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Basic concepts

Networks in economics; Descriptives.

v

Background material:

Jackson [book, 2010];

de Paula [ESWC, 2017];
Graham-de Paula [book, 2020];
Graham [book chapter, 2020];

... but also a few additional
elements.

(This presentation borrows from related

slides by B.Graham.) A


https://www.amazon.co.uk/Social-Economic-Networks-Matthew-Jackson/dp/0691148201
https://www.ucl.ac.uk/~uctpand/econometrics_of_network_models_2017.pdf
https://www.amazon.co.uk/Econometric-Analysis-Network-Data/dp/0128117710/ref=sr_1_1?dchild=1&keywords=The+Econometric+Analysis+of+Network+Data&qid=1591047852&sr=8-1
https://www.sciencedirect.com/science/article/abs/pii/S1573441220300015

» There are many “fun” resources out there:

- e.g., KONECT, Stanford Network Analysis Project and its data collection
(data, analysis, etc.)

- e.g., Networkx, R (for instance, here, here, here and here) (analysis,
visualisation, etc.)

- e.g., Gephi, Graphviz, Cytoscape (visualisation)


http://konect.cc/
http://snap.stanford.edu/index.html
http://snap.stanford.edu/data/index.html
https://networkx.github.io/
https://kateto.net/netscix2016.html
https://www.jessesadler.com/post/network-analysis-with-r/
https://cran.r-project.org/web/packages/network/index.html
https://link.springer.com/book/10.1007/978-1-4939-0983-4
https://gephi.org/
https://graphviz.org/
https://cytoscape.org/

Networks in Economics

» Social and economic networks mediate many aspects of individual choice and
outcomes.
- Individuals, Households.
...tech adoption, risk sharing, learning, crime, consumption ...

- Firms.
... buyer-supplier networks, contagion ...

- Other (countries, states, etc.)
... gravity equations, yardstick competition ...

» “Connections” (direct and indirect) define (and are possibly defined by) how
information, prices and quantities reverberate.

Network formation models = correlates and determinants of such
relationships.
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Some Basic Terminology

» Networks = graphs: g = (NVy, &g)-
(Ng: nodes, vertices); (E4: edges, links, ties)

- &g = unordered (ordered) node pairs = undirected (directed) network.
(e.g., Fafchamps-Lund [2003]) (e.g., Atalay et al. [2011])

- Connections can also be “weighted.”
(e.g., Diebold-Yilmaz [2015]) (e.g., Attanasio-Krutikova [2020])



» Consider, for instance, the (undirected) Nyakatoke risk-sharing network
collected by De Weerdt [2004]:

@ Wealth < 150,000 TSh @ 300,000 TSh < Wealth < 600,000 TSh
150,000 TSh < Wealth < 300,000 TSh ® Wealth > 600,000 TSh

> [Nl = 119 and |&| = 490 « (%) = 7,021,

You can download the data here. [ .ycy |
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https://www.uantwerpen.be/images/uantwerpen/personalpage32040/files/DeWeerdt_2004_OUP.pdf
https://www.uantwerpen.be/en/staff/joachim-deweerdt/public-data-sets/nyakatoke-network/

A few ways to represent networks

» Adjancency matrix: Wyyn. (N = [Ng))
(W represents ij edge)

» In an undirected and unweighted network,
Wi =1({i,j} € &).

» No self-ties (loops) and unordered edges (with no more than one edge per
pair) (i.e., ‘simple’ graph) = W is symmetric with zero diagonal.

» The adjacency matrix for a directed network (or di-graph) is not necessarily
symmetric.

» A weighted network will yield a non-binary (weighted) adjacency matrix.
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» Agent 1 is connected with agents 2 and 5
» Agent 2 is connected with agent 1
» Agent 3 is isolated, etc.
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» Agent 5 is connected to agents 1 and 4.

» Agents 2 and 5 are indirectly connected through agent 1 (i.e., share her as a
common friend)
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» 3 out of 10 possible ties are present in the network.



» There are other registries for a network:
- Incidence matrix: |[Ny| x |Eg| binary matrix.
- Adjacency list: list of neighbours for every vertex.

» These may matter computationally.

- A sparse network may be more efficiently stored as an adjacency list than
matrix.

- Number of neighbours in adjacency list = length of the list; adjacency matrix:
needs to scan a whole row (O(|Ny))).

