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Abstract

We model banks’ liquidity holding decision as a simultaneous game on an interbank

borrowing network. We show that at the Nash equilibrium, the contributions of each

bank to the network liquidity level and liquidity risk are distinct functions of its indegree

and outdegree Katz-Bonacich centrality measures. A wedge between the planner and

the market equilibria arises because individual banks do not internalize the effect of

their liquidity choice on other banks’ liquidity benefit and risk exposure. The network

can act as an absorbent or a multiplier of individual banks’ shocks. Using a sterling

interbank network database from January 2006 to September 2010, we estimate the

model in a spatial error framework, and find evidence for a substantial, and time

varying, network risk: in the period before the Lehman crisis, the network is cohesive

and liquidity holding decisions are complementary and there is a large network liquidity

multiplier; during the 2007-08 crisis, the network becomes less clustered and liquidity

holding less dependent on the network; after the crisis, during Quantitative Easing,

the network liquidity multiplier becomes negative, implying a lower network potential

for generating liquidity. The network impulse-response functions indicate that the risk

key players during these periods vary, and are not necessarily the largest borrowers.
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I Introduction

To meet its liquidity shocks, a stand-alone bank might need to maintain a different size of

liquidity buffer than a bank that has access to an interbank borrowing and lending network.

It is not well understood, however, how the interbank network, through its ability to in-

termediate liquidity shocks, affects banks’ choice of liquidity buffer stocks and whether this

influence is heterogenous with respect to the network location of the banks. That is, how in-

terbank network multiplies or absorbs liquidity shocks of individual banks remain relatively

unexplored empirically or theoretically in the academic literature. In this paper, we analyse

the role that the interbank network plays in banks’ liquidity holding decisions and explore

the implications for the endogenous formation of systemic liquidity risk.

Understanding these questions becomes also more relevant since the collapse of Lehman

Brothers and the subsequent great recession. It is evident through the recent events that

banks are interconnected and decisions by individual banks in the banking network could

have ripple effects leading to increased risk across the financial system. Instead of traditional

regulatory tools that examine banks’ risk exposure in isolation and focus on bank-specific risk

variables (e.g. capital ratios), it becomes urgent to develop macro-prudential perspectives

that assess the systemic implications of individual bank’s behaviour in interbank networks,

and put more stringent requirements upon banks that are considered to pose greater systemic

risks.1 In this paper, we contribute towards this endeavour.

We construct a network model of banks’ liquidity holding decision and estimate it em-

pirically. In the model, the interbank network exerts externality. That is, neighbouring

banks’ liquidity holding decisions are not only dependent on their own balance sheet charac-

teristics, but also on their neighbours’ liquidity choice. Consequently, their location in the

interbank network matters in their contribution to the systemic liquidity in the network.

Using a linear-quadratic model, we outline an amplification mechanism for liquidity shocks

originated in individual banks, and show the implications for aggregate liquidity level and

risk. Based on this amplification mechanism, we estimate the network multiplier, construct

network impulse response function to decompose the aggregate network liquidity risk, and

identify the liquidity level key players (banks whose removal would result in the largest liq-

uidity reduction in the overnight interbank system) and the liquidity risk key players (banks

whose idiosyncratic shocks have the largest aggregate effect) in the network. Based on the

1Basel III is putting in place a framework for G-SIFI (Globally Systemically Important Financial Insti-

tutions). This will increase capital requirements for those banks which are deemed to pose a systemic risk.

(See http://www.bis.org/publ/bcbs207cn.pdf).
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estimation of the network multiplier effect, we characterise the social optimum and contrast

that with the decentralised equilibrium level of systemic liquidity level and risk. This analysis

allows us to identify ways for planner’s intervention to achieve social optimum.

In our model, all banks decide simultaneously how much liquid assets to hold at the

beginning of the day as a buffer stock for liquidity shocks that need to be absorbed intra-

day. By holding liquidity reserves, banks are able to respond immediately to calls on their

assets without relying on liquidizing less liquid securities. Banks, being exposed to liquidity

valuation shocks, derive utility from holding a liquidity buffer stock. A borrowing and lend-

ing network allow banks to access others’ liquidity stock to smooth daily shocks – it is this

network that gives rise to the network externality in the model.

There are two opposing network effects. On the one hand, the interbank network allows

banks to access more liquidity buffer stocks in the banking system, and to make use of

collateralized borrowing technology which might reduce banks’ overall borrowing costs. This

gives arise to strategic complementarity in liquidity holding decisions among banks: a higher

liquidity holding by a bank allows it to signal to neighbouring banks its ability to pay back its

borrowing, and this signal is more valuable when neighbouring banks provide more to borrow

from. This effect is stronger if the extent of collateralized borrowing is larger (for example,

when the haircuts on the collaterals are smaller). On the other hand, banks are averse

to the volatility of liquidity available to them (directly or via borrowing on the network).

The aversion to risk leads banks to make liquidity holding decisions less correlated with their

neighbours, resulting in substitution effects among neighbouring banks’ liquidity buffer stock

choices. The equilibrium outcome depends on the tradeoff of these two network effects. The

lower (higher) the risk aversion, the higher (lower) the availability of collateralized borrowing,

and the lower (higher) the availability of uncollateralized borrowing, the more the equilibrium

will be characterised by strategy complementarity (substitutability).

The existing theoretical literature has mostly modelled the liquidity holding decisions

among banks as strategic substitutes. The pioneering work by Bhattacharya and Gale (1987),

for example, shows that the substitution effect arises from the free-riding incentive of banks

in holding liquidity. That is, an individual bank has a lower incentive to set aside liquid

assets when neighbouring lending banks have high liquidity levels which it can draw upon.

The recent work by Moore (2012) indicates that the leverage stack phenomenon could result

in complementarity in banks’ liquidity holding decisions. Our structural model is flexible

enough to incorporate both strategic substitution and strategic complementarity and, when

taken to the data, is able to identify when one or the other effect dominates. The combination

of these two opposing network externalities is summarised, in equilibrium, by a network decay

2



factor φ, which is also known as the network multiplier in our paper.

At the Nash equilibrium, the liquidity holding of each individual bank embedded in

the network is proportional to its indegree Katz-Bonacich centrality measure. That is, the

liquidity holding decision of a bank is related to how it is affected by its shocks, shocks of

its neighours, of neighbours of neighbours, etc, weighted by the distance between banks in

the network and the network attenuation factor, φk, where k is the length of the path.2

When banks are less (more) risk averse, liquidity collateral/signal value is larger (smaller),

the network attenuation factor φ is larger (smaller), and liquidity multiplies faster (slower),

resulting in larger (smaller) aggregate liquidity level and systemic liquidity risk. We also

characterise the volatility of the aggregate liquidity and find that the contribution by each

bank to the network risk is related to its (analogously defined) outdegree Katz-Bonacich

centrality measure weighted by the standard deviation of its own shocks. That is, it depends

upon how the individual bank’s shock propagates to its (direct and indirect) neighbours.

These two centrality measures identify the key players in the determination of aggregate

liquidity levels and systemic liquidity risk in the network.

We show also that, due to the network externality, there is a wedge between the central

planner’s optimum and the market equilibrium outcome. Individual banks maximise their

own liquidity benefit and risk tradeoff taking into account how this is affected by the other

agents’ behaviour, but disregarding how their own behaviour affects other agents’ payoff

function. That is, they do not take into account the impact that their decisions have on

the overall system through the linkages in the interbank money markets. This implies that,

in equilibrium, the network itself can act as an amplification mechanism of bank specific

shocks. The planner instead is also concerned about how a bank’s liquidity choice affects

other banks’ liquidity benefits and other banks’ liquidity risk exposures. The planner might

desire a lower liquidity level when she is more concerned about the level of systemic liquidity

risk in the network, while individual banks are only concerned with liquidity risk specific to

their respective network location.

We apply the model to study the central bank reserves holding decisions of banks who

are members of the sterling large value payment system, CHAPS. On average, in 2009,

£700 billions of transactions were settled every day across the two UK systems, CREST

2This centrality measure takes into account the number of both immediate and distant connections in a

network. For more on the Bonacich centrality measure, see Bonacich ((1987),) and Jackson ((2003)). For

other economic applications, see Ballester, Calvo-Armengol, and Zenou (2006) and Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2005) and for an excellent review of the literature see Jackson and Zenou

(2012).
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and CHAPS, which is the UK nominal GDP every two days. Almost all banks in CHAPS

regularly have intraday liquidity exposures in excess of £1 billion to individual counterparties.

For larger banks these exposures are regularly greater than £3 billions. The settlements in

CHAPS are done intraday and in gross terms and hence banks (as well as the central bank)

are more concerned about managing their liquidity risks and their exposure to the network

liquidity risks. We consider a network of all member banks in the CHAPS (which consists of

11 banks) and their liquidity holding decisions. These banks play a key role in the sterling

payment system since they make payments both on their own behalf and on behalf of banks

that are not direct members of CHAPS.3 We consider the banks’ liquidity holding decisions

in terms of the amount of central bank reserves that they hold along with assets that are used

to generate intraday liquidity from the Bank of England (BoE).4 These reserve holdings are

the ultimate settlement asset for interbank payments, fund intraday liquidity needs, and can

also act as a buffer to protect the bank against unexpected liquidity shocks. They are the

most liquid form of assets on a bank’s balance sheet. The UK monetary framework allows

individual banks to choose their own level of reserve holdings. However, post Quantitative

Easing (QE) the BoE has targeted the purchase of assets, and so has largely determined the

aggregate supply of bank reserves.5 The network that we consider between these banks is

the sterling unsecured overnight interbank money market. This is where banks lend central

bank reserves to each other, unsecured, for repayment the following day. As an unsecured

market it is sensitive to changes in risk perception. The strength of the link between any

two banks in our network is measured using the fraction of borrowing by one bank from

the other. Hence, our network is weighted and directional. As well as relying on their own

liquidity buffers, banks can also rely on their borrowing relationship within the network to

meet unexpected liquidity shocks. Using daily data from January 2006 to September 2010,

we cast the theoretical model in a spatial error framework and estimate the network effect.

Our parametrization is flexible and allows the network to exhibit either substitutabilities

or complementarities, and to change its role over time. The estimation of the network

externality effects in the interbank market allows us to understand the shock transmission

mechanism in the interbank network and sources of systemic risk. For example, we are the

3We choose not to ignore the network links between clients of the 11 member banks because these network

links potentially could affect member banks’ buffer stock holding decisions.
4In addition to central bank reserves, payment system participants may also repo government bonds to

the BoE to provide extra intraday liquidity.
5In Appendix A.1, we provide some background information on the monetary framework (i.e. reserve

regimes) including QE, the payment system, and the overnight interbank money markets.
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first to derive and estimate network impulse-response functions to individual banks shocks

to pin down the individual bank contributions to systemic risk.

The empirical estimation sheds light on network effects in the liquidity holding decision

of the banks over the sample period. Our work shows that this effect is time varying: a

multiplier effect during the credit boom prior to 2007, close to zero in the aftermath of the

Bear Stearns collapse and during the Lehman crisis, and turns negative during the Quanti-

tative Easing (QE) period. That is, liquidity holding decisions among banks are a strategic

complement during a credit boom but a strategic substitute during the QE period. We find

these results to be robust to various specifications and controls. As the first paper that

structurally estimates the network effect, our finding of this time-varying network effect is

empirically significant. The long standing notion in the theoretical interbank literature has

assumed that banks have incentives to free ride on other banks in holding liquidity and liq-

uidity is a strategic substitute (Bhattacharya and Gale (1987)). Our finding that liquidity

holding decisions among banks sometimes exhibit strategic complementarity indicates this

notion does not fully capture the network effect in the interbank market. We interpret this

finding as supportive of the “leverage stack” view of the interbank network in Moore (2012).

During booms, banks use liquid assets (implicitly or explicitly) as collateral to borrow more.

In our case, as we are looking at the unsecured market and central bank reserve holdings, we

interpret this as meaning that banks which are more liquid have greater access to borrow-

ing from other banks, some of which is then held as reserves as the balance sheet expands.

The large positive network multiplier during the boom period can be interpreted as a large

velocity of inside money (i.e. the total transaction value to buffer stock holdings ratio).

