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Stylized Facts from 2007-09 Financial Crisis-I: LIBOR-OIS Spread
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“Stylized” Facts from 2007-09 Financial Crisis-II

1. Interbank credit spreads are usually small, and interbank risk does not appear

to matter much.

2. As conditions deteriorate, it can matter much more.

◮ Post-failures of Lehmann and AIG there were suggestions that uncertainy

about who was directly or indirectly connected contributed to higher

spreads and “stressed funding markets”.
◮ Uncertainty about solvency also manifested itself in funding runs.

Example: Bear Stearns and Lehmann Brothers both experienced runs

shortly before failing.

3. Domino Asset-Side Contagion was unimportant.

◮ No cascading bank-defaults due to banks’ asset-side interconnections

during the crisis.
◮ Difficult to generate cascading asset-side defaults in plausibly calibrated

theoretical models.
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Were network effects important for credit risk ?

◮ Domino-Side contagion was unimportant continued...

◮ Glasserman and Young (2015) network effects are second order for

understanding default cascades if exposures are not concentrated.
◮ Helwege and Zhang (2014) conduct event studies on bank defaults and

show little effect on stock prices of firms exposed to the default.

◮ A different approach to network contagion ala Caballero Simsek and Duffie.

◮ When banks are financially weakened, network interconnections become

more important as generators of credit risk.
◮ When perceived credit risk is high enough it generates funding runs and

potentially bank failures.
◮ Need a tractable model of how network interconnections affect banks’

credit risk.
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This paper

◮ Model how banks probabilities of default are affected by:
1. The network of interbank exposures.

2. Uncertainty about the shape of the network.
◮ Two channels for bank network effects.

1. Valuation Contagion.

2. Diversification Effects / Covariance Contagion.
◮ Most closely related research.

◮ Model of Valuation Contagion: Ota (2013)
◮ Stylized Models of Uncertainty and Freezes:

Caballero and Simsek (2014),Milne, Li, and Qiu (2015), Pritsker (2013),

Zawadoski (2012)
◮ This paper’s contributions:

1. Relatively unstylized “general” model of default probabilities.

2. Diversification/covariance effects are captured.

3. The effects of uncertainty on spreads are modeled.

4. Rich framework for analyzing asymmetric information about network

structure. 6 / 27



Introduction The Model Simulations Conclusions

The Main Ideas in the Paper

1. When banks are interconnected their probabilities of default are jointly

determined, and difficult to jointly solve for.

2. There are reasonable models of credit risk for unconnected entities.

3. Solution: Solve for credit risk for unconnected entities and perturb these

models to allow for connections.

◮ When banks are not connected, they hold risk-free assets instead of

interbank assets.
◮ Their liabilites are treated as if only to those outside the banking system.

4. The above analysis measures credit-risk for known connections. To solve for

credit risk more generally, integrate against the distribution of connections.
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Main Results Preview

◮ Using a Merton-style baseline model for defaults, with a time horizon of T

default probabilities when banks are interconnected are approximated for dates

0 and 1. Manipulating leads to a formula for how default probs when

connected evolves between dates 0 and 1.

PDc(1, ωb) ≈ PDc(0, ωb) + [I − ψ]−1[PDnc(1, ωb)− PDnc(0, ωb)]

+ [I − ψ]−1[PDσ(1, ωb)− PDσ(0, ωb)] + [I − ψ]−1[PDµ(1, ωb)− PDµ(0, ωb)]

+ [I − ψ]−1η(Rb − ιRf )

= PDc(0) + Valn Contag + Cov Contag + 2 Approx Adjustments
(1)

◮ [I − ψ]−1 is network multiplier term.

◮ ψ is fragility-weighted matrix of interbank portfolio weights.

◮ ψ = γ(1)ωbLGD

◮ γ(1) is diagonal matrix of banks’ financial fragilities at date 1.
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The setting

◮ M banks m = 1, . . .M. Time Periods 0, 1, . . . ,T .

