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Systemic Risk in Derivatives Markets: The Fourth Annual Conference
on Systemic Risk Modeling

October 14 2016

Andreea Minca (Cornell) Systemic Risk and CCP Design 1 / 45



What this paper is about

Examine effects of central clearing counterparty (CCP) on a financial
network from ex post and ex ante (systemic risk measure) perspective

Propose CCP design with “hybrid” guarantee fund that is netted
against liabilities

Simple enough for exact analysis of trade off between systemic risk
reduction and banks’ incentive to join CCP

Sophisticated enough to capture real world orders of magnitude of
capital, guarantee funds, and fees (stylised CDS OTC market data
BIS 2010)
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Main findings

Ex post: CCP reduces banks’ liquidation and shortfall losses, improves
aggregate surplus

Ex ante: find explicit threshold on CCP capital and guarantee fund
for systemic risk reduction

Design of “hybrid” guarantee fund netted against liabilities is superior
to (“pure” guarantee) default fund plus margin fund

hybrid implies similar systemic risk
hybrid gives much larger banks’ incentive compatibility
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Financial network

Setup

Two periods t = 0, 1, 2

Values at t = 1, 2 are random variables on (Ω,F)

m interlinked banks i = 1 . . .m
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Financial network

Instruments

Bank i holds

Cash γi : zero return

External asset (e.g. long-term investment maturing at t = 2):

fundamental value Qi at t = 1, 2
liquidation value Pi < Qi at t = 1

Interbank liabilities:

formation at t = 0
realization/expiration at t = 1: Lij

No external debt

Example of interbank liabilities: CDS (premiums paid before t = 0. At
t = 1 change in credit spreads or defaults)
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Financial network

Interbank liabilities realize at t = 1

Lij(ω) cash-amount bank i owes bank j

Li =
∑m

j=1 Lij total nominal liabilities of bank i∑m
j=1 Lji total nominal receivables from other banks (assets)
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Financial network

Bank i ’s nominal balance sheet at t = 1

Assets
γi +

∑m
j=1 Lji + Qi

Liabilities
Li + nominal net worth

Nominal cash balance

γi +
∑m

j=1 Lji − Li
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Financial network

Liquidation of external asset at t = 1

If bank i ’s cash balance is negative,

γi +
∑m

j=1 Lji < Li ,

it sells external assets at liquidation price Pi < Qi

Bank i is bankrupt if

γi +
∑m

j=1 Lji + Pi︸ ︷︷ ︸
liquidation value of assets

< Li ,

and then bank j receives a part of liquidation value of bank i ’s assets
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Financial network

Interbank liability clearing equilibrium

Interbank liability clearing equilibrium defined as (L∗ij) satisfying

1 Fair allocation:
0 ≤ L∗ij ≤ Lij

2 Clearing: L∗i =
∑m

j=1 L
∗
ij satisfies

L∗i = Li ∧
(
γi +

∑m
j=1 L

∗
ji + Pi

)
, i = 1 . . .m

Assumption: Let (L∗ij) be an interbank liability clearing equilibrium
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Financial network

Example of interbank clearing equilibrium

Eisenberg and Noe (2001): proportionality rule Πij = Lij/Li and

L∗ij = ΠijL
∗
i

with clearing vector L∗ = (L∗1, . . . , L
∗
m) determined as fixed point

Φ(L∗) = L∗

where Φ : [0,L]→ [0,L] is given by

Φi (`) = Li ∧
(
γi +

∑m
j=1 `jΠji + Pi

)
, i = 1 . . .m

Eisenberg and Noe (2001): If γi + Pi > 0 for all i then there exists a
unique interbank clearing equilibrium.
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Financial network

Bank i ’s terminal net worth at t = 2

Fraction of liquidated external asset

Zi =

(
Li − γi −

∑m
j=1 L

∗
ji

)+

Pi
∧ 1

Assets
Ai = γi +

∑m
j=1 L

∗
ji + ZiPi + (1− Zi )Qi

Net worth
Ci = Ai − Li
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Financial network

Bankruptcy characterization

Shortfall of bank i equals

C−i = Li − L∗i

Bank i is bankrupt if and only if

Ci < 0 (or L∗i < Li )

If bank i is bankrupt then all its external assets are liquidated

Zi = 1

Andreea Minca (Cornell) Systemic Risk and CCP Design 14 / 45



Financial network

Aggregate surplus identity

Lemma: The aggregate surplus depends on interbank liabilities only
through implied liquidation losses:∑m

i=1 C
+
i =

∑m
i=1 γi +

∑m
i=1 Qi −

∑m
i=1 Zi (Qi − Pi ).

→ Forced liquidation of external assets lowers aggregate surplus.