During this period, banks hold smaller but correlated liquidity buffer stocks sustaining high

volume of payment activities. This indicates that the network generates large aggregate

liquidity using a smaller stock of cash. However, the multiplier effect also amplifies shocks

from each individual bank, creating potentially excessive aggregate liquidity risk. As crises

unfold, banks, as rational agents, decide to lower their exposure to network risk by reducing

the correlation of their liquidity decision with their neighbouring banks. This has a damp-

ening effect on shocks between banks but also results in lower aggregate liquidity generated

through the network interaction. During this period, banks hold large and uncorrelated

liquidity buffer stocks for comparatively lower level of payment activities. This implies that

the capacity of generating network liquidity is small when the network multiplier becomes

insignificant. This unique finding enriches our understanding of the interbank market and

poses new questions to the corresponding theoretical literature.

Moreover, using the estimated network effects, we map out the network impulse response
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function and identify risk key players, that is, the banks that contribute the most to the

aggregate liquidity risk, through these three periods. We find that although the network risk

is dominated by a small number of banks during the majority of the sample period, there

are substantial time varying differences among their contribution to the network risk. In

fact during the last period (the QE period), the largest banks are seen as absorbents rather

than contributors to the network risk. We also find that the key players in the network are

not necessarily the largest borrowers. In fact, during the credit boom, large lenders and

borrowers are equally likely to be key players. This set of findings is of policy relevance,

and give guidance on how to effectively inject liquidity, to reduce the network risk, if the

government decides to intervene.

Related Literature: As mentioned previously, there is a theoretical literature on liquid-

ity formation in interbank markets since (Bhattacharya and Gale (1987)). More recently,

Freixas, Parigi, and Rochet (2000) show that counter-party risk could cause a gridlock equi-

librium in the interbank payment system even when all banks are solvent. Afonso and Shin

(2011) calibrate a payment system based on the US Fedwire system and find a multiplier

effect. Ashcraft, McAndrews and Skeie (2010) find theoretically and empirically that, in

response to heightened payment uncertainty, banks hold excess reserves in the Fed fund

market. Our paper contributes to the theoretical literature on the interbank market by

modeling banks’ liquidity holding decision as the outcome of a network game and estimat-

ing the impact of the externality taking into account of network topology. Our empirical

finding of time-varying strategic interactions among banks’ liquidity holding decisions in the

interbank market is new and calls for further theoretical development of this literature.6

There is a limited empirical literature that has studied the liquidity formation in interbank

markets due to limitations on data availabilities. The recent work includes (but is not

limited to) Ashcraft, McAndrews and Skeie (2010), Acharya and Merrouche (2010), and

Fecht, Nyborg and Rocholl (2010). By examining large Sterling settlement banks during the

subprime crisis of 2007-08, Acharya and Merrouche (2010) find evidence of precautionary

liquidity demands among the U.K. banks.7 Fecht, Nyborg and Rocholl (2010) study the

6Our paper is also related to the theoretical literature on financial networks that studies contagion and

systematic risks. The papers in this area include but not limited to: Allen and Gale (2000), Freixas, Parigi,

and Rochet (2000), Furfine (2000), Leitner (2005) , Babus (2009), Zawadowski (2012). Babus and Allen

(2009) gives a comprehensive survey of this literature.
7There is also extensive policy related research in the BoE on the Sterling payment systems and the money

market. For example, Wetherilt, Zimmerman, and Soramaki (2010) document the network characteristics

during the recent crisis. Benos, Garratt, and Zimmerman (2010) find that banks make payments at a slower

pace after the Lehman failure. Ball, Denbee, Manning and Wetherilt (2011) examine the risks that intraday
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German banks’ behaviour in ECB’s repo auctions during June 2000 to December 2001 and

find that the rate a bank pays for liquidity depends on other banks’ liquidity and not just

its own. We follow this line of literature by empirically relating a bank’s reserve holding

decision to both its payment characteristics and the decisions of its neighbouring banks in

the overnight money market. To the best of our knowledge, we are the first to estimate the

spatial (network) effect of liquidity holding decisions.8

Our paper is also related to the network theoretical literature that utilizes the concept

of Katz-Bonacich centrality measure, see Katz (1953), Bonacich (1987), Jackson (2003),

and Ballester, Calvó-Armengol, and Zenou (2006). We depart from this literature by ana-

lyzing how bank-specific shocks translate into (larger or smaller) aggregate network risks.

Therefore, we are more related to the recent works on aggregate fluctuation generated by

networks (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2005); Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2012), and Kelly, Lustig, and Nieuwerburgh (2013)). There is also an

emergence of empirical work that links the concept of Katz-Bonacich centrality measure with

banks’s profitability (Cohen-Cole, Patacchini and Zenou (2010)), potenial key roles played

in risk transmission (See Aldasoro and Angeloni (2013) who motivate the use of the input-

output measures), and banks’ vulnerability (Greenwood, Landier and Thesmar (2012)). Our

work is also related to Li and Shürhoff (2012), that empirically analyses how centrality in

a dealer network affects pricing and liquidity provision, and Hautsch, Schaumburg, and

Schienle (2012) that considers a network of tail risk exposures in the U.S. financial system

and identifies the institution specific contribution to the overall financial system tail risk.

Our paper differs by providing a structural approach to estimate systemic liquidity level as

well as risk contributions among banks in the network.

The reminder of the paper is organized as follows. In Section II, we present and solve a

liquidity pose and suggest ways to ensure that regulation doesn’t lead banks to a bad equilibrium of delayed

payments.
8We want to point out that the liquidity in our paper refers to liquidity buffer stock held in the form

of reserves by banks rather than the links of the interbank network. There is also a large (but separate)

literature that studies the formation of the interbank borrowing-lending relationships. For example, Allen,

Carletti and Gale (2008) model liquidity hoarding among banks, i,e, the reduction in interbank lending, being

driven by an increase in aggregate uncertainty. Afonso and Lagos (2012) use a search theoretical framework

to study the interbank market and banks’ trading behaviour. Afonso, Kovner, and Schoar (2010) show that

counterparty risk plays a role in the fed fund market condition during the financial crisis in 2008. In our

paper, we study the impact of network externality on banks’ choices of liquidity buffer stocks, using the

interbank borrowing and lending relationship to measure the extent of network externality. We complement

this literature by considering an additional dimension to the liquidity formation in the interbank market.
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liquidity holding decision game in a network, and define key players in terms of level and risk.

Section III casts the equilibrium of the liquidity network game in the spatial econometric

framework, and outlines the estimation methodology. In Section IV, we describe the data,

the construction of the network, and the basic network characteristics throughout the sample

period. In Section V, we present and discuss the estimation results, and Section VI concludes.

II The Network Model

In this section, in order to study how aggregate liquidity risk is generated within the interbank

system, we present a network model of interbank liquidity holding decisions, where the

network reflects bilateral borrowing and lending relationships.

The network : there is a finite set of n banks. The network, denoted by g, is endowed

with a n-square adjacency matrix G where gii = 0 and gij �=i is the fraction of borrowing by

bank i from bank j. The network g is therefore weighted and directed.9 Banks i and j are

directly connected (in other words, they have a direct lending or borrowing relationship) if

gij or gji �= 0.

The matrix G is a (right) stochastic (hollow) matrix by construction, is not symmetric,

and keeps track of all direct connections – links of order one – among network players. That

is, it summarizes all the paths of length one between any pair of banks in the network.

Similarly the matrix Gk, for any positive integer k, encodes all links of order k between

banks, that is the paths of length k between any pair of banks in the network. For example,

the coefficient in the (i, j) cell of Gk – i.e.
{
Gk
}
ij
– gives the amount of exposure of bank

i to bank j in k steps. Since, in our baseline construction, G is a right stochastic matrix,

G can also be interpreted as a Markov chain transition Kernel, implying that Gk can be

thought of as the k step transition probability matrix, i.e. the matrix with elements given

by the probabilities of reaching bank j from bank i in k steps.

Banks and their liquidity preference in a network : We study the amount of liquidity

buffer stock banks choose to hold when they have access to this interbank borrowing and

lending network g. We define the total liquidity holding by bank i, denoted by li, as the sum

9We also explore other definition of the adjacency matrix where gij is either the sterling amount of

borrowing by bank i from bank j, or 1 (0) if there is (not) borrowing or lending between Bank i and j. Note

that, in this latter case, the adjacency matrix is unweighed and undirected. In the theoretical part of the

paper, we provide results and intuitions when G is right stochastic matrix. However, the results should be

easily extended with other forms of adjacency matrices with some restrictions on parameter values which we

will highlight when needed.
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of two components: bank i’s liquidity holding absent of any bilateral effects (i.e., the level of

liquidity that a bank would be holding if it were not part of a network), and bank i’s liquidity

holding level made available to the network, and that depends on its neighbouring banks’

liquidity contribution to the network. We use qi and zi to denote these two components

respectively, and li = qi + zi.

Before modelling the network effect on banks’ liquidity choice, we specify a bank’s liq-

uidity holding in absence of any bilateral effects related to its bank-specific as well as macro

variables as:

qi = αi +
M∑

m=1

βmx
m
i +

P∑
p=1

βpx
p (1)

where αi is bank fixed effect, xmi is a set ofM variables accounting for observable differences in

individual bank i, xp is a set of P variables controlling for time-series variation in systematic

risks. That is, qi captures the liquidity need specific to each individual bank due to its

balance sheet and fundamental characteristics (e.g. leverage ratio, lending and borrowing

rate), and its exposure to macroeconomic shocks (e.g. aggregate economic activity, monetary

policy etc.).

To study a bank’s endogenous choice of zi, that is, its liquidity holding in a banking

network, however, we need to model the various sources of bilateral effects. To do so, we

assume that banks are situated in different locations in the borrowing-lending network g.

Each bank decides how much liquid capital z to set aside simultaneously on g.

We assume that banks derive utility from having an accessible buffer stock of liquidity,

but at the same time they dislike the variability of this quantity. The accessible network

liquidity for bank i has two components: direct holdings, zi, and what can be borrowed

from other banks connected through the network. This second component is proportional

to the neighbouring banks direct holdings, zj, weighted by the borrowing intensities, gij,

and a technological parameter ψ, that is, ψ
∑

j gijzj. This component can be thought as

unsecured borrowing. The direct utility of this buffer stock of accessible liquidity for bank

i is μ̂i per unit. The term μ̂i captures the valuation (not necessarily positive) of a unit of

bank i’s accessible buffer stock of liquidity. It is specified as a random variable with bank-

specific mean and shock. The shock is independent across banks, but it is assumed to be

common knowledge. The formulation of μ̂i is intuitive. The bank-specific mean represents

the average bank i’s valuation of a unit of liquidity, while the bank-specific shock captures

how the bank’s valuation changes as a consequence of unexpected changes in the market

condition.
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We also assume that bank i derives an indirect utility benefit from its own holding of

liquidity, arising from a reduction of opportunity costs. Typically, setting liquidity aside im-

plies that banks have to forgo more high-interest-yielding long-term investments. However,

for each unit of liquidity it sets aside, bank i can also use it as a signal of its trustworthi-

ness to borrow from its neighbouring banks’ liquidity holdings zj for long-term investments.

This collateral/signal benefit is proportional to the borrowing capacity of the bank from

its neighbours and a technological parameter δ. The parameter δ reflects the reduction in

the collateral value as it travels in the network. This reduction could be due to transaction

costs such as haircut treatments etc. We hence parametrize the additional benefit of liq-

uidity holding as: δzi
∑

j gijzj, which can be thought as potential collaterallized borrowing.

We treat this collateralized liquidity differently as it can potentially be used for long-term

investments and hence lowers the opportunity cost of liquidity holding. In summary, the

valuation of liquidity for bank i in network g is modelled as:

μ̂i

(
zi + ψ

∑
j

gijzj

)
︸ ︷︷ ︸

Accesible Liquidity

+ ziδ
∑
j

gijzj︸ ︷︷ ︸
Collateralized Liquidity

However, by establishing bilateral relationships in the banking network g, a bank also

exposed itself to the shocks from its neighbouring banks. We assume that banks dislike the

volatility of their own liquidity and of the liquidity they can access given their links. Hence

the network liquidity risk faced by bank i is:(
zi + ψzi

∑
j �=i

gijzj

)2

.