◮ Date 0: Banks choose asset and liability portfolios.

◮ Date T: Assets and Liabs Mature. Banks default if AT < LT .

◮ N non-interbank risky assets. Rt ∼ i.i.d.N (µ,ΣR).

◮ Risk-free assets with per period gross return Rf .

◮ Banks liabilibities (interbank assets) promise gross yield Ym.

◮ Asset portfolios have mean per-period return µa,m and variance σ2
a,m

◮ Date 0: Banks PDs are approximated.

◮ Date 1: R1 is learned. Banks PD ′s|R1 are approximated.
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Pricing Interbank Deposits

1. Deposits are modeled as risky bullet-bonds that pay face value 1 at maturity.

2. The required net and gross returns on deposits are rb and Rb.

3. The date t price of a deposit in bank m is

Pm,d(t) = Exp[−rb(T − t)− LGDmPDm(t)]

4. The gross return on deposits in bank m between dates 0 and 1 depends on the

innovation in m’s probability of default.

R̃b,m(1) = Exp[rb − LGDm(PDm(1)− PDm(0))]

≈ Rb + LGDm[PDm(0)− PDm(1)]

5. The value of bank m̂’s assets at date 1 is Am̂(0)Ra,m̂(1). If bank m̂ has

interbank assets, then the value of its assets will depend on innovations in the

probabilities of default of other banks.
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Baseline Approach to Modeling Banks PDs

◮ Notation:

◮ A(t) = Assets at t, L(t) = Liabilities at t. NW (t) = A(t)− L(t).
◮ C (t) = Capital Ratio at t = NW (t)/A(t)
◮ PDm(t) = Prob that bank m defaults at T given date t info.
◮ Xm(t) are additional covariates that affect default risk.

PDm(t) =
1

1 + Exp
(
α+ β Cm(t)+(µm−ym)(T−t)

σa,m

√
T−t

+ θ′Xm(t)
)

◮ Blends Merton and Jarrow-style models of default risk.
◮ If bank m holds interbank assets then his PD depends on theirs.
◮ When banks hold each others assets PD’s are jointly determined through

valuation contagion.
◮ Also σa,m depends on interbank linkages for each bank.
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Approximating Banks PDs when Interconnected

1. Bank m’s portfolio weights:

ωm = (ωm,R , ωm,Rf , ωm,ib)

2. Parameterizd with parameter ν.

ωm(ν) = (ωm,R , ωm,Rf + (1− ν)
∑

ωm,ib, νωm,ib)

3. When ν = 1 banks portfolio weights are as in 1.

4. When ν = 0 banks are not interconnected.

5. The effects of interconnection on PD are approximated via a first-order Taylor

series in ν centered at ν = 0 and evaluated at ν = 1.

◮ The Taylor series produces equations for PDc,m(1), banks probability of

default when they are interconnected.
◮ The Taylor series in ν affects the return on interbank assets between

dates 0 and 1, it alters µa,m, and σa,m.
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Modeling how linkages affect σa,m

1. σa,m(ν) is given by:

σa,m(ν) =

√√√√(ω′

m,R , νω
′

m,b)

(
ΣR ΣR,b

Σ′

R,b Σb

)
(ω′

m,R , νω
′

m,b)
′ (2)

2. When ν = 0 σa,m is the standard deviation of m′ non-interbank assets.

3. The effect on σa,m from linking with other banks when not connected

depends on Σb,R , the Covariance of returns on interbank and

non-interbank risky assets:

∂σa,m
∂ν

∣∣∣∣
ν=0

=
ω′

m,RΣR,bωm,b

σa,m |ν=0
. (3)
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Approximating Cov(R ,Rb)

◮ Approximating this covariance is very challenging. It is a work in progress.