→ Absent external asset, cash gets only redistributed in network. No
dead weight losses.
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Central counterparty clearing

Central Clearing Counterparty (CCP)

We label the CCP as i = 0

All liabilities are cleared through the CCP

→ star shaped network

Proportionality rule: CCP liabilities have equal seniority

→ interbank clearing equilibrium is trivial (no fixed point problem)
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Central counterparty clearing

Capital structure of CCP

The CCP is endowed with

external equity capital γ0

guarantee fund ∑m
i=1 gi

where gi ≤ γi is received from bank i at time t = 0

Guarantee fund is hybrid of margin fund and default fund:

GF payment gi netted against bank liability (margin fund)
GF absorbs shortfall losses of defaulting banks (default fund)

Banks’ shares in the guarantee fund have equal seniority
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Central counterparty clearing

Liabilities

Bank i ’s net exposure to CCP

Λi =
∑m

j=1 Lji −
∑m

j=1 Lij

Bank i ’s nominal liability to the CCP (netting)

L̂i0 =
(
Λ−i − gi

)+

CCP’s nominal liability to bank i

L̂0i = (1− f )Λ+
i

→ CCP charges a volume based fee f on bank i ’s receivables

f × Λ+
i
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Central counterparty clearing

Nominal guarantee fund

Bank i ’s nominal share in the guarantee fund:

Gi = (Λi + gi )
+ − Λ+

i

-gi 

gi 

0 Λi 

Gi 

Li0 
^ 

Figure: Gi and L̂i0 as functions of Λi
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Central counterparty clearing

CCP’s nominal balance sheet at t = 1

Denote Gtot =
∑m

i=1 Gi total nominal value of guarantee fund

Assets: γ0 +
∑m

i=1 gi +
∑m

i=1 L̂i0,

Liabilities: L̂0 + Gtot + nominal net worth
(
γ0 +

∑m
i=1 f Λ+

i

)
.
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Central counterparty clearing

Liability clearing equilibrium

Fraction of external assets liquidated (L̂i0 × L̂0i = 0)

Ẑi =

(
γi − gi − L̂i0

)−
Pi

∧ 1

Clearing payment of bank i to CCP

L̂∗i = L̂i0 ∧ (γi − gi + Pi )

Value of CCP’s total assets become

Â0 = γ0 +
∑m

i=1 gi +
∑m

i=1 L̂
∗
i

Clearing payment of CCP

L̂∗0 = L̂0 ∧ Â0

Bank i receives (proportionality rule)

L̂∗0i =
L̂0i

L̂0

× L̂∗0
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Central counterparty clearing

Liquidation of the guarantee fund at t = 2

Guarantee fund = first layer, prior to nominal net worth

G ∗tot = Gtot ∧

(
Â0 − L̂∗0 − γ0 −

m∑
i=1

f Λ+
i

)+

Bank i receives (proportionality rule)

G ∗i =
Gi

Gtot
× G ∗tot
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Central counterparty clearing

Terminal net worth

CCP
Ĉ0 = Â0 − L̂0 − G ∗tot

Bank i ’s assets

Âi = γi + ẐiPi + (1− Ẑi )Qi +
L̂0i

L̂0

× L̂∗0 + G ∗i − gi

Bank i ’s net worth
Ĉi = Âi − L̂i0

Shortfall of CCP and banks becomes

Ĉ−i = L̂i − L̂∗i
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Central counterparty clearing

Aggregate surplus identity with CCP

Lemma: The aggregate surplus with CCP depends on clearing mechanism
only through implied liquidation losses:∑m

i=0 Ĉ
+
i =

∑m
i=0 γi +

∑m
i=1 Qi −

∑m
i=1 Ẑi (Qi − Pi ).
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Ex post effects of central counterpary clearing
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Ex post effects of central counterpary clearing

Independence from fee and guarantee fund policy

Write g = (g1, . . . , gm).

Lemma:

Number of liquidated assets Ẑi does not depend on (f , g)

Shortfall of bank i does not depend on (f , g)

Ĉ−i = (Λi + Pi + γi )
−

Aggregate surplus dos not depend on (f , g)
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Ex post effects of central counterpary clearing

Scope

Compare financial network with and without CCP

Convention: For comparison we set

C0 = γ0

Andreea Minca (Cornell) Systemic Risk and CCP Design 28 / 45



Ex post effects of central counterpary clearing

CCP ex post effects

Theorem:

The CCP reduces

liquidation losses Ẑi ≤ Zi

bank shortfalls (bankruptcy cost) Ĉ−i ≤ C−i

The CCP improves

aggregate terminal bank net worth
∑m

i=1 Ĉi ≥
∑m

i=1 Ci

aggregate surplus∑m
i=0 Ĉ

+
i =

∑m
i=0 C

+
i + (Qi − Pi )

∑m
i=1(Zi − Ẑi )︸ ︷︷ ︸
≥0

The CCP imposes shortfall risk Ĉ−0 ≥ 0
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Ex post effects of central counterpary clearing

CCP impact on banks’ net worth decomposition

Theorem: Difference in net worth of bank i is decomposed in

Ĉi − Ci = T1 + T2 + T3

corresponding to

counterparty default:

T1 = −
Λ+
i∑m

i=1 Λ+
i

Ĉ−0 +
∑m

j=1(Lji − L∗ji )

liquidation loss:
T2 = (Zi − Ẑi )(Qi − Pi ) ≥ 0

fees and losses in guarantee fund:

T3 = −f Λ+
i −

Gi

Gtot
(Gtot − G ∗tot) ≤ 0
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Ex post effects of central counterpary clearing
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Figure: Expected differences in stand-alone risk components with and without
CCP as functions of guarantee fund contribution g . Number of banks is m = 14.
CCP equity is γ0 = 5× 109. Fee is f = 2%.