» We will nonetheless focus here on the adjacency matrix as is commonly done
in the literature. Lo



Agents, Dyads, Triads and Tetrads

» However we register it, a network consists of

|Ng| = N agents;

- (§) = IN(N — 1) = O(N?) pairs of agents or dyads;

- (§) = IN(N - 1)(N — 2) = O(N®) triples of agents or triads;

- () = ZN(N = 1)(N —2)(N — 3) = O(N*) quadruples of agents or tetrads . ..



» When summarising a network adjacency matrix, it is convenient in fact to
conceptualise statistics in terms of

1. agent;
2. dyad;
3. triad; or

4. p-subgraph-level attributes.



Agent-level Statistics: Degree

» N;i(g): set of neighbours incident with node i in g.

» Degree of node i = D; = |N;(g)| the degree sequence of a network is
DN><1 = [DI]{\L1)

» The degree distribution gives the frequency of each possible agent-level
degree count {0,1,...,N — 1} in the network.

» Some datasets might report agent degrees without much further network
information.
(For example, Aggregate Relational Data registers “How many of your social connections have
trait k?”)



Nyakatoke Degree Distribution
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Dyad-level Statistics: Density

» Dyads are either linked or unlinked.

» The count of linked dyads in the (undirected) network is

N 34D
it i Wy = =5—=

» The density of a network equals the frequency with which a randomly drawn
dyad is linked:

e (3) BT ST

i=1j<i

» For the Nyakatoke network, 3. | 7, _; Wj; = 490, N = 119 = ('}°) = 7,201.

> pn = 490/7,021 = 0.0698. [ .ycy |



» Note also its relation to the average degree \y:

N
)‘N = ZD,/N:> )\N ZpN(N— 1)
i=1

» For the Nyakatoke network, Ay = 8.283.

» Low density and skewed degree distributions (with fat tails) are common
features of real world social and economic networks.



Walks and Paths

» A walk is a sequence of edges that joins a sequence of nodes or vertices (i.e.,
(e1,...,ep_1) for which (vq,...,v,) such that e; = (v, vj,1).

» A trail is a walk with no repeated edges.

» A path is a trail with no repeated nodes or vertices.
(In graphs allowing for multiple edges between dyads, there can be trails that are not paths.)

» Oriented walks, trails and paths are analogously defined as one would
naturally imagine in directed networks.
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» The i" diagonal element in W? equals the number of agent i’s links or her
degree.

» The (i, /)" element of W? gives the number of links agent i has in common
with agent j (i.e., the number of “friends in common”).



» Graph Theory: the (i, /)" element of W? gives the number of walks of length
two from agent i/ to agent .

» If i and j share the common friend k, then a length two walk from i to j is given
by i - k — j. (This is actually a path!)

» In our previous example,
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» The (i, /)" element of W? gives the number of walks of length 3 between i
and j.

» If both / and j are connected to k as well as to each other, then the {/, j, k}
triad is transitive (i.e., “the friend of my friend is also my friend”).



» The i diagonal element in W3 counts the number of transitive triads or
triangles to which i belongs (with i — j — k and i — k — j counted separately).

- If {i,j, k} is a closed triad it is counted twice each in the i, j and k' diagonal
elements in W3.

- Tr(W?3)/6 is the number of unique triangles in the network.



» In our previous example,
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» There are three (length-3) walks betwen 1 and5:1 -5 -1 — 5,
1->2—>1->5and1—-5—-4 -5 (None of which is a path in this case.)

» There are no transitive triads in the network.



K-Length Walks

» In general, the (i, /)" element of WK gives the number of walks of length K
from i to j.

- Let (WK);; denote the (i, /)" element of WK.

- WO = Iy and the only zero length walks in the network are from each agent to
herself.



- Under the maintained hypothesis, (W¥); equals the number of K-length
walks from i to j. The number of K + 1 length walks from / to j then equals

/k Wk/

||M2

which is the (i, /)" element of WK+1,

- The claim follows by induction.



Distance

» The distance between j and j equals the minimum length path connecting
them.

» If there is no path connecting i and j, then the distance between them is
infinite.

» Agents separated by a finite distance are connected, otherwise they are
unconnected.



» We can use powers of the adjacency matrix to calculate these distances:

Mij = min{k - (Wky; > 0}

» If the network consists of a single connected component, we can compute

average path length as
o AN TN
- (3) LXM.

i=1j<i



» Common protocols to find shortest paths between two nodes build on
Dijkstra’s algorithm [1956, published in 1959] for directed or undirected
networks (with non-negative edge weights).