Denoting the risk aversion parameter as γ > 0, we now can fully characterise bank i’s utility

from holding liquidity as:

ui(zi|g) = μ̂i

(
zi + ψ

∑
j

gijzj

)
− 1

2
γ

(
zi + ψ

∑
j �=i

gijzj

)2

+ ziδ
∑
j

gijzj (2)

The above has the same spirit as a mean-variance utility representation (with the addition of

a first order externality term). The bilateral network influences are captured by the following

cross derivatives for i �= j:

∂2ui (z|g)
∂zi∂zj

= (δ − γψ) gij

If δ > γψ, the above expression is positive, reflecting strategic complementarity in liquidity

holdings among neighbouring banks. The source of strategic complementarity in the model
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comes from the collateralize liquidity. When the neighbouring banks’ liquidity pool is large,

a bank can take more advantage of it with more collateral. This effect is reminiscent of the

leverage stack phenomenon in Moore (2012), where the interbank lending market is used

by individual banks to generate collateral that can then be used to raise more funds from

households. By comparison, banks in our paper are engaged in unsecured borrowing and

lending. Banks, which are more liquid, have greater access to borrowing from other banks,

some of which are then held as reserves as their balance sheets expand.

Conversely, if δ < γψ, the cross derivative is negative, reflecting strategic substitution

in liquidity holdings among neighbouring banks. That is, an individual bank sets aside a

smaller amount of liquid assets when its neighbouring lending banks have high liquidity level

which it can draw upon. The source of strategic substitutability the model comes from the

fact that banks dislike volatility in their accessible liquidity and prefers to hold less correlated

liquidity from their neighbouring banks. The strategic substitution effect has been modelled

extensively in the interbank literature ever since the seminal paper by Bhattacharya and

Gale (1987).10

The bilateral network effect in our model nests these two strategic effects. When γ is

relatively large, that is, when banks are averse to liquidity risks in the network, it is likely

that δ < γψ and the network exhibits strategic substitute behavior. When δ is relatively

large, the haircut is small and inside money velocity (i.e. the transactions value to holdings

ratio) is large and the collateral chains are long, it is likely that δ > γψ and the network

exhibits strategic complementary behavior. In our paper, we are agnostic about the the sign

of δ − γψ and estimate it empirically.

Equilibrium behaviour: We now characterize the Nash equilibrium of the game where

banks choose their liquidity level z simultaneously. Each bank i maximizes (2) and we

obtain the following best response function for each bank:

z∗i =
μ̂i

γ
+

(
δ

γ
− ψ

)∑
j

gijzj = μi + φ
∑
j

gijzj (3)

where φ := δ/γ−ψ and μi := μ̂i/γ =: μ̄i+νi. The parameter μ̄i denotes the average valuation

of liquidity by bank i scaled by γ, and νi denotes the i.i.d. shock of this normalized valuation,

and its variance is denoted by σ2
i . Note that μ̄i will be positive for banks that, on average,

10Bhattacharya and Gale (1987) show that banks’ liquidity holdings are strategic substitutes for a different

reason. In their model, setting liquidity aside comes at a cost of forgoing higher interest revenue from long-

term investments. Banks would like to free-ride their neighbouring banks for liquidity rather than conducting

precautionary liquidity saving themselves.
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contribute liquidity to the network, while a large negative μ̄i will characterize banks that,

on average absorb liquidity from the system.

Proposition 1 Suppose that |φ| < 1. Then, there is a unique interior solution for the

individual equilibrium outcome given by

z∗i (φ, g) = {M (φ,G)}i. μ, (4)

where {}i. is the operator that returns the i-th row of its argument, μ := [μ1, ..., μn]
′, zi

denotes the bilateral liquidity holding by bank i, and

M (φ,G) := I+ φG+ φ2G2 + φ3G3 + ... ≡
∞∑
k=0

φkGk = (I− φG)−1 . (5)

where I is the n× n identity matrix.

Proof. Since γ > 0, the first order condition identifies the individual optimal response.

Applying Theorem 1, part b, in Calvo-Armengol, Patacchini, and Zenou (2009) to our prob-

lem, the necessary equilibrium condition becomes |φλmax (G)| < 1 where the function λmax (·)
returns the largest eigenvalue. Since G is a stochastic matrix, its largest eigenvalue is 1.

Hence, the equilibrium condition requires |φ| < 1, and in this case the infinite sum in equa-

tion (5) is finite and equal to the stated result (Debreu and Herstein (1953)).

To roughly reproduce the proof, note that a Nash equilibrium in pure strategies z∗ ∈ R
n,

where z := [z1, ..., zn]
′, is such that equation (3) holds for all i = 1, 2, ..., n. Hence, if such an

equilibrium exists, it solves

(I− φG) z = μ.

Inverting the matrix, we obtain z∗ = (I− φG)−1 μ ≡ M (φ,G)μ. The rest follows by simple

algebra. The condition |φ| < 1 in the above proposition states that network externalities

must be small enough in order to prevent the feedback triggered by such externalities to

escalate without bounds.

The matrix M (φ,G) characterising the equilibrium has an important economic interpre-

tation: it aggregates all direct and indirect links among baks using an attenuation factor,

φ, that penalizes (as in Katz (1953)) the contribution of links between distant nodes at the

rate φk, where k is the length of the path between nodes. In the infinite sum in equation

(5), the identity matrix captures the (implicit) link of each bank with itself, the second term

in the sum captures all the direct links between banks, the third term in the sum captures

all the indirect links corresponding to paths of length two, and so on. The elements of the
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matrix M(φ,G), given by mij(φ,G) :=
∑+∞

k=0 φ
k
{
Gk
}
ij
, aggregates all the exposures in the

network of i to j, where the contribution of the kth step is weighted by φk.

In equilibrium, the matrix M (φ,G), contains the relevant information needed to charac-

terize the centrality of the players in the network. That is, it provides a metric from which

the relevant centrality of the network players can be recovered. In particular, multiplying the

rows (columns) of M (φ,G) by a vector of appropriate dimensions, we recover the indegree

(outdegree) Katz-Bonacich centrality measure.11 The indegree centrality measure provides

the weighted count of the number of ties directed to each node, while the outdegree centrality

measure provides the weighted count of ties that each node directs to the other nodes. That

is, the i-th row of M (φ,G) captures how bank i loads on the network as whole, while the

i-th column of M (φ,G) captures how the network as a whole loads on bank i.

Moreover, as equation (4) shows, the matrix M (φ,G), jointly with the vector μ contain-

ing banks’ valuation of network liquidity, fully determines the equilibrium bilateral liquidity

holding of each bank in a very intuitive manner. First, z∗i is increasing in bank i’s own

valuation of network liquidity (μi). Second, when banks’ valuations of bilateral liquidity are

non-negative (i.e. μi ≥ 0 ∀i), the larger (smaller) is φ, the larger (smaller) is the bilateral

liquidity of each bank. This is due to the fact that, when φ is large, the benefits of using

collateralised liquidity in the network are also large (as long as other agents provide liquidity

in the network, and this always happens when μi ≥ 0 ∀i). This also implies that z∗i is

increasing in δ (the parameters measuring the benefit of collateralised liquidity), decreasing

in ψ (since the higher is ψ, the more each bank can free ride on other banks’ buffer stock of

liquidity), and decreasing in γ (since the higher is γ, the more each bank dislikes the volatil-

ity of network liquidity). Third, when φ is positive (i.e. when the liquidity holding decision

of banks is a strategic complement), z∗i is also nondecreasing in other banks’ valuation of

network liquidity (μj �=i). This is due to the fact that, when other banks’ valuation of liquid-

ity increases, their supply of liquidity in the network increases too, and this in turn, when

φ ≡ δ − ψγ > 0, has a larger impact on the benefits of collateralised liquidity (controlled by

δ) than on the incentives to free ride on other banks’ liquidity (controlled by ψ) and on the

disutility coming from the increased volatility of network liquidity (controlled by γ).

Equilibrium properties: We can decompose the network contribution to the total bilateral

liquidity into level and risk effect. To see this note that the total bilateral liquidity, Z :=

11Newman (2004) shows that weighted networks can in many cases be analyzed using a simple mapping

from a weighted network to an unweighted multigraph. Therefore, the centrality measures developed for

unweighted networks apply also to the weighted cases.
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∑
i zi, can be written at equilibrium as:

Z∗ = 1′M (φ,G) μ̄︸ ︷︷ ︸
level effect

+ 1′M (φ,G) ν︸ ︷︷ ︸
risk effect

(6)

where μ̄ := [μ̄1, ..., μ̄n]
′, ν := [ν1, ..., νn]

′, the first component captures the network level

effect, and the second component captures the network risk effect. It is clear that, if μ̄ has

only positive entries, both the network liquidity level and liquidity risk are increasing in φ.

That is, a higher network multiplier leads the interbank network to produce more liquidity

and also generate more risk.

The equilibrium solution in equation (6) implies that bank i’s marginal contribution to

the volatility of aggregate liquidity can be summarised as:

∂Z∗

∂νi
σi = 1′ {M (φ,G)}.i σi =: bouti (φ,G) (7)

The above expression is the outdegree centrality for bank i weighted by the standard deviation

of its own shocks. Moreover, the volatility of the aggregate liquidity level in our model is:

V ar(Z∗ (φ,G)) = vec
({
bouti (φ,G)

}n
i=1

)
vec
({
bouti (φ,G)

}n
i=1

)′
(8)

= 1′M (φ,G) diag(
{
σ2
i

}n
i=1

)M (φ,G)′ 1. (9)

Therefore, equation (7) provides a clear ranking of the riskiness of each bank from a

systemic perspective. This allows to the define the systemic risk key player as follows.

Definition 1 [Risk key player] The risk key player i∗, given by the solution of

i∗ = argmax
i=1,...,n

bouti (φ,G) ,

is the one that contributes the most to the volatility of the overall network liquidity.

Similarly, we can identify the bank that may cause the expected maximum level of re-

duction in the network liquidity when removed from the system.12

Definition 2 [Level key player] The level key player is the player that, when removed,

causes the maximum expected reduction in the overall level of bilateral liquidity. We use

G\τ to denote the new adjacency matrix by setting to zero all of G’s τ -th row and column

coefficients. The resulting network is g\τ .

12This definition is in the same spirit as the concept of the key player in the crime network literature as

defined in Ballester, Calvo-Armengol, and Zenou (2006). There, it is important to target the key player

for maximum crime reduction. Here, it is useful to consider the ripple effect on the network liquidity when

a bank fails. Bailouts for key level players might be necessary to avoid major disruptions to the banking

network.
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In this definition, we assume that when the player τ is removed, the remaining other

banks do not form new links. In this definition, the level key player is the one with the

largest impact on the total expected bilateral liquidity. Therefore, the level key player τ ∗ is

found by solving

τ ∗ = argmax
τ=1,...,n

E

[∑
i

z∗i (φ, g)−
∑
i �=τ

z∗(φ, g\τ )

]
(10)

where E defines unconditional expectations. Using Proposition 1 we have the following

corollary.

Corollary 1 A player τ ∗ is the level key player that solves (10) if and only if

τ ∗ = argmax
τ=1,...,n

{M(φ,G)}τ.μ̄+
∑
i �=τ

miτ (φ,G)μ̄τ .

To see this, note that if bank τ is removed, the expected reduction in the total bilateral

liquidity can be written as:

E

[∑
i

z∗i (φ, g)−
∑
i �=τ

z∗(φ, g\τ )

]
= {M(φ,G)}τ.μ̄+

∑
i �=τ

miτ (φ,G)μ̄τ

= {M(φ,G)}τ.μ̄︸ ︷︷ ︸
Indegree effect

+1′{M (φ,G)}.τ μ̄τ︸ ︷︷ ︸
Outdegree effect

− mττ (φ,G)μ̄τ︸ ︷︷ ︸
double count correction

(11)

Basically, a removal of the level key player results in a direct effect on its own (the first

term in (11)) and an indirect bilateral effect on other banks’ liquidity reduction (the second

term in (11)).

