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BARAC

BARAC aims to investigate the feasibility of using distributed ledger
technology for regulation and compliance

Project Outcomes

Design of blockchain technology
for regulation and compliance

Blockchain-enabled big data
feeding & extraction layer

Sensitive data handling in DLT

enviroment

-
Fully functional proof-of-concept
~ prototype platferm

Development of algorithms for
automated, data reconciliation
compliance and reporting

Development of algorithms for
automated regulation

Overturn current regulation and compliance models via DLT

Science
+ Complex systems

+ Consensus dynamics

+ Big data analytics

+ Information Security & Cryptography

Engineering
*  Big data handling over distributed ledgers
* Blockchain design and architecture

+ Data integration

Law & Regulation
* Regulatory vetting and reporting
*  Rule by coding

+ Self enforced regulation

Economics
*  Financial Stability

+ Risk: Systemic, Operational, Counterparty
+  Nowrcasting
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* “Glazing Into the crystal ball”
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Industry (services) is becoming automated

Regulation cannot be done manually any longer



Analytics

Automation of cognitive processes
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A lot of them

For businesses, individuals and regulators
Digital traces

Easy to keep, hard to delete
Privacy [Anonymity, Distributed Systems]

Concentration [Distributed Systems]
Consistency & Consensus: a unique truth [Blockchain]

T Aste, UCL CBT 2017



London LSE 16 May 2019
=
l \ I t -

Powerful
For businesses and regulators

Privacy [Anonymity]

Concentration [Distributed Systems]
Merging heterogeneous data sources [current research]

T Aste, UCL CBT 2017



A4 London LSE 16 May 2019
% CBT

Automation of cognitive processes

Next revolution?
For businesses, individuals and regulators

Automation of decisions

Interpretability [current research]
Ethics [current research]

Concentration [Distributed Systems]
Consistency & Consensus [Blockchain]

T Aste, UCL CBT 2017
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A Use Case: Automated credit rating for P2P lending

Founded 2006
W Te[(ale[@d (T3 Personal loans between $1,000 and $40,000.
$47 billion in loans

TOTAL LOAN ISSUANCE

REPORTED LOAN PURPOSE LOAN ISSUANCE BY STATE

$47,243,636,771

in loans issued as of 03/31/19

W50+ M [ $25-850 M | $10-825 M $0-%10M

T Aste, UCL CBT 2017 11
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Data
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Analytics & Automation of decision

LendingClub
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Phase 1: Loan Selection

Loan Selection Results

SVM

= 07
I-J._) /C

66.5%

Model Recall Train AUC Test Recall Recall Ac- | Recall Re-
Macro Test cepted Test jected Test
LR 70.8% 86.5% T7.4% 69.1% 85.7%

84.0%

Phase'2: Loan Defa

ult Prediction

Loan Default Prediction Results
Model Recall Train AUC Test Recall Recall De- | Recall Paid
Macro Test fault Test Test
LR 64.3% 69.0% 63.7% G3.8% 63.6%
SVM 64.3% 62.15% oR.T 65.6%
LNN @ 67.8% 60.0%
LNN 2 68.7% 6G2.7%
LNN © 69" 65%
DNN ¢ - 68 67T
DNN ¢ 1% 66Y 7o%
DNN ' | o8 69% 2%
T Aste, UCL CBT 2017

LendingClub

Credit risk on unsecured loans
can be algorithmically managed
through data analytics

Through fractional-reserve
system (digital) money can be
created this way!

Algorithmic Bias?

14
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Project MAISON, automated regulatory reporting via DLT

Maison Ul: Real-time Dashboard (Regulator view)

CAPITAL_AND_WTEREST REMORTGAGER

CAPITAL_AMD_INTAREST REMORTGASER

15
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Conclusions

Machines that operate autonomously cannot be controlled and
regulated by humans

The same technology that is used to automate industry can be
used to automate regulation

Data, Analytics and the Automation of cognitive processes have a
lot of Issues that require solutions

Technology Is moving fast research must accelerate

T Aste, UCL CBT 2017
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