» Other algorithms exist and their relative performance depends on features of
the network (e.g., sparsity) and its storage (e.g., adjacency list or other).

» Many of those have connections with (approximate) dynamic programming
computational methods (see, e.g., Sniedovich [2006]).

» Other alternatives exist (see, e.g., here.)


https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=40368327ACB1D1FFF45671886D563916?doi=10.1.1.165.7577&rep=rep1&type=pdf
http://matwbn.icm.edu.pl/ksiazki/cc/cc35/cc3536.pdf
http://people.cs.uchicago.edu/~ravenben/publications/pdf/orion-wosn10.pdf

A Small Detour

» If direct computation of network features is costly, one can alternatively resort
to sampling (see, e.g., here for average path length).

“[W]e point out that sampling and estimation are also being used in a proactive manner in the
context of large network graphs, as a way of producing computationally efficient
‘approximations’ to quantities that, if computed for the full network graph, would be prohibitively
expensive. Examples include the estimation of centrality measures (...) and the detection of
so-called ‘network motifs’ (...)” (Kolaczyk [2009])


https://link.springer.com/chapter/10.1007/978-3-642-17316-5_32
https://link.springer.com/book/10.1007/978-0-387-88146-1

» There are different ways to sample from a network:

- induced subgraph sampling: random sampling of vertices (and edges between
those);

- incident subgraph sampling: random sampling of edges (and incident vertices);

- star (and snowball) sampling: random sampling of vertices and all their direct

neighbours (and indirect, for “snowball” as in a ‘spider’ programme);

» And these matter!
- Different sampling schemes can be used to rationalise, for example, the
friendship paradox.
- For average degree, star sampling produces good estimates while incident
subgraph sampling tends to produce lower estimates (see Fig.5.1 in Kolaczyk
[2009]).


https://en.wikipedia.org/wiki/Friendship_paradox
https://link.springer.com/book/10.1007/978-0-387-88146-1
https://link.springer.com/book/10.1007/978-0-387-88146-1
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Fig. 5.1 Histograms of estimated average degree in the yeast protein interaction network, based

on sampling under Design 1 (blue) and Design 2 (red), over 10,000 trials.
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Small Worlds

Table: Frequency of minimum path lengths in Nyakatoke network

1 2 3 4 5

Count 490 2,666 3,298 557 10
Frequency 0.0698 0.3797 0.4697 0.0793 0.0014

» Less than 7% of all pairs of households are directly connected.
» ...but over 40% of dyads are no more than two degrees apart.
» ...and over 90% are separated by three or fewer degrees.



» Diameter: largest distance between two agents.
» The diameter of the Nyakatoke network is 5.
» Small worlds: sparsity and low diameter together (Milgram [1967]).

» Goyal, van der Leij and Moraga-Gonzalez [2006] (updated in Rose [2022]):
1. Ngl = N> |&];
2. Diameter is small (O(In N));
3. (Clustering is high: Cly » An/N ~ pn;) @
4. Large share of Ny is connected.

((1)-(3) = Watts [1999])


https://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf
https://www.jstor.org/stable/10.1086/500990
https://onlinelibrary.wiley.com/doi/full/10.1002/jae.2886
https://press.princeton.edu/books/paperback/9780691117041/small-worlds

TABLE 1
NETWOREK STATISTICS FOR THE CoAUTHOR NETWORKS

1970s 1980s 1990s

Total authors 33,770 48,608 81,217
Degree:

Average 804 1.244 1.672

Standard dewviation 1.358 1.765 2.303
Giant component:

Size 5,253 13,808 33,027

Percentage 15.6% 28.4% 40.7%
Second-largest component 122 30 30
Isolated authors:

Number 16,735 19,315 24,578

Percentage 49.6% 39.7% 30.3%
Clustering coefficient 193 182 157
Distance in giant component:

Average 12.86 11.07 9.47

Standard deviation 4.03 3.08 233




Directed Networks (Digraphs)

» In some settings ties are naturally directed:

- Buyer-Supplier networks
- International trade flows
- Financial networks

» (In these cases the ties are also naturally weighted. Several of the measures
discussed here can be adapted to that context (see, e.g., Barrat et al. [2004],
Newman [2004] or Horvath [2011])


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC374315/
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.70.056131
https://www.amazon.co.uk/Weighted-Network-Analysis-Applications-Genomics/dp/1441988181




» If a firm supplies inputs to another firm, then there is an oriented edge (e — o)
from the supplier to the buyer.