Instead of being the bank with largest amount of liquidity buffer stocks, the level key

bank, according to Corollary 1, is the bank with the largest expected contribution to its

own and as well as its neighbouring banks’ liquidity. This discrepancy exists because, in

the decentralized equilibrium, each bank does not internalize the effect of its own liquidity

holding level on the utilities of other banks in the network, that is, does not internalize its

choice of liquidity on other banks’ liquidity valuation. A relevant metric for a planner to

use when deciding when deciding whether to bail out a failing bank, therefore, should not

be based on the size of the bank’s own liquidity solely, but also include its indirect network

impact on other banks’ liquidity.

This discussion leads us to analyze formally a planner’s problem in this networked econ-

omy. A planner that equally weights all banks’ utility chooses the network liquidity by
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solving the following problem:

max
{zi}ni=1

n∑
i=1

⎡
⎣μ̂i

(
zi + ψ

∑
j �=i

gijzj

)
+ ziδ

∑
j �=i

gijzj − 1

2
γ

(
zi + ψ

∑
j �=i

gijzj

)2
⎤
⎦ . (12)

The first order condition with respect to zi yields:

zi = μi + φ
∑
j �=i

gijzj︸ ︷︷ ︸
decentralized f.o.c.

+ ψ
∑
j �=i

gjiμj︸ ︷︷ ︸
neighbors’ idiosyncratic

valuations of own liquidity

+ φ
∑
j �=i

gjizj︸ ︷︷ ︸
neighbors’ indegree links

i.e. own outdegree

− ψ2
∑
j �=i

∑
m �=j

gjigjmzm︸ ︷︷ ︸
volatility of neighbors’

accessible network liquidity

(13)

In the above equation, the first two terms are exactly the same as in the decentralize case,

while the last three terms reflect that the fact that planner internalizes a bank’s contribution

to its neighbouring banks’ utilities. The third element captures the neighbours’ idiosyncratic

valuation of the liquidity provided by agent i. The fourth term reflects bank i’s contribution

to its neighbouring banks’ endogenous valuation of network liquidity. The fifth term reflects

bank i’s contribution to the volatility of the network liquidity accessible by neighbouring

banks.

Rewriting equation (13) in matrix form, we obtain

z = (I+ ψG′)μ+P (φ, ψ,G) z

where P (φ, ψ,G) := φ
(
G+G

′)− ψ2G′G. This allows us to state the following result.

Proposition 2 Suppose |λmax (P (φ, ψ,G))| < 1. Then, the planner’s optimal solution is

uniquely defined and given by

zpi (φ, ψ, g) =
{
MP (φ, ψ,G)

}
i.
μ, (14)

where MP (φ, ψ,G) := [I−P (φ, ψ,G)]−1 (I+ ψG′).

Proof. Follows the same argument as in the proof of Proposition 1.

The planner’s optimal solution for the aggregate network liquidity and liquidity risk

follows from the decentralized solution:

ZP = 1′MP (φ, ψ,G) μ̄+ 1′MP (φ, ψ,G) ν (15)

V ar
(
ZP (φ, ψ,G)

)
= 1′MP (φ, ψ,G) diag(

{
σ2
i

}n
i=1

)MP (φ, ψ,G)′ 1. (16)

It is immediate that the planner’s solution does not coincide with that of the decentralized

equilibrium outcome as stated in the following lemma.
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Lemma 1 Let H := φG′ − ψ2G′G. Then, the aggregate bilateral liquidity in the planner’s

solution can be expressed as

ZP = Z∗ + 1′ [ψMG′ +MHM (I−HM)−1 (I+ ψG′)
]
(μ̄+ ν) (17)

where Z∗ denotes aggregate bilateral liquidity in the decentralized equilibrium in equation (6)

and M := M (φ,G). Moreover, if H is invertible, we have

ZP = Z∗ + 1′
[
ψMG′ +M

(
H−1 −M

)−1
M (I+ ψG′)

]
(μ̄+ ν) . (18)

Proof. Observing that MP (φ, ψ,G) ≡ [M (φ,G)−1 − φG′ + ψ2G′G
]−1

(I+ ψG′), the

results above follow from the Woodbury matrix identity (see e.g. Henderson and Searle

(1981)).

To see clearly what drives the difference between the aggregate network liquidity in the

decentralized equilibrium (Z∗) and in the planner’s solution (ZP ), we rewrite (14) as

zP = z∗ +M (φ,G)

⎡
⎣ψG′μ+

⎛
⎝ φG

′︸︷︷︸
outdegree

− ψ2G′G︸ ︷︷ ︸
second-order

⎞
⎠ zP

⎤
⎦ (19)

where the second to the last term reflects network nodes’ outdegree centrality, that is, con-

tribution to neighbouring nodes’ indegree centrality and hence their network liquidity pro-

duction level; and the last term reflects network nodes’ second-order degree centrality, that

is, contribution to their neighbouring nodes’ indirect volatility.13 Therefore, the discrepancy

between the planner’s optimum and the equilibrium outcome rests upon the planner’s trade-

off of the liquidity level and liquidity risk in the network. When the planner cares more

about the level of liquidity production than the liquidity risk in the network, the second

term is more pronounced relative to the last term. In this case, banks that have higher

outdegree centralities tend to hold less than the socially optimal amount of liquidity. Plan-

ner might subsidise or inject liquidity to these banks to increase the liquidity generated by

the network. Conversely, when planner cares more about the liquidity risk in the network,

banks that have higher second-degree centralities tend to hold more than the socially opti-

mal amount of liquidity. Planner might impose tax on these banks to reduce the risk in the

banking network.

III Empirical Methodology

In order to estimate the network model presented in Section II, we need to map the observed

total liquidity holding of a bank at time t, li,t, into its two components – the idiosyncratic

13Note that the term φG′ − ψ2G′G vanishes only in the unlikely case of φ
ψ2 being an eigenvalue of G.
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and the network ones – identified in equations (1) and (4) respectively. This can be done by

reformulating the theoretical model as a spatial error model (SEM). That is, we decompose

the total bank liquidity holding into a function of observables and an error term that captures

the spatial dependence generated by the network:

li,t = μ+ αtime
t + αbank

i +
M∑

m=1

βbank
m xmi,t +

P∑
p=1

βtime
p xpt + εi,t (20)

εi,t = φ

n∑
j=1

gi,j,tεj,t + νi,t ∼ iid
(
0, σ2

i

)
, i = 1, ..., n, t = 1, ..., T. (21)

The only differences between the theoretical model and the econometric reformulation above

are that: i) we have made explicit that one of the aggregate factors is a set of common

time dummies, αtime
t , meant to capture potential trends in the overall interbank market

size; ii) we allow the network links, gi,j, to potentially vary over time (but we construct

them, as explained in the data description section below, in a fashion that makes them

pre-determined with respect to the time t information set);14 iii) we have replaced zi with

its demeaned counterpart, εi, since the bank fixed effect cannot be generally decomposed

into its network and non-network components. The βbank
m coefficients capture the effect of

observable bank characteristics while the βtime
p coefficients capture the effect of systematic

risk factors on the liquidity choice. Equation (21) describes the process of εi, which is the

residual of individual bank i’s level of liquidity in the network that is not due to bank

specific characteristics or systematic factors. Here,
∑n

j=1 gi,j,tεj,t is the spatial lag term and

φ is the spatial autoregressive parameter. Consistent with the theoretical model, the spatial

dependence is incorporated in the regression disturbance term only. This model is a variation

of the Anselin (1988) spatial error model (see also Elhorst (2010a, 2010b)).

The above specification makes clear the nature of the network as a shock propagation

mechanism: the shock to any bank liquidity, εi,t, is a function of all the shocks to other

banks liquidity; the intensity of the shock spillover is a function of the intensity of the

network links across banks captured by the network weights gi,j; and wether the network

amplifies or dampens the effect of the individual liquidity shocks on aggregate liquidity

depends, respectively, on whether the banks in the network act as strategic complements

(φ > 0) or strategic substitutes (φ < 0).

To illustrate this last point note that the vector of shocks to all banks at time t can be

14To allow for potential time variation in φ instead we also perform estimations in subsamples and over a

rolling window.

18



rewritten as

εt = (I− φGt)
−1 νt ≡ M (φ,Gt) νt (22)

where εt = [ε1,t, ..., εn,t]
′ and νt = [ν1,t, ..., νn,t]. This implies that if Gt is a right stochastic

matrix15 (and this is the case when we model the network weights gi,j as the fraction of

borrowing by bank i from bank j) we have that a unit shock to the system equally spread

across banks (i.e. νt = (1/n)1) would imply a total change in aggregate liquidity equal to

(1− φ)−1 – that is, φ captures the network multiplier effect of liquidity shocks.

Moreover, Equation (22) implies that any time variation in the network structure, G, or

in the network multiplier, 1/ (1− φ), would results in time variation in the volatility of total

liquidity since the variance of the shocks to total network liquidity (1′εt) is

V art (1
′εt) = 1′M (φ,Gt) ΣνM (φ,Gt)

′ 1.

where we used the fact that Gt is pre-determined with respect to the time t information

and Σv = E [νtν
′
t] is the a diagonal matrix with the variances of the idiosyncratic shocks,

{σ2
i }ni=1, on the main diagonal.

As outlined in Section A.2 of the Appendix, we can estimate the parameters of the Spatial

Error Model jointly using a quasi-maximum likelihood approach. In order to elicit time

variation in the network coefficient φ, we perform subsample and rolling window estimates.

The estimation frequency is daily, with lagged monthly update of the network matrix Gt.

An estimation issue for network models, is the well-known reflection problem (Manski

(1993)): the neighbouring banks’ liquidity holding decision affects each others so that we

cannot distinguish if a given bank’s action is the cause or the effect of neighbouring banks’

actions. To address this problem, Bramoullé, Djebbari and Fortin (2009) have shown that

the network effect can be identified if there are two nodes in the network with different

average connectivities of their direct connected nodes, and this is a condition satisfied in our

data.

As a model specification test of our theory driven SEM formulation, we also consider

a more general specification that allows for a richer set of network interactions. That is,

we model liquidity holding as a Spatial Durbin Model (SDM – see e.g. LeSage and Pace

15If Gt is a right stochastic matrix, we have that Gt1 = 1, therefore

1=(I− φGt)
−1

(I− φGt)1 = (I− φGt)
−1

1 (1− φ) =⇒ M (φ,Gt)1 =(1− φ)
−1

1.
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(2009)) where bank specific liquidity is allowed to depend directly on other banks liquidity

and characteristics, and pairwise control variables:

li,t = μ+ αtime
t + αbank

i +
M∑

m=1

βbank
m xmi,t +

P∑
p=1

γtime
p xpt+ (23)

+ ψ

n∑
j=1

gi,j,tlj,t +
n∑

j=1

gi,j,txi,j,tθ + νi,t ∼ iid
(
0, σ2

i

)
.

where xi,j,t denotes match specific control variables and the characteristics of other banks.

The above formulation allows for a specification these of our structural model since restricting

θ = 0, and setting xi,j,t := vec(xmj �=i,t)
′, θ = −φvec(βbank

m ), γtime
p = (1− φ)βtime

p ∀p, and most

importantly ψ = φ, we are back to the SEM specification. These restrictions will be tested

formally in Section V.

With the SEM estimated parameter at hand, we can also identify the risk key players of

the interbank liquidity market. To do so we define the network impulse-response function

as follows.

Definition 3 Network Impulse-Response Function. Let Lt ≡ 1′lt = [l1t, ..., lNt] denote total

liquidity in the interbank network. The network impulse-response function of total liquidity,

Lt, to a one standard deviation shock to a given bank i is given by

NIRFi (φ, σi) ≡ ∂Lt

∂νi,t
σi = 1′ {M (φ,Gt)}.i σi (24)

where the operator {}.i returns the i-th column of its argument.

The network impulse-response is identical to the outdegree centrality of bank i defined in

Equation (7). Note that NIRFi (φ, 1) is smaller or bigger than 1 depending on whether φ is

positive or negative – that is, if φ > 1 (< 1) individual bank shocks are amplified (reduced)

through the system.