◮ The return on interbank assets between dates 0 and 1 conditional on ωb and R

(which is suppressed in the notation) is:

R̃b(1) = Rb − LGD[PDc(1, ωb)− PDc(0, ωb)] (4)

◮ Ideally to compute this covariance one would draw from the joint distribution

of R , ωb and numerically compute the covariance using the formulas for

PDc(1, ωb)− PDc(0, ωb). This is not quite possible because PDc(1, ωb) is a

function of ΣbR , creating a difficult fixed point problem.

◮ A second best solution is approximate ΣbR with simulation using all terms in

PDc(1, ωb)− PDc(0, ωb) that do not involve ΣbR

◮ A third best solution is linearize parts of PDc(1, ωb)− PDc(0, ωb) in terms of

R and compute ΣbR using the approximation.
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Additional notes on the approximations for PDc(1) and PDc(0)

◮ Network multiplier effects appear in the approximation for PDc(1) because of

PDc(1) depends on returns on interbank assets between dates 0 and 1 which

depends on PDc(1). This is a valuation contagion effect.

◮ PDc(0) also appears in the approximation for PDc(1) because interbank

returns depend on PDc(1)− PDc(0).

◮ There are no valuation contagion effects at date 0. So, there are fewer network

effects at date 0 than at date 1.
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Incorporating Uncertainty About ωb

◮ All of the analysis above treats the matrix of interbank portfolio weights ωb as

known.

◮ A more realistic case is ωb is unknown to the public and banks only know their

own first-order interbank exposures.

◮ Suppose ωb is unknown, but public beliefs about ωb conditional on information

I1 are for simplicity such that

Vec(ωb) ∼ N [µ(I1),Σωb
(I1)]

◮ I1 includes:

1. Noisy information on each banks total interbank assets and liabilities.

2. Knowledge of bank regulations that limit banks exposure concentrations.

3. Knowledge of stylized facts from public literature on banks interbank

exposures.
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Simulation Example

◮ There are 5 large banks, 5 small banks.

◮ Core Assumptions:

1. No bank can have a greater than 1-day exposure to another bank above

3% of its total assets. (Based on a regulation for national U.S. banks).

2. Small banks do not receive interbank loans (Based on empirical banking

literature).

3. Vec(ωib) ∼ N (µωib
,Σωib

)

4. Among large banks, i ’s deposits with j : ωi,j ∼ N(.015, .00752)

5. For small banks lending to large banks: i ’s deposits with j :

ωi,j ∼ N(.015, .00752)

6. Total interbank assets and liabilities of each bank are publicly reported.

◮ Other assumptions:

1. Risk-free + interbank assets are 20% of the asset portfolio.

2. Retail and interbank deposits have the same yield.

3. Banks capital ratios are 8% at date 0.

4. Banks capital ratios are a little low given risk of the assets. 17 / 27
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Simulation Methodology

1. Generate Banks interbank assets one-time.

2. Compute total assets and liabilities of each bank.

3. Compute posterior distribution of interbank asset holdings conditional on the

public info.

4. Draw from the posterior distribution of ωb Nrep = 10, 000 times.

5. For each draw ω̃b and compute PDc(1)( ˜omegab).

6. P̂Dc(1) =
1

Nrep

∑Nrep

rep=1 PDc,rep(1)
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Banks Date 1 Default Probabilities as a Function of R(1)
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Banks Date 0 Default Probabilities as a Function of R(1)
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Valuation Contagion Term
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Covariance Contagion Term
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Adjustment for Mean Returns Beyond Date 1
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Rb - Rf Adjustment Term

1.00 1.02 1.04 1.06 1.08 1.10−
0.

07
−

0.
06

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00

Return

P
D

m
u

Bank
1
2
3
4
5
6
7
8
9
10

24 / 27



Introduction The Model Simulations Conclusions

Size of network effects.

◮ Recall banks are undercapitalized.

◮ I look at two cases. One in which returns are good.