Andreea Minca (Cornell) Systemic Risk and CCP Design 31 / 45



Systemic risk and incentive compatibility
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Systemic risk and incentive compatibility

Systemic risk measure

Write C = (C0, . . . ,Cm) and Ĉ = (Ĉ0, . . . , Ĉm)

Generic coherent risk measure ρ(X )

Aggregation function, α ∈ [1/2, 1],

Aα(C ) = α
∑m

i=0 C
−
i︸ ︷︷ ︸

bankruptcy cost

− (1− α)
∑m

i=0 C
+
i︸ ︷︷ ︸

tax benefits

Systemic risk measure (Chen, Iyengar, and Moallemi 2013)

R(C ) = ρ (Aα(C ))
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Systemic risk and incentive compatibility

Impact on aggregation function

Lemma:
Aα(Ĉ )− Aα(C ) = αĈ−0 −∆α

where

∆α = α
∑m

i=1

(
C−i − Ĉ−i

)
+ (1− α)(Q − P)

∑m
i=1

(
Zi − Ẑi

)
is nonnegative, ∆α ≥ 0, and does not depend on (f , g). Hence

R(Ĉ )−R(C ) = ρ
(
Aα(Ĉ )

)
− ρ (Aα(C )) ≤ ρ

(
Aα(Ĉ )− Aα(C )

)
≤ αρ

(
Ĉ−0

)
+ ρ(−∆α)

with equlity if ρ(X ) = E[X ].
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Systemic risk and incentive compatibility

Systemic risk reduction

Theorem: The CCP reduces systemic risk, R(Ĉ ) < R(C ), if1

αρ
(
Ĉ−0

)
︸ ︷︷ ︸

shortfall risk of CCP

< −ρ (−∆α)︸ ︷︷ ︸
risk-adjusted value of ∆α

where

∆α = α
∑m

i=1

(
C−i − Ĉ−i

)
︸ ︷︷ ︸
cost of intermediation

+(1− α)
∑m

i=1

(
Zi − Ẑi

)
(Qi − Pi )︸ ︷︷ ︸

mitigation on liquidation losses

≥ 0

does not depend on (f , g).

1if and only if for ρ(X ) = E[X ]
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Systemic risk and incentive compatibility

Acceptable equity, fee, and guarantee fund policies

CCP and banks are risk neutral

Utility function = expected surplus E
[
C+
i

]
Policy (γ0, f , g) is incentive compatible if

E
[
Ĉi

+
]
≥ E

[
C+
i

]
∀i = 0 . . .m.

Policy (γ0, f , g) is acceptable if incentive compatible and

R(Ĉ ) ≤ R(C )
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Systemic risk and incentive compatibility

Symmetric case

Assumption: γi ≡ γ, gi ≡ g , and

(Qi ,Pi , {Lij}j=1...m, {Lji}j=1...m), i = 1 . . .m

is exchangeable.

Theorem:

Policy (γ0, f , g) incentive compatible if and only if

γ0 ≤ E
[
Ĉ0

+
]
≤ γ0 +

m∑
i=1

E
[(

Zi − Ẑi

)
(Qi − Pi )

]
Existence theorem for acceptable policies

Every acceptable policy is Pareto optimal
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Simulation study
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Simulation study

Parameters

Symmetric CDS inter dealer network based on BIS 2010 data

gross market value W = $1tn

m = 14 banks

γi = γ = $10bn

Qi = Q = $11bn, Pi = Qi/2

CCP: γ0 = $5bn, fee f = 2% (≈ 1bp of notional)

Systemic risk measure R(C ) = E [A0.9(C )]

Model:

W =
∑
i 6=j

E [|Xij |] , Xij i.i.d. N(0, σ)

Lij = (|Xij | − |Xji |)+
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Simulation study

Systemic risk, banks’ and CCP utility as functions of g

∃ acceptable and incentive compatible policies: greg, gcomp < gmon
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Simulation study

Incentive compatible utility indifference curves and
systemic risk zero line in (f , g)
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Simulation study

Systemic risk as functions of g for m = 14 vs. 10 banks
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greg doubles: concentration risk matters!
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Simulation study

Systemic risk, banks’ and CCP utility as functions of g , γ0
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Simulation study

Hybrid vs. pure (default) guarantee fund

Pure guarantee fund: not netted agains liabilities, Li0 = Λ−i .

Assets remaining with bank i , γi − gi + Pi , form margin fund.
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Systemic risk improvement is limited, while banks have no incentive
compatibility: gmon < greg.
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Conclusion

Conclusion

General financial network setup with and without CCP

CCP improves aggregate surplus due to lower liquidation losses

CCP reduces banks’ bankruptcy cost

CCP introduces tail risk, and may increase systemic risk

Find exact condition for systemic risk reduction

Simulation study illustrates range of acceptable CCP equity, fee, and
guarantee fund policies

Hybrid guarantee fund design greatly improves banks incentives to
join CCP
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