The network impulse-response provides a metric to identify which bank’s shocks have

the largest impact on the overall liquidity. Moreover, it does so accounting for both the size

of the bank (via σi), the network multiplier, φ, and all the direct and indirect links among

banks since 1′ {M (φ,Gt)}.i is the solution, for |φ| < 1, of

1′ {M (φ,Gt)}.i = 1′ {I+φGt + φ2G2
t + ...

}
.i
= 1′
{ ∞∑

k=0

φkGk
t

}
.i

where the first element in the series captures the direct effect of a unit idiosyncratic shock

to bank i, the second element captures the effects through the first order network links, the
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third elements captures the effect through the second order links and so on. This also implies

that M (φ,Gt)ji measures the total (direct and indirect) effect of a shock to bank i on the

liquidity of bank j.

The network impulse-response functions also provide a natural decomposition of the

variance of total liquidity in the network system since

V art (1
′εt) ≡ vec ({NIRFi (φ, σi)}ni=1)

′
vec ({NIRFi (φ, σi)}ni=1) .

We can also isolate the purely network part of the impulse-response function, that is, the

liquidity effect in excess of the direct effect of a shock to a bank as

NIRF e
i (φ, σi) ≡ NIRFi (φ, σi)− σi = 1′ {(I− φGt)

−1 φGt

}
.i
σi, (25)

and the above, setting σi = 1, i.e. considering a unit shock, is exactly the Katz (1953)

centrality measure. Note that NIRF e
i (φ, σi) has by construction the same sign as φ.

Moreover, it is straightforward to compute confidence bands for the estimated network

impulse-response functions, since they are simply a function of the distribution of φ̂, and

φ̂− φ0 has a known asymptotic Gaussian distribution (see Section A.3 in the Appendix).

IV Network and Other Data Description

We study the sterling interbank network over the sample period January 2006 to September

2010. The estimation frequency is daily, but we also use higher frequency data to construct

several of the control variables defined below. The network of banks we consider is constituted

by the banks in the CHAPS system during the sample – a set of 11 banks. These banks play

a key role in the Sterling large value payment system since they make payments both on

their own behalf and on behalf of banks that are not direct members of CHAPS. The banks

in the network are: Halifax Bank of Scotland (owned by Lloyds Banking Group); Barclays;

Citibank (the consumer banking arm of Citigroup); Clydesdale (owned by National Australia

Bank); Co-operative Bank (owned by The Co-operative Group); Deutsche Bank; HSBC

(that incorporated Midland Bank in 1999 – one of the historical “big four” Sterling clearing

banks16); Lloyds TSB; Royal Bank of Scotland (including Natwest); Santander (formerly

16During most of the 20th Century the phrase “Big Four” referred to the four largest Sterling banks that

acted as clearing houses for bankers cheques. These were: Barclays Bank; Midland Bank (now part of HSBC

); Lloyds Bank (now Lloyds TSB Bank and part of Lloyds Banking Group); and National Westminster Bank

(“NatWest”, now part of The Royal Bank of Scotland Group). Currently, the largest four UK banks are
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Abbey, Alliance & Leicester and Bradford & Bingley, owned by Banco Santander of Spain);

Standard Chartered.

We split our sample into 3 periods: Pre-crisis period: 1 January 2006 to 9 August 2007;

Post Northern Rock/ Hedge Fund Crisis: 10 August 2007 to 19 September 2009; Post Asset

Purchase Programme: 20 September 2009 to 30 September 2010. This is explained in more

detail below.

Our proxies for the intensity of network links are the interbank overnight borrowing

relations. This data is extracted from payment systems data by applying an algorithm

developed by Furfine (2000). This is an approach which is common to most papers on the

interbank money market. The algorithm identifies pairs of payments between two payment

system counterparties where the outgoing payment (the loan) is a multiple of 100,000 and

the incoming payment (the repayment) happens the following day and is equivalent to the

outgoing payment plus a plausible interest rate. This algorithm has been tested heavily and

accurately tracks the LIBOR rate in aggregate. Furfine (2000) showed that the algorithm

accurately identifies the Fed Funds rate when applied to Fedwire data.

The data are not perfect. They are inferred data so it is possible that there are some

erroneous matches or that some loans are missing. We have no reason to expect this to

introduce systematic bias into the data. It is also necessarily incomplete. The data are only

for banks which are participants in the payment systems. This creates two problems. First,

some loans may be attributed to the settlement bank involved when in fact the payments

are made on behalf of one of their customers. Second, where a loan is made between one

customer of a settlement bank and another, this transaction will not be settled through the

payment system but rather across the books of the settlement bank. This is a process known

as internalisation Internalised payments are invisible to the central bank, so they are a part

of the overnight money market that will not be captured.

The loan data are compiled to form an interbank lending and borrowing network. In

particular, the adjacency matrix Gt has elements gi,j,t given by the fraction of bank’s i

overnight loans from bank j. The weights at time t are computed as monthly averages in

the previous month.

By construction Gt is a square right stochastic matrix. Its largest eigenvalue is therefore

equal to one. This implies that the potential propagation of shocks within the system will

Barclays, HSBC, Lloyds Banking Group and The Royal Bank of Scotland Group (with a combined market

capitalization of more than £254bn) closely followed by Standard Chartered (with a market cap of over

£37bn) – and all of these banks are part our network.
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be dominated by the second largest eigenvalue of the adjacency matrix.17 The time series of

the second largest eigenvalue of Gt is reported in Figure 1. The figure shows a substantial

increase of the eigenvalue in the aftermath of the Northern Rock/Hedge Fund Crisis period

(September 2007), but what is striking is the post Quantitative Easing period that seems to

be characterized by a substantial increase in the volatility of the network links.

Figure 1: Second largest eigenvalue of Gt.

One way to characterize time variation in the cohesiveness of the network is to look at

the behaviour of the Average Clustering Coefficient (ACC – see Watts and Strogatz (1998))

defined as

ACCt =
1

n

n∑
i=1

CLi(Gt),

CLi,t =
#{jk ∈ Gt | k �= j, j ∈ ni(Gt), k ∈ ni(Gt)}

#{jk | k �= j, j ∈ ni(Gt), k ∈ ni(Gt)}
where ni(Gt) is the set of players between whom and player i there is a direct link. The

numerator of CLi,t is the number of pairs of banks linked to i that are also linked to each

other, while its denominator is simply the number of pairs of banks linked to i. Therefore, the

average clustering coefficient measures the average proportion of banks that are connected

to bank i who are also connected to each other. By construction this value ranges from 0

to 1. The time series of the ACC is reported in Figure 2. The figure shows that at the

17Since Gk can be rewritten in Jordan normal form as PJkP−1 where J is the (almost) diagonal matrix

with eigenvalues (or Jordan blocks in case of repeated eigenvalues) on the main diagonal.
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beginning of the sample the network is highly cohesive since, on average, around 80% of the

pairs of banks connected to any given bank are also connected to each other.

Figure 2: Average clustering coefficient of the interbank network.

The degree of connectedness seems to have a trend reduction during 2007-2008, and a

substantial and sudden reduction following the Asset Purchase Programme when the average

clustering coefficient gets reduced by about a quarter of its pre-crises average. This might be

the outcome of reduced interbank borrowing needs during the Quantitative Easing thanks

to the availability of additional reserves from the Bank of England (combined with a move

towards increased collateralisation of borrowing and an overall deleveraging of banksbalance

sheets).18 This interpretation is consistent with Figure 3 that depicts the (rolling monthly

average of) daily gross overnight borrowing in the interbank network. The data record

a substantial increase in overnight borrowing as initial response to the financial market

turmoil, possibly caused by a shift toward very short borrowing due to increased difficulties

in obtaining long term financing (Wetherilt, Zimmerman, and Soramaki (2010)) , and a

substantial decrease in overnight borrowing after the beginning of Quantitative Easing.

To measure the dependent variable li,t, that is, the liquidity holding of each bank, we use

central bank reserve holdings. We supplement this with collateral that is repo’ed with the

Bank intraday in return for intraday liquidity to get a full picture of a bank’s most liquid

assets. These repos are unwound at the end of each working day. For robustness, we also

18See Westwood (2011), ‘The Money Market Liaison Group Sterling Money Market Survey’, Bank of

England Quarterly Bulletin: 51(3).

24



Figure 3: Daily gross overnight borrowing in the interbank network (rolling monthly average).

analyze separately the behaviour of each of these two liquidity components. The weekly

average of the total liquidity in the system is reported in Figure 4. The figure depicts a

substantial upward trend in the available liquidity in the post Subprime Default subsample

and during the various financial shocks registered in the 2008-2009 period, consistently with

the evidence of banks hoarding liquidity in response to the financial crisis, but this upward

trend is dwarfed by the steep run up registered in response to the Asset Purchase Programme

(aka Quantitative Easing) that has almost tripled the average liquidity in the system.

In addition to common monthly time dummies, meant to capture common time effects,

and bank fixed effects, meant to capture unobserved heterogeneity, we use a large set of

aggregate (xpt ) and bank specific ( xmi,t) control variables. Note that since in the econometric

specification in equations (20) and (21) the network effects are elicited through their contri-

bution to the residuals, a potential overfitting of banks’ liquidity choice through observable

variables is a conservative approach.

Aggregate Control Variables (xpt ): All the common control variables, meant to capture

aggregate market conditions, are lagged by one day so that they are predetermined with

respect to time t innovations. To control for aggregate market liquidity condition we use

the total liquidity in the previous day. The proxy for the overall cost of funding liquidity

we use the lagged LIBOR rate and the interbank rate premium (computed as the difference

between the overnight interest rate and the LIBOR rate).

Since banks’ holding decision of liquidity is likely to be influenced by the volatility of
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Figure 4: Weekly average of aggregate liquidity available at the beginning of the day.

their daily payment outflows, we construct a measure of the intraday payments volatility

defined as

V olPayt =

√√√√ 1

88

88∑
τ=1

(
P out
t,τ

)2
(26)

where P out denotes payment outflows and 88 is the number of time intervals within a day.

The time series of this variable is reported in Figure 5 and it is characterized by a strong

upward trend before the subprime default crisis, and a distinctively negative trend during

the period of financial turmoil preceding the beginning of QE. During the QE period instead

this variable has no clear trend but is characterized instead by a substantial increase in

volatility.

We also control for the turnover rate in the payment system (see Benos, Garratt, and

Zimmerman (2010)). This variable is constructed as

TORt =

∑N
i=1

∑88
τ=1 P

out
i,t,τ∑N

i=1 max
{
maxτ∈[1,88] [CNP (τ ; i, t)] , 0

}
where the cumulative net debit position (CNP) is defined as the difference between payment

outflows and inflows. The numerator captures the total payments in the system in a day,

while the denominator is the sum of the maximum net debt positions of all banks in a given

day. This variable is meant to capture the velocity of transactions within the interbank

system and its time series is reported in Figure 10 of Appendix A.5, and indicates an increased
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Figure 5: Intraday volatility of aggregate outflows.

turnover during the financial turmoil, followed by a reduction to levels below the historical

average during the QE period.

Since banks have some degrees of freedom in deciding the timing of their intraday out-

flows, we control for the right kurtosis19 (rKt) of intraday payment times. The time series

of this variable is reported in Figure 11 of Appendix A.5 and shows a substantial increase

during the QE period.

Bank Characteristics (xmi,t): As for the aggregate control variables, all bank characteristic

variables are lagged so that they are predetermined with respect to time t innovations.