◮ Another when they are bad. The “bad” multipliers are shockingly large.
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Table 3: Inverse(I - psi) with Return Plus One Standard Deveation
1.0000004 0.0003696 0.0004169 0.0004585 0.0003366 0.0000121 0.0000122 0.0000122 0.0000122 0.0000122
0.0001555 1.0000003 0.0002358 0.0002594 0.0001940 0.0000064 0.0000065 0.0000065 0.0000065 0.0000065
0.0000080 0.0000150 1.0000000 0.0000210 0.0000128 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008
0.0000840 0.0001172 0.0001321 1.0000002 0.0001077 0.0000038 0.0000038 0.0000038 0.0000038 0.0000038
0.0008197 0.0010548 0.0011402 0.0012393 1.0000007 0.0000255 0.0000257 0.0000256 0.0000256 0.0000256
0.0009851 0.0011290 0.0011824 0.0012485 0.0010922 1.0000001 0.0000321 0.0000321 0.0000321 0.0000321
0.0012901 0.0014699 0.0015456 0.0016165 0.0014110 0.0000404 1.0000001 0.0000404 0.0000404 0.0000404
0.0000781 0.0000978 0.0001069 0.0001140 0.0000927 0.0000043 0.0000043 1.0000000 0.0000043 0.0000043
0.0002754 0.0003235 0.0003471 0.0003633 0.0003094 0.0000111 0.0000112 0.0000112 1.0000000 0.0000112
0.0006029 0.0007029 0.0007494 0.0008002 0.0006721 0.0000232 0.0000233 0.0000232 0.0000232 1.0000000
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Table 4: Inverse(I - psi) with Return Minus One Standard Deveation
1.003330 0.032506 0.037551 0.040499 0.028402 0.001074 0.001085 0.001084 0.001080 0.001080
0.025111 1.004242 0.038560 0.041588 0.029636 0.001042 0.001052 0.001051 0.001048 0.001048
0.001291 0.002261 1.000377 0.003123 0.001860 0.000115 0.000116 0.000116 0.000116 0.000116
0.014023 0.019230 0.022195 1.003110 0.016928 0.000629 0.000635 0.000634 0.000632 0.000632
0.068779 0.088105 0.098155 0.104815 1.006640 0.002244 0.002266 0.002264 0.002255 0.002255
0.074904 0.086877 0.094249 0.098238 0.079883 1.000390 0.002545 0.002548 0.002544 0.002543
0.078153 0.090184 0.098165 0.101507 0.082385 0.002559 1.000407 0.002568 0.002564 0.002563
0.010853 0.013582 0.015266 0.016048 0.012266 0.000583 0.000584 1.000063 0.000584 0.000584
0.037953 0.044960 0.049774 0.051486 0.040939 0.001549 0.001553 0.001554 1.000204 0.001552
0.044998 0.052964 0.058322 0.061358 0.048225 0.001760 0.001764 0.001766 0.001763 1.000240
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Summary and Conclusions

◮ Presented a relatively tractable framework for approximating how networks

affect banks PDs.

◮ The framework assesses how networks affect perceived PDs when the network

connections are or are not publicly known.

1. Network connections affect default risk via valuation effects and effects

on the variance of banks portfolio returns.

2. When fragility is low networks don’t matter much.

3. When fragility is high, networks have a larger multiplier effect and matter

more.

◮ Potential application: Choosing stress-scenarios.

1. Banks financial distress is related to their PDs.

2. This framework helps capture how networks contribute to distress.

◮ Additional extensions could look at the role of information in PD risk

assessemnt.
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Qualifications / Challenges

1. The model relies on a benchmark model of PDs when firms are not

connected. Such models may not exist. Or, it may be tricky to estimate

or calibrate them.

2. The Merton model’s simplifying assumption that defaults occur only at

a particular date has undesirable properties.

3. The model assumes banks noninterbank asset holdings are publicly

known. More realistically, the model should allow for uncertainty about

both sets of asset holdings.

4. Parts of interbank networks are sparse. To simulate such networks from

a distribution, Gaussianity is a poor choice. It would be better to

simulate from a different distribution that still reflects known

information about the shape of the network.
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