» The supplying firm (left node) is called the tail of the edge and the buying firm
(right node) is its head.

» &£y is a set of ordered pairs. (In undirected networks, & is a set of unordered
pairs.)



Walks and Paths in Directed Networks

v

Walks and paths in directed networks have an orientation (i.e., like a one-way
road).

v

It may be possible to travel from i to j via series of directed paths, but not the
reverse direction.

v

If a path runs from i to j, but not from j to /, we say i and j are weakly
connected.

v

If a path runs in both directions, the two agents are strongly connected.



> In directed networks Wj; = 1 if i directs a link to j.

» If j also directs a tie to /, then Wj; = 1 and we say that the link is reciprocated

(. <« .)
» The adjacency matrix for a directed network need not be symmetric.

» The (i, )" entry of WX still gives the number of K length walks from i to j.



» The indegree of agent / equals the number of arcs directed toward her, while
her outdegree equals the number of links she directs toward other agents.

Indegree: W, ; = 3 ; Wj; (column sums of W)

Outdegree: Wi, = 3,; Wj; (row sums of W)



Table: Top Buying Firms by Indegree, 2015

Firm Number of Suppliers
Walmart Stores Inc. 115

Royal Dutch Shell pls 48
McKesson Corp. 41

Cardinal Health Inc. 40

Home Depot Inc. 37
AmerisourceBergen Cop. 35

Ford Motor Co. 28

Target Corp. 26

AT&T Inc. 22




Reciprocity Index

» The frequency of asymmetric dyad configurations in g equals

I5(0—>o = _1 ZZ[VV// /I +VVJ’(1_W)]

i=1j<i

» The frequency of reciprocated dyad conficurations in g equals

I:"(.<—>. = _1 ZZVV//VVI’

i=1j<i



» A standard measure of reciprocity (see, e.g., Newman [2010]) is

2P(e < o)
2/5(0 > o) —+ p(o — o).

Ry =


https://academic.oup.com/book/27303

» If edges form completely at random with probability py, then

_ 20}
2%, +2(1 — pn)pN

Rn = PN

» In practice, Ry is far from py.

» For example, reciprocity is
- common in social networks (i.e., Ry » pn)
- rare in supply-chains (i.e., Ry < pn).



Centrality

v

Will removal of a particular agent reduce crime more than the withdrawal of
another one in a criminal network?

v

‘Where’ should a policy-maker introduce new technologies or innovations?
» How do agent-specific shocks percolate through a network?
» Merger analysis?

» A measure of agent “centrality” may be useful for many policy questions.



» We can start with (in- or out-) degree centrality.

Table: Top Buying Firms by Indegree, 2015

Firm Number of Suppliers
Walmart Stores Inc. 115

Royal Dutch Shell pls 48
McKesson Corp. 41

Cardinal Health Inc. 40

Home Depot Inc. 37
AmerisourceBergen Cop. 35

Ford Motor Co. 28

Target Corp. 26

AT&T Inc. 22




Indegree: Limitations

» Imagine two firms, both with ten suppliers.

v

For the first, each of its suppliers has only one upstream supplier each.

v

Firm 1 has ten direct, and ten indirect suppliers.

v

For the second, each of its suppliers has ten upstream suppliers each.

v

Firm 2 has ten direct and one hundred indirect suppliers.

v

Which firm is more central?



CVS Health Corporation

Ford Motor Company
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» Many generalisations of indegree and outdegree centrality designed to
address above limitation.

» Let me focus on indegree extensions.

» The generalisation to outdegree-type measures follows easily. (Just replace
W with WT.)



Eigenvector Centrality

» Bonacich (1972), building on Katz (1953), recursively defined an agent’s
centrality, power, or importance within a network, c£¢(W, ¢), to be
proportional to the sum of her links to other agents, weighted by their own
centralities (see also Gould [1967]).

» Letting ¢EC(W, ¢) be the N vector of centrality measures, this gives:
cFO(W,¢) = ¢ cFOW,0)W; =
J

cEOW,¢9)" = ocEO(W, )" W


https://www.tandfonline.com/doi/abs/10.1080/0022250X.1972.9989806
https://link.springer.com/article/10.1007/BF02289026
https://www.jstor.org/stable/621372

» Typically ¢ = 1/Amax, With Amax the largest eigenvalue of W, is used for
normalisation.