Despite the fact that we control for aggregate interest rates (LIBOR and average overnight

borrowing rate), we also control for the bank specific overnight borrowing rate (computed as

the average weighted by the number of transactions). We include these variables (reported

19We define as right (rKt) and left (lKt) kurtosis the fractions of kurtosis of payments times generated by

payments times that are, respectively, above and below the average payment time of the day:

rKt =

∑
τ>ms

( τ−mt

σt
)4∑88

τ=1(
τ−mt

σt
)4

; lKt =

∑
τ<mt

( τ−mt

σt
)4∑88

τ=1(
τ−mt

σt
)4

;

where mt and σt are defined as

mt =
1

88

88∑
τ=1

τ

(
POUTt,τ∑T
t=1 P

OUT
t,τ

)
, σ2

t =
1

88− 1

88∑
τ=1

[
τ

(
POUTt,τ∑88
t=1 P

OUT
t,τ

)
−mt

]2
.
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in Figure 12 of Appendix A.5) because in response to both the Northern Rock and Lehman

Brothers collapses there is a substantial increase in the cross-sectional dispersion of the

overnight borrowing rates, and this increase in dispersion persists during the QE period (see

Figure 13 of Appendix A.5). We also control for: bank specific right kurtosis of the time of

intraday payments in (rKin
i,t , to capture a potential incentive to increase bank liquidity) and

out (rKout
i,t , since banks in need of liquidity might have an incentive to delay their outflows);

the intraday volatility of the used liquidity (V olPayi,t, defined as in equation (26) but using

bank specific flows); the total amount of intraday payments (LevPayi,t ≡
∑88

τ=1 P
out
i,t,τ ); the

liquidity used (LUi,t) as defined in Benos, Garratt, and Zimmerman (2010);20 the repo

liabilities to total assets ratio; the cumulative change in retail deposits to total asset ratio;

the total lending and borrowing in the interbank market; the cumulative change in the 5-year

senior unsecured credit default swap (CDS) premia; a dummy variable for the top four banks

in terms of payment activity.

V Estimation Results

As a first empirical exercise, we estimate our empirical network model specified in equa-

tions (20) and (21) using three subsamples of roughly equal size. These are the pre North-

ern Rock/Hedge Fund Crisis period (Period 1), the period immediately after the Northern

Rock/Hedge Fund Crisis but before the announcement of the Assets Purchase Programme

(Period 2), and the period running from the announcement of the Assets Purchase Pro-

gramme to the end of the sample. We split our sample in these three parts since a) they

correspond to very different overall market conditions, and b), as documented in Section IV,

the network structure and behaviour seem to change substantially in these sub-periods.

Period 1 corresponds to a relatively tranquil period for the banking sector. Period 2 is

characterized by several significant events in world financial markets such as: the run on

Northern Rock (the first U.K. bank run for 150 years), the subprime mortgage hedge fund

crisis, the Federal Reserve intervention in Bear Stearns and its subsequent sale to JP Morgan

Chase and the bankruptcy of Lehman Brothers. Period 3 is characterized by a real regime

20Liquidity used on day t is defined as

LUi,t = max{ max
τ∈[1,88]

[CNP (τ ; i, t)], 0}.
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shift – the beginning of Quantitative Easing – in U.K. monetary policy.21 Estimation results

for these three subsamples are reported in Table 1.

The first row of the Table reports the estimates of the network coefficient φ. Recall that a

φ > 0 (< 0) implies that banks acts as strategic complements (substitutes) in their liquidity

holding decisions and that this tends to amplify (reduce) the effect of bank specific liquidity

shocks. In the first period the point estimate of this coefficient is about 0.64 (and highly

significant) indicating the presence of a substantial multiplier network multiplier effect for

liquidity shocks: a £1 shock idiosyncratic shock equally spread across banks would results

in a 1/
(
1− φ̂

)
= £2.8 shock to aggregate liquidity.22 In the second period, the φ coefficient

is still highly significant but it is substantially reduced in magnitude to 0.166 implying weak

complementarity with an (average) shock multiplier of about 1.2. This finding suggests that

in response to the turbulences in the financial market that have characterize Period 2, the

banking system has significantly reduced its own network risk exposure. In period 3 the

coefficient φ becomes negative, −.151, but is still highly significant, implying an average

network shock multiplier of about .87. This is particularly interesting since a negative φ

implies strategic substitution in liquidity holdings, as in Bhattacharya and Gale (1987), that

is a situation in which individual banks decide to choose less liquidity when neighbouring

banks have more liquidity, having a dampening effect on the aggregate level of liquidity.

Since these negative point estimates are obtained in the Quantitative Easing sub-period it

suggests that the liquidity multiplier effect is not working at the time of the large inflow

of liquidity provided by the Asset Purchase Programme of the Bank of England. The total

liquidity injection from the program has been, up to October 2011, of about £275 billion. 23

Overall, the controls variables, when significant, tend to have the expected signs. Individ-

ual liquidity holdings tend to co-move positively and significantly with aggregate liquidity

(Lt−1), even though in Period 1 the coefficient estimate is not statistically different from

zero and has negative sign. Delays in payments in the overall system (captured by rKt−1)

significantly reduce the individual bank’s available liquidity in Period 1. An increase in the

21See Bank of England, ‘Financial Stability Report,’ No. 24, October 2008 and ‘Financial Stability Report,’

No. 25, June 2009.
22Note that from Equation (22) we can compute the average network multiplier as the total impact on

aggregated liquidity resulting from a unit shock equally spread across the n banks. This is given by

1′M (φ,Gt)1
1

n
=

1

1− φ

23See http://www.bankofengland.co.uk/publications/Pages/news/2011/092.aspx.
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Table 1: Spatial Error Model Estimation

Period 1 Period 2 Period 3

φ̂ 0.6400
(52.44)

∗ 0.1660∗
(7.06)

−0.1510∗
(−6.45)

Aggregate Control Variables (xpt )

lnLt−1 −0.0020
(−0.04)

0.3324∗
(4.59)

0.5974∗
(14.73)

rKt−1 −0.1654∗
(−2.39)

0.0265
(1.12)

0.0031
(1.01)

lnV olPayt−1 0.1750
(1.37)

0.1935∗
(7.15)

0.0075
(0.52)

TORt−1 0.0097
(1.51)

0.0055∗
(2.87)

0.0049∗
(2.07)

LIBOR 0.6456∗
(2.16)

0.3216∗
(6.48)

−0.1633
(−1.12)

Interbank Rate Premium 1.9305∗
(2.75)

−0.0505
(−0.61)

0.9514∗
(2.86)

Bank Characteristics (xmi,t)

Interbank Rate −0.5096
(−1.72)

−0.2977∗
(−6.02)

0.1414
(1.0428)

lnLevPayi,t−1 −0.1558∗
(−5.73)

−0.1595∗
(−8.87)

0.0478∗
(2.51)

rKin
i,t−1 0.0359

(1.90)
−0.0045
(−0.26)

−0.0395∗
(−3.39)

rKout
i,t−1 0.1416∗

(8.17)
0.1742∗
(15.89)

0.0426∗
(4.16)

lnV olPayi,t−1 0.0558∗
(39.72)

0.0524∗
(50.23)

0.0417∗
(36.73)

lnLUi,t−1 0.0303∗
(3.00)

−0.0023
(−0.34)

0.0052
(0.68)

Top 4 Bank dummy 1.3374∗
(26.97)

1.6815∗
(46.31)

2.3738∗
(57.18)

Repo Liability
Assets

−0.7721
(−0.92)

0.7401∗
(14.46)

0.0575
(0.64)

ΔDeposit
Assets

0.5050
(0.68)

−1.3275∗
(−6.65)

−1.2503∗
(−3.70)

Total Lending and Borrowing (log) 0.1209∗
(3.56)

0.0249
(0.99)

−0.3231∗
(−23.70)

CDS (log) −0.0652
(−1.49)

−0.0274∗
(−3.17)

0.0514∗
(4.55)

CDS Missing dummy −2.1893∗
(−11.38)

−2.2618∗
(−32.04)

−0.8502∗
(−8.37)

R2 69.11% 89.71% 85.54%

Estimation results of equations (20) and (21). Period 1, 2 and 3, correspond, respectively, to the pre

Northern Rock/Hedge Fund Crisis, post Hedge Fund Crisis – pre Asset Purchase Programme, and post the

Asset Purchase Programme announcement subsamples. The t-statistics are reported in parenthesis under

the estimated coefficients, and ∗ denotes variables significant at confidence levels above 5%.
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volatility of aggregate (V olpayt−1) and individual (V olpayi,t−1) daily outflows is associated

with higher liquidity holdings from individual banks, but the coefficient on the aggregate

variable is statistically significant only in Period 2. This is probably due to multicollinearity

between the aggregate and individuals measures, with the individual variable being statis-

tically significant in all periods. The aggregate turnover rate (TORt−1) is always positively

related to banks’ liquidity, and statistically significant in Period 1 and 2. This indicates that

periods of higher velocity of transactions in the banking system are also periods of higher

liquidity holdings. The three interest rates variables are highly collinear, as a consequence

their statistical significance and signs tend to alternate across samples.

The lagged total payments of a bank (LevPayi,t−1) has a statistically significant effect

on its liquidity in all the periods, but its sign is negative in the first two periods while

positive in the third one, suggesting that in the third period Quantitative Easing has made

it easier for banks to replenish their liquidity in response to an increase in payment outflows.

The right kurtosis of the time of payment inflows (rKin
i,t−1) is statistically significant only in

the third period and with the expected negative sign, while the right kurtosis of the time

of payment outflows (rKout
i,t−1) is statistically significant in all subsample and with positive

sign, indicating that time in which a bank strategically delays its payment outflows are also

the times in which it tends to hoard more liquidity. Liquidity used (LUi,t−1) is statistically

significant only in the first period with the expected positive sign. The dummy for the

top 4 Banks in terms of payment activity is not surprisingly positive and highly significant

in all subsamples. The regression coefficient associated with the repo liabilities to assets

ratio is significant only in Period 2 and has positive sign, while the change in the deposits to

assets ratio is statistically significant only in the last two periods with an associated negative

coefficient. Total lending and borrowing, as well as CDS premia, are statistically significant

in two periods but the sign of their coefficients change over time. The dummy variable for

banks with no outstanding CDS contracts has always a significantly negative coefficient.

Overall, the fit of the model is quite good in all subsamples with an R2 in the 69− 90%

range. With the subsample estimates at hand, we can compute the network impulse response

functions to identify the risk key players in the interbank market. Results for Period 1

are reported in the upper panel of Figure 6. In particular, in the upper panel we report

the excess network impulse response functions to a unit shock (NIRF e
(
φ̂, 1
)
, defined in

Equation (25)), as well as two standard deviations error bands. Also, as a point of reference,

we report in the same panel the average network multiplier in excess to the unit shock (i.e.

(1− φ)−1− 1). As mentioned earlier, the point estimates in Period 1 implies a large average

network multiplier of shocks to individual banks, and the picture shows that in response to
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a £1 shock idiosyncratic shock equally spread across banks, the final compounded shock to

the overall liquidity would be increased by another £1.8. Nevertheless, what the upper panel

of Figure 6 stresses is that this large network amplification of shocks is due to a small subset

of banks. In particular: a £1 idiosyncratic shock to the liquidity of either Bank 5 or Bank

9 would generate an excess reaction of aggregate liquidity of about £5.8; the same shock to

Bank 6 would result in an excess reaction of aggregate liquidity of about about £3.6; instead,

a shock to Bank 4 would have an effect that is roughly of the same size as the average network

multiplier while a shock to any of the remaining seven banks would be amplified much less

by the network system. That is, the network impulse response functions stress that there

is a small subset of key players in the interbank liquidity market that generate most of the

network risk.

The central panel of Figure 6 shows the average net borrowing during Period 1. Compar-

ing the upper and central panels of the figure, it is interesting to notice that simply looking

at the individual lending and borrowing behaviour one cannot identify the riskiest players

for the network. In particular, the two riskiest players identified through our structural esti-

mation, are not the largest net borrowers in the network – the largest net borrower, Bank 4,

is instead an average bank in network risk terms. Moreover, Bank 5, one of the two risk key

players, is not a net borrower – it is instead the second largest net lender. The comparison

between the two panels also makes clear that the risk key players are not necessarily the net

borrowing banks – net borrowers and net lenders are roughly as likely to be the network risk

key players. This result is intuitive: negative liquidity shocks to a bank that lends liquidity

to a large share of the network can be, for the aggregate liquidity level, as bad as a negative

shock to a bank that is borrowing liquidity from other banks. But the comparison between

the two panels makes also clear that, simply looking at the largest players in terms on net

borrowing or lending, one would not be able to identify the key risk players for the system.

The reasons behind this finding can be understood looking at the lower panel of the figure,

where we present the average network structure during Period 1.

