 
 −→

∗
∗ and

 −→ ∗ narrowly. We must show that 
∗
 ∈ N∗(). Suppose that 

∗
 ∈ N∗().

Thus, ∗ is not Nash equilibrium for the game G∗(). Therefore for some player 
and some action  ∈ P(Φ()),

( ( 
∗
−))(

∗
)  ( (

∗
 

∗
−))(

∗
)

45



By the Continuity Lemma, we have for sequences {( )} and
©
( ( 


−))

ª


( ( 

−))(


 )

−→ ( ( 
∗
−))(

∗
)

and

( (

  


−))(


 )

−→ ( (
∗
 

∗
−))(

∗
)

Thus, for  sufficiently large,

( ( 

−))(


 )  ( (


  


−))(


 )

contradicting the fact that  ∈ N() for all .
Step 3 : ( −→ Σ((·)) has a closed graph)
Consider the Nash payoff correspondence given by

() := {() ∈  : () = (( )()) for some  ∈ N()} 

where, recall

( )() := (1− )( ) + 

Z
Ω
(

0)(0| )

By Theorem 6.5 in Himmelberg (1975) the payoff correspondence  −→ () is
measurable with nonempty, compact values, and by Theorem 9.1 in Himmelberg

(1975) the correspondence

 −→ ()

is measurable with nonempty, compact convex values.

Step 4 : (The Nowak-Raghavan Lemma)

Let Σ((·)) be the set of all -equivalence classes of measurable selectors of
 −→ (),  ∈ V (i.e., (·) ∈ Σ((·)) if and only if () ∈ ()
for all  ∈ Ω\ , where  is a -null set, ( ) = 0). The Nowak-Raghavan
(NR) Lemma states that the payoff selection correspondence  −→ Σ((·)) is
upper hemicontinuous with nonempty convex, weakly compact values. Convexity,

weak compactness, and nonemptiness are straightforward. We need only prove up-

per hemicontinuity. Thus, we must show that if (·) ∈ Σ((·)) for all  and
(·) −→

∗
∗(·) and (·) −→

∗
∗(·), then ∗(·) ∈ Σ(∗(·)) (i.e., ∗() ∈ ∗()

a.e. []).
The proof of the NR Lemma proceeds in three steps:

First, we have (·) −→
∗

∗(·) and (·) −→
∗

∗(·), where for all , (·) ∈
Σ((·)) and (·) ∈ V. Let ∞ = ∪ be the -null set where for each ,

 is such that for all  ∈ Ω\ , () ∈ (). By Komlos’ Theorem (1967),
we can assume without loss of generality that for some -null set b (i.e., ( b) = 0)

1



X
=1

()
−→ b() ∈  for all  ∈ Ω\ b .
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Therefore,

1



X
=1

()
−→ b() for all  ∈ Ω\ where  = b ∪∞.

By Proposition 1 in Page (1991),b() ∈  {()} and we know already that b() = ∗() for all  ∈ Ω\ .
Here “” denotes convex hull and  {()} is the set of cluster points of the
sequence {()}.

Second, applying the Kuratowski-Ryll-Nardzewski Theorem (1965), let e(·) be
a measurable selector of  {(·)}. Thus, we have e() ∈  {()} for all
 ∈ Ω, and therefore, e() = b() = ∗() for all  ∈ Ω\

By Theorem 8.2 in Wagner (1977), e(·) has a Caratheodory representation e() =P
=0 e()e (), where the -valued functions e0(·) e1(·)     e(·) are measur-

able selectors of  {(·)} and the nonnegative functions e0(·) e1(·)     e(·) are
measurable with

P
=0 e() = 1 for all . Thus, for each  and each ,  ()

−→e () in  for some subsequence
©
 ()

ª

⊂  where  () ∈  () for

all .