In particular, the size of the ellipses identifying individual banks is (log) proportional

to their total gross borrowing in the system, incoming arrows to a node indicate borrowing

flows to that node while outgoing arrows indicate lending flows from that node, and the

thickness of the arrows is (log) proportional to the sterling value of the flows. The lower

panel highlights that key risk players are the players that tend to have most borrowing and

lending connections in the system, and are directly connected to banks that also have a lot

of connections, but are not necessarily the players that borrow or lend more in neither gross

nor net terms, but rather the players that borrow from, and lend to, more – well connected
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Figure 6: The Pre-Northern Rock/Hedge Fund Crisis Subsample. Network excess impulse-

response functions to a unit shock (upper panel); borrowing and lending flows (lower panel).
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– players.

Figure 7 reports excess impulse response functions (upper panel), average net borrowing

positions (central panel), and network flows (lower panel) for Period 2 – the period char-

acterized by a high degree of stress in the financial market. The first thing to notice is

that, despite the overall increase in activity in the interbank borrowing and lending market,

outlined by both the central and lower panels and by Figure 3, there is a drastic reduction

in the average network multiplier reported in the first panel: The average excess network

reaction to a unit shock is only about .2. That is, in a period of financial stress, banks

seem, on average, to have radically reduced their network risk exposure, and they have done

so despite having increased the amount of overnight borrowing and lending needed to fund

their liquidity needs. Nevertheless, as stressed by the first panel, the network risk profile,

even though substantially reduced overall, is still very high for a small subset of banks. In

particular a unit shock to Bank 5, Bank 9 and Bank 6, would result, respectively, in an

excess network liquidity change of .83, .63 and .38, while the same shock to Bank 4 would

have an effect very similar to the average one, and a shock to the remaining banks would

receive minimal amplification from the network system.

The results for Period 3 – the one starting at the onset of Quantitative Easing – are

reported in Figure 8, and are radically different from the ones of the previous two periods.

First, banks tend to behave as strategic substitutes in their liquidity holdings in this period,

therefore the network has a reducing effect on individual bank shocks, implying a negative

average excess multiplier of −.13, that is, a unit liquidity shock equally spread across banks

would result in a 1 − .13 = .87 shock to aggregate liquidity. But, once again, there is

substantial heterogeneity across banks, in the sense that for most banks (Bank 1, 3, 7, 8,

10 and 11) the network has basically no effect on how their own shocks propagate to the

system, while for few other banks (4, 5, 6, and 9) the network structure helps reducing the

impact of their own idiosyncratic shocks on aggregate liquidity.

This behaviour arises in a period in which the degree of connectedness of the network is

substantially reduced (see Figure 2 and the lower panel of Figure 8), the gross borrowing in

the system has been substantially reduced (see Figure 3), most banks hold net borrowing

positions close to zero (central panel of Figure 8), but at the same time the overall liquidity

in the system has been substantially increased thanks to the Asset Purchase Programme

(Figure 4). What is also interesting to notice is that the same banks that were the riskiest

players in the previous two periods (Banks 5, 6 and 9) are now the less risky ones for the

system since an idiosyncratic shock to theses banks, thanks to both their centrality in the

network and the overall strategic substitute behaviour of banks, would have a substantially
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Figure 7: The Post Hedge Fund Crisis and Pre-QE Subsample. Network excess impulse-

response functions to a unit shock (upper panel); borrowing and lending flows (lower panel).
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Figure 8: The QE Subsample: Network excess impulse-response functions to a unit shock

(upper panel); borrowing and lending flows (lower panel).
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dampened effect on aggregate liquidity.

The results presented so far outlines a substantial change over time of the role played

by the network interactions in determining aggregate liquidity. This suggests that the split

into just three subsamples might be too coarse to capture the banks’ reaction to a changing

economic environment. As a consequence we perform estimations of the structural model

in Equations (20) and (21) using a 6-month rolling window. These rolling estimates of

the network coefficient φ are reported (blue line), together with 95% confidence bands (red

lines), in Figure 9. The figure also reports the rolling point estimates of the φ coefficient

implied by the Spatial Durbin Model (green line) in Equation (23) since, if our theory driven

Spatial Error specification of the interbank network is correct, the two estimates should not

be statistically different.

Figure 9: Spatial Error (blue line) and Durbin (green line) rolling estimates of φ.

At the beginning of the sample, the figure shows an extremely large network coefficient, φ,

implying a substantial network amplification of shocks to banks in the system. The estimated

coefficient has a first sharp reduction around the 18th May 2006 when the Bank of England

introduced the reserve averaging system described in Section A.1. The network multiplier is

relatively stable after May 2006, except for a temporary decrease during the 2007 subprime

default, until the Northern Rock bank run when the network multiplier, hence the network

risk, is drastically reduced for several months. After this reduction, the coefficient goes back

roughly to the previous period average but shows a trend decline that culminates in a sharp

drop following the Bear Stearns collapse. Since this period onward, and until long after
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the Lehman Brothers bankruptcy, the coefficient is statistically indistinguishable from zero,

implying a zero excess network multiplier of bank specific shocks. That is, the estimation

suggests that in this period there is basically no added risk coming from the network structure

of the interbank market, and that individual bank shocks would not be amplified by some sort

of domino effect in the U.K. interbank market. The figure suggests that the banks’ reaction

to the financial market turmoil has been to systematically reduce the overall riskiness of

the interbank network. Interestingly, the φ̂ coefficient becomes negative, and statistically

significant, right before the announcement of the Asset Purchase Programme, and remains

stable during all the Quantitative Easing period. This indicates that, during the liquidity

inflow (and also in expectation of it) coming from the Bank of England’s QE policy, banks

started behaving as strategy substitute in their liquidity holding decision. Note that this

a period in which the aggregate supply of central bank reserves is almost completely price

inelastic since QE sets a target level for asset purchases (and subsequent reserve creation)

and let market forces determine their price. This overall change of the BoE supply of reserves

is unlikely to be the driver of our estimates network multiplier coefficient during this period

since: a) the change in the φ parameter actually occurs before the announcement of QE; b)

we estimate the identified optimal response of the banks to market conditions (effectively,

the banks equilibrium demand function), and we control for variation in aggregate price and

quantities of liquidity, as well as bank deposits held by the private sector.

Finally, the figure outlines that the point estimates of φ̂ coming from our theory driven

Spatial Error specification and the ones coming from the more general Spatial Durbin Model

are always very similar, both numerically and in terms of their overall evolution during the

sample. Moreover, testing formally for discrepancy between the two type of estimates, we

find that they are statistically different at the 5% confidence level less than 95% of the times,

providing formal support for our formulation of the network model.

VI Conclusions

In this paper, we develop and estimate a network model of interbank liquidity. Based on

network topology and the estimated network effects, we construct measures of of systematic

risks and identify network players that are most important in contributing to the aggregate

liquidity and its risk in the banking system respectively.

We find that the network effect varies significantly through the sample period: January

2006 to September 2010. Prior to the Northern Rock/Hedge Fund crisis, network liquidity

is a strategic complement. That is, liquidity shocks propagate through the network and
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each bank increases its exposure to the network shocks; consequently, the level of liquidity

holding is high. That enables a higher velocity of payment transactions. By contrast, during

the crisis, the network itself also becomes less cohesive, the network liquidity is significantly

reduced and turns into strategic substitute after the commencement of Quantitative Easing.

That is, liquidity shocks contract through the network and each bank reduces its exposure to

the network shocks. This is associated a lower velocity of payment transactions. Our analysis

shows that it is important to analyze not only the network characteristics themselves but

also the liquidity decisions that network agents make in order to understand the aggregate

impact.
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A Appendix

A.1 Reserves Schemes, Payment Systems, and Interbank Overnight

Borrowing

Banks in the UK choose the amount of central bank reserves that they wish to hold to support

a range of short term liquidity needs. On a daily basis, reserve balances are used to fund

intraday liquidity needs in the large value payment and settlement systems, and to protect

against intraday liquidity shocks. Additionally, as central bank reserves are the most liquid

asset, they are available to protect banks against a range of unexpected outflows of funds.

They are also the ultimate settlement asset for interbank payments. Whenever payments are

made between the accounts of customers at different commercial banks, they are ultimately

settled by transferring central bank money (reserves) between the reserves accounts of those

banks. Therefore, a bank’s most liquidity asset is its holding of central bank reserves. Since

2006, the banks in our sample choose their own level of Sterling reserve holdings and reserve

holdings are not mandatory. However, their decisions to hold certain stocks of central bank

reserves do not happen independently of the policy framework in which they operate.

A.1.1 Monetary Policy Framework

Since the 1998 Banking Act, the Bank has had independent responsibility for setting interest

rates to ensure that inflation, as measured by the Consumer Price Index (CPI), meets the

inflation target of 2%. Each month the Monetary Policy Committee (MPC) meets to decide

the appropriate level of the Bank rate (the policy interest rate) to meet the inflation target

in the medium term. The Bank’s main mechanism for influencing the inflation rate in the

economy is the Sterling Monetary Framework. This framework uses the Bank’s balance sheet

to influence the level of short-term interest rates, and through this inflation. When banks

decide upon the appropriate level of central bank reserves to hold, they do so within the

constraints set by this framework. During our sample period (January 2006 to September

2010) the Bank of England had three distinct monetary frameworks: prior to 18 May 2006,

the Bank operated an unremunerated reserve scheme; this was then replaced by a reserves

average scheme; since March 2009 and the initiation of Quantitative Easing, the reserves

average scheme has been suspended. Pre-2006 Money Market Reform: The Bank’s Ster-

ling Monetary Framework prior to the 2006 reforms was based upon a system of voluntary

unremunerated reserves. In this system there were no reserve requirements and no reserve

averaging over a maintenance period. The only binding requirement was that banks were
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obliged to maintain a minimum zero balance at the end of each day. In practice, due to

uncertainties about managing end of day cash positions banks opted for small nonzero re-

serve balances. Reserve Averaging: In May 2006, the Bank undertook a major reform of the

Sterling Monetary Framework. The new scheme was voluntary remunerated reserves with

a period-average maintenance requirement. Each maintenance period – the period between

each meeting of the Monetary Policy Committee – banks that participated in the reserve

framework were required to decide upon a reserves target. This voluntary choice of reserve

balances is a unique feature of the UK system. Over the course of each maintenance period,

the banks would manage their balance sheets such that, on average, their reserve balances

hit the target. Where banks were unable to meet the target, standing borrowing and deposit

facilities were available. If banks balances were more than 1% above the target the Bank

would not remunerate the excess reserves; if they were more than 1% below the target the

Bank would impose a penalty, reducing the interest paid on the other reserves. At vari-

ous points during the crisis this ±1% range was increased to give banks more flexibility to

manage their liquidity. The amount paid on these reserves was the Bank rate, the interest

rate determined by the MPC’s monthly meeting. As each bank was free to choose its own

reserves target, the level of reserves in the system was almost entirely demand driven.24 In

both schemes before Quantitative Easing (QE), the Bank would use short term Open Market

Operations (OMOs), repo and reverse repo transactions backed by high quality liquid assets,

to ensure that there were sufficient central bank reserves in the system such that each bank

could achieve positive end of day balances or meet their reserves target. The Bank acts as

the marginal supplier of funds to the banking system. Banks then use the private interbank

money markets to ensure that the reserves are correctly distributed so that all banks meet

their targets. Post Quantitative Easing: Quantitative Easing started in March 2009 when

the MPC decided that, in order to meet the inflation target in the medium term, it would

need to supplement using interest rates to influence the price of money (which had hit the

practical lower bound of 0.5%) with purchasing assets using central bank reserves. This

consisted of the BoE boosting the money supply by creating central bank reserves and using

them to purchase assets, predominantly UK gilts. As the quantity of reserves shifted from

being demand driven to being influenced by QE, the BoE suspended the average reserve

targeting regime, and now remunerates all reserves at the Bank rate.

24There was a ceiling, expressed as the higher of a percentage of eligible liabilities and a fixed value, for

the target level of reserves that any bank could choose. However, in practice banks typically chose lower

targets, so this was not a binding constraint. The ceiling was raised in May 2008.
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A.1.2 Payment and Settlement Systems

Banks use central bank reserves to, inter alia, meet their demand for intraday liquidity in the

payment and settlement systems. Reserves act as a buffer to cover regular timing mismatches

between incoming and outgoing payments, and to cover unexpected intraday liquidity needs,

for example, due to exceptionally large payments, operational difficulties, or stresses that

impact upon a counterparty’s ability, or willingness, to send payments. There are two major

interbank payment systems in the UK: CHAPS and CREST. These two systems play a vital

role in the UK financial system. On average, in 2011, £700 billion of transactions was settled

every day across the two systems. This equates to the UK 2011 nominal GDP settled every

two days. CHAPS is the UK’s large-value payment system. It is used for real time settlement

of payments between its 19 member banks. 25 These 19 banks settle payments on behalf of

hundreds of other banks through correspondent banking relationships. Typical payments are

business-to-business payments, home purchases, and interbank transfers. Payments relating

to unsecured interbank money markets are settled in CHAPS. CHAPS opens for settlement

at 8am and closes at 4.20pm. Payments made on behalf of customers cannot be made

after 4pm. The system has throughput guidelines which require members to submit 50%

of payments by noon and 75% by 14:30. This helps to ensure that payments are settled

throughout the day and do not bunch towards the end of the day. In 2011 CHAPS settled

an average of 135,550 payments each day valuing 254bn. CHAPS is a Real-Time Gross

Settlement (RTGS) system. This means that payments are settled finally and irrevocably

in real time. To fund these payments banks have to access to liquidity intraday. If a bank

has, at any point during the day, cumulatively sent more payments than it has received,

then it needs liquidity to cover this difference. This comes either from central bank reserves

or intraday borrowing from the central bank. Furthermore, when a bank sends funds to

another bank in the system, it exposes itself to liquidity risk. That is, the risk that the

bank will not get those funds back during the day, and so will have to use other funds to

fulfill its payment obligations. Therefore, it is important to choose an appropriate level of

liquidity buffer to manage these intraday liquidity risks. Besides maintaining a liquidity

buffer, banks can manage their intraday liquidity exposure settlement banks by borrowing

and lending from each other in the unsecured overnight markets. The shortest term for these

money markets is overnight. According to Bank of England estimates, payments relating to

overnight unsecured money market activity (advances and repayments) account for about

25This includes Bank of England and CLS. Some banks groups also have multiple memberships due to

mergers.
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20% of CHAPS values (Wetherilt, Zimmerman, and Soramaki (2010)). CREST, on the other

hand, is a securities settlement system. Its Delivery-vs-Payment (DVP) mechanism ensures

simultaneous transfer of funds and securities. Liquidity needs in CREST are largely met via

Self Collateralising Repos (SCRs), in which the purchase of central bank eligible collateral

automatically generates collateralized liquidity from the Bank of England, requiring few

intraday resources from the purchasing bank.

A.1.3 The Sterling Unsecured Overnight Money Market

Money markets are the markets where banks and other financial institutions borrow and lend

assets, typically with maturities of less than one year. At the shortest maturity, overnight,

banks borrow and lend interest bearing central bank reserves. Monetary policy aims to in-

fluence the rate at which these markets transact to control inflation in the wider economy.

There is very little information available about the size and the structure of the sterling

money markets. The Bank estimates suggest that the overnight unsecured market is ap-

proximately £20-30 billion per day. Wetherilt, Zimmerman, and Soramaki (2010) describe

the network characteristics of the sterling unsecured overnight money market. They find that

the network is characterized by a small core of highly connected participants, surrounded by

a wider periphery of banks loosely connected with each other, but with connections to the

core. It is believed that prior to the recent financial crisis, the unsecured market was much

larger than the secured one. But counterparty credit risk concerns, combined with new FSA

liquidity regulations, which encourage banks to borrow secured and to increase the maturity

of their funding, have increased the importance of the secured markets (Westwood 2011).

A.2 Quasi-Maximum Likelihood Formulation

Writing the variables and coefficients of the spatial error model in equations (20) and (21)

in matrix form as26

B = [μ, αtime
1 , ..., αtime

t , ..., αtime
T , αbank

1 , ..., αbank
i , ..., αbank

N ,

βbank
1 , .., βbank

m , ..., βbank
M , βtime

1 , ..., βtime
p , ..., βtime

P ]

L = [l1,1, ..., l1,T , ..., li,t, ..., lN,1, ..., lN,T ]

ε = [ε1,1, ..., ε1,T , ..., εi,t, ..., εN,1, ..., εN,T ]
′

26This is similar to the spatial formulation in Lee and Yu (2010).
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ν = [ν1,1, ..., ν1,T , ..., νi,t, ..., νN,1, ..., νN,T ]
′

G = diag (Gt)
T
t=1 =

⎡
⎢⎢⎢⎢⎣

G1 0 ... 0

0 G2 ... ...

... ... ... 0

0 ... 0 GT

⎤
⎥⎥⎥⎥⎦

X =
[
1,D,F,Xbank,Xtime

]
whit

D = IT ⊗ 1N , F = 1T ⊗ IN

Xtime =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 .. xp1 ... xP1

x12 ... xp2 ... xP2

... ... ... ... ...

x1t ... xpt ... xPt

... ... ... ... ...

x1T ... xpT ... xPT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ 1N ,

Xbank =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11,1 ... xm1,1 ... xM1,1

x12,1 ... xm2,1 ... xM2,1

.. ... ... ... ...

x1N,1 ... xmN,1 ... xMN,1

... ... ... ... ...

x11,t ... xmi,t ... xM1,t

... ... ... ... ...

x11,T ... xm1,T ... xM1,T

... ... ... ... ...

x1N−1,T ... xmN−1,T ... xMN−1,T

x1N,T ... xmN,T ... xMN,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we can rewrite the empirical model as

L = XB+ ε,

ε = φGε+ ν, νi,t ∼ iid
(
0, σ2

i

)
.

Implying that

ν (B, φ) = (L−XB)− φG (L−XB) .
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Finally, using Gaussianity to model the exogenous error terms ν yields the log likelihood

lnL
(
B, φ,

{
σ2
i

}N
i=1

)
≡ −TN

2
ln (2π)− T

2

N∑
i=1

ln σ2
i −

N∑
i=1

1

2σ2
i

T∑
t=1

νi,t (B, φ)
2 , (27)

and the above can be estimated using standard optimization methods.

A.3 Confidence Bands for the Network Impulse Response Func-

tions

The φ estimator outlined in the previous section has an asymptotic Gaussian distribution

with variance s2φ (that can be readily estimated as standard from the Hessian and gradient

of the log likelihood in Equation (27), or via bootstrap). That is

√
T
(
φ̂− φ0

)
d→ N
(
0, s2φ
)
.

where φ0 denotes the true value of φ.

Denoting with

a1 (φ) =
∂1′ {(I− φG)−1}

.i

∂φ
;

a2 (φ) =
∂1′ {(I− φG)−1 φG

}
.i

∂φ

we have from Lemma 2.5 of Hayashi (2000) that

√
T
[
NIRFi

(
φ̂, 1
)
−NIRFi (φ0, 1)

]
d→ N
(
0, a1 (φ0)

2 s2φ
)
,

√
T
[
NIRF e

i

(
φ̂, 1
)
−NIRF e

i (φ0, 1)
]

d→ N
(
0, a2 (φ0)

2 s2φ
)
.

Therefore, since aj

(
φ̂
)

p→ aj (φ0), j = 1, 2, by continuous mapping theorem, and by Slutsky’s

theorem aj

(
φ̂
)
ŝ2φ

p→ aj (φ0)
2 s2φ, where ŝ

2
φ is a consistent variance estimator, we can construct

confidence bands for the network impulse response functions using the sample estimates of

φ and s2φ.
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A.4 Appendix: Variables

A.4.1 Macro control variables

• rK t−1: Right kurtosis of the intraday time of aggregate payment outflow (Yesterday).

rKt =

∑
τ>mt

( τ−mt

σt
)4∑88

τ=1(
τ−mt

σt
)4

;

where, mt =
1

88

88∑
τ=1

τ

(
POUT
t,τ∑88

τ=1 P
OUT
t,τ

)

σ2
t =

1

88− 1

88∑
τ=1

(τ −mt)
2

(
POUT
t,τ∑88

τ=1 P
OUT
t,τ

)

POUT
t,τ , aggregate payment outflow at time interval τ.

Transactions are recorded for 88 10-minute time intervals within each day (from 5:00 to

19:30). Variable mt is the average of payment time weighted by the payment outflow.

• lnVolPay t−1: Intraday volatility of aggregate liquidity available (Yesterday, in loga-

rithm). Liquidity available will be defined in the following section on bank specific

control variables.

• TORt−1: Turnover rate in payment system (Yesterday).

To define turnover rate, we need first to define Cumulative Net (Debit) Position (CNP):

CNP (T, i, s) =
T∑
t=1

(POUT
i,s,t − P IN

i,s,t),

where POUT
i,s,t is bank i’s the total payment outflow at time t in day s. P IN

i,s,t is the

payment inflow.

Turnover rate (in day s) is defined as

TORs =

∑N
i=1

∑88
t=1 P

OUT
i,s,t∑N

i=1 max{maxT [CNP (T ; i, s)], 0}

The numerator denotes the total payment made in the system at day s. The denom-

inator sums the maximum cumulative net debt position of each bank at day s. Note

that in the denominator, if the cumulative net position of certain bank is always below

zero (that is, this bank’s cumulative inflow alway exceeds cumulative outflow), this

bank actually absorbs liquidity from the system. If there are banks absorbing liquid-

ity from the system, there must be banks injecting liquidity into the system. When

49



we calculate turnover rate (the ratio between total amount circulating and the base),

we should only consider only one of the two. That’s why we take the first (outside)

maximum operator. The reason for the inside operator goes as follows: Any increase

in the cumulative net debit position (wherever positive) incurs injection of liquidity

into the system, so the maximum of cumulative net position is the total injection from

outside to the payment system. And, the sum across different banks gives the total

injection through all the membership banks. The higher the turnover rate means the

more frequent reuse of the money injected from outside into the payment system.

• LIBOR: LIBOR (Yesterday).

• Interbank Rate Premium: Average interbank rate in the market minus LIBOR (Yes-

terday).

A.4.2 Bank-specific variables

• Liquidity Available (LA) is the amount of liquidity to meet payment requirements and

is measured as the sum of reserves (SDAB, Start of Day Account Balance) plus the

value of intraday repos with the BoE (PC, Posting of Collateral). As time goes, the

liquidity available is calculated by subtracting the money moved to CREST from the

liquidity available in the previous time interval. In this way, we can trace for bank i

the liquidity available any time t in day s:

LA(t, i, s) = SDABi,s + PCi,s −
∑t

τ=1
CRESTi,s,τ

• Liquidity holding at the beginning at the day (l): The logarithm of the cash balance

plus posting of collateral (the value of intraday repo) at the start of the day.

• Interbank Rate: Interbank rate (Yesterday).

• lnLevPay i,t−1: Total intraday payment level (Yesterday, in logarithm).

• rK in
i,t−1: Right kurtosis of incoming payment time (Yesterday).

• rK out
i,t−1: Right kurtosis of outgoing payment time (Yesterday).

• lnVolPay i,t−1: Intraday volatility of liquidity available (Yesterday, in logarithm).

• lnLU i,t−1: Liquidity used (Yesterday, in logarithm).
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Liquidity Used:

LU(i, s) = max{max
T

[CNP (T ; i, s)], 0}

A positive cumulative net debit position means that at this time interval the bank is

consuming liquidity. If a positive cumulative net position never happens for a bank,

this bank only absorbs liquidity from the system. That is the reason for the first

(outside) maximum operator. The second (inside) maximum operator helps us to

trace the highest amount of liquidity a bank uses.

• Repo Liability
Assets

: Repo liability to total asset ratio (monthly).

• Total Assets (log): Total asset (monthly, in logarithm).

• ΔDeposit
Assets

: Cumulative change in retail deposit to total asset ratio × 100 (monthly).

• Total Lending and Borrowing (log): Total lending and borrowing in the interbank

market (Yesterday, in logarithm).

• CDS (log): CDS relative price (daily).

• Stock Return (Inc. Dividend): Stock return including dividend (daily).
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A.5 Additional Figures

Figure 10: Turnover rate in the payment system.

Figure 11: weekly average of the right kurtosis of aggregate payment times.
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Figure 12: interest rates in the interbank market.

Figure 13: cross-sectional dispersion of interbank rates.
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