Third, Given that e() =P
=0 e()e (), the proof (that the payoff selection

correspondence  −→ Σ((·)) is upper hemicontinuous) will be complete if we can
show that for each  ∈ Ω\ , e () ∈ ∗() for  = 0 1   . To accomplish
this, we need the following

Lemma (*): If ()
−→ e () in , where () ∈ () for all  and if

(·) −→
∗

∗(·), then e () ∈ ∗().

Proof of Lemma (*): Again by Theorem 8.2 in Wagner (1977) each

(·) ∈ Σ((·))
has a Caratheodory representation

() =
X
=0

()() for all  ∈ Ω,

where for all  () ∈ () and
P

=0 
()() = 1, ()() ≥ 0 for  =

0 1    . For each , let  ∈ N() be such that for each player , 

 () =

( 

 )(


 ) and without loss of generality, assume that 


 −→ ∗, and

(0() 1()     ()) −→ (∗0() ∗1()     ∗()).

By the Continuity Lemma, we have for all players 


 () =

P
=0 

()()
 () =

P
=0 

()(( 

 )(


 ))

−→


P
=0 

∗()(( ∗)(
∗
)) =

P
=0 

∗()∗() = e 
()
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Because  −→ N() has a closed graph, we know that ∗ ∈ N∗() Thus, we
conclude that each ∗() ∈ ∗(), and thus we have for all  ∈ Ω,

X
=0

∗()∗() = e 
() ∈ ∗()

completing the proof of the Nowak-Raghavan Lemma.

Step 5: (The Fixed Point Argument)

Applying the Kakutani-Glicksberg Fixed Point Theorem (1952) to  −→ Σ((·))
we obtain an -tuple of value functions

(·) = ((·)) ∈ V

such that

() ∈ () for all  ∈ Ω\ where () = 0

Let ∗(·) = (∗(·)) ∈ V be a measurable selection of (·) such that ∗() =
() for all  ∈ Ω\ . Thus, ∗() ∈ () for all  ∈ Ω and because () =
∗() for all  ∈ Ω, we have ∗() ∈ ∗() for all  ∈ Ω

Step 6: (Construction of a Correlated Stationary Markov Equilibrium)

By Theorem 8.2 in Wagner (1977) ∗(·) has a Caratheodory representation

∗() =
X
=0

∗()∗() for all 

where for all  = 0 1     ∗(·) ∈ V and ∗(·) ∈ ∗() for all  ∈ Ω. By the
Measurable Implicit Function Theorem (Theorem 7.1 in Himmelberg 1975), there

exists for each  = 0 1    , a measurable selection of N∗(·), that is, a measurable
function

 −→ ∗() ∈
Y


P(Φ())

with ∗() ∈ N∗() for all , such that for each player  ∈ ,  = 0 1    , and
 ∈ Ω

∗ ()

= ( 
∗
())(

∗
)

:= (1− )( 
∗
()) + 

R
Ω 

∗
(

0)(0| ∗()).
Thus, for each player  ∈ , and  ∈ Ω

∗() =
P

=0 
∗()∗ ()

=
P

=0 
∗()

£
(1− )( 

∗
()) + 

R
Ω 

∗
(

0)(0| ∗())
¤

= (1− )(
X
=0

∗()∗()| {z }
∗ ()

) + 
R
Ω 

∗
(

0)(0|
X
=0

∗()∗()| {z }
∗ ()

)
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For  ∈ , let ∗(·) := ∗(·)
1− . Substituting, we have for all  ∈ Ω

∗() = ( 
∗
 ()) + 

Z
Ω
∗(

0)(0| ∗ ()) (**)

where ∗ () =
P

=0 
∗()∗() and 

∗
() ∈ N∗() for all  and  = 0 1 2    .

By classical results on discounted dynamic programming (e.g., Blackwell 1965),

we conclude from (**) that for all players  ∈  and all starting states  ∈ Ω

∗() = (
∗
 )() :=

∞X
=1

−1 

 (

∗
 )()
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