» This choice ensures a solution with positive values when the network is
strongly connected (Perron-Frobenious Theorem).

» Since ¢EC(W, ¢) is the solution to

cEC(w, ¢>[;/N “w-o,

it corresponds to the left eigenvector associated with the largest eigenvalue of
w.



Row Normalisation

v

Katz (1953) suggested an alternative approach to normalisation.

v

The row normalised adjacency matrix is

G = diag{max(1, Wi, ), ..., max(1, WN+)}71 x W

v

The i row of G sums to either zero (if agent i has an outdegree of zero) or
one (if agent i has a positive outdegree).

v

If all agents have positive outdegree, then G will be a row stochastic matrix.


https://link.springer.com/article/10.1007/BF02289026

» Katz (1953) suggested the centrality measure
ckw) = Zc W)G; =
ckiwyT = cK(W)TG

» Row normalisation ensures that the largest eigenvalue of G is one and hence
that ¢X (W) is well defined.


https://link.springer.com/article/10.1007/BF02289026

Markov Chain Interpretation

» If G is row stochastic, then ¢X (W) corresponds to a stationary vector a
Markov chain with transition matrix G.

» If the matrix G is irreducible, then this is stationary vector is unique
(Perron-Frobenius Theorem).

» Irreducibility holds if, and only if, the network is strongly connected.

» Few real world digraphs are strongly connected.



» Assume strong connectivity.

» Traveling saleswoman process:

1. Saleswoman begins at any node.

2. She chooses a buyer at random from the set of buyers of her current
supplier/node and moves downstream to the selected buyer/node.

3. Repeat Step 2 many times...



» In the long run the elements of ¢X (W) equal the proportions of time our
saleswoman will spend at each node.

» Our saleswoman will spend more time at important ‘buyer’ nodes.

» Such nodes will be chosen more frequently at Step 2 of the traveling
saleswoman process.



Dangling Nodes

» Few real world social and economic (directed) networks are strongly
connected.

» “Buckets”: a strongly connected component of the digraph without outgoing
links to the rest of the graph.

» Not only does strong connectivity typically fails, but many directed networks
have “dangling nodes” (agents with zero outdegree).

» Traveling saleswoman will get stuck at such nodes = problems with finding
ck(w).



PageRank

» The problem of dangling nodes, as well as the failure of strong connectivity,
motivated Sergey Brin and Lawrence Page, then graduate students in
computer science at Stanford University, to develop the PageRank centrality
measure, which was the basis for Google to rank web-search results (see
Gleich [2015] for a recent survey).


http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank
https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202015%20-%20prbeyond.pdf

» Brin and Page made two changes to the Katz (1953) measure (see
Franceschet [2010]):

1. Regularise the (row normalised) adjacency matrix so that all rows, including
those associated with dangling nodes, sum to one.

2. Asin Bonacich (1987), endow each agent with a small amount of exogenous
centrality.


https://link.springer.com/article/10.1007/BF02289026
https://arxiv.org/pdf/1002.2858.pdf
https://www.jstor.org/stable/2780000

Modification # 1

» Brin and Page defined the Google Matrix H = [Hj;] with elements

b ) 9G+ U2 Wi, >0
d 1N otherwise.

» Observe that H is both row stochastic and irreducible.



Modification # 2

» Each agent has a small amount of exogenous centrality:

(1 ;I¢)1N

AW, )T = ¢ (W,¢)TH +

» A typical value for ¢, at least in web search, is 0.85.



» For |¢| < 1, we can solve for the PageRank vector as

eP(w.0) = TPl — ok~



Figure: Example: Franceschet [2010])
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» Modified traveling saleswoman process:

1. Saleswoman begins at any node.
2. She chooses a buyer at random

a ...with probability ¢ from the set of buyers of her current supplier/node
b ...with probability 1 — ¢ from the set of all firms.

3. She moves downstream to the node selected in Step 2.
4. Repeat Steps 2 and 3 many times. ..

At Step 2, if the firm has zero customers, then the saleswoman just moves to
a firm, from the set of all firms, at random.



Table: Top Buyers PageRank, 2015

Firm Buyer’'s PageRank
Walmart Stores Inc. 0.0272
CVS Heath Corp. 0.0198
Royal Dutch Shell pls 0.0124
AmerisourceBergen Cop. 0.0094
McKesson Corp. 0.0086
Cardinal Health Inc. 0.0060
Walgreen'’s Boots Alliance Inc. 0.0060
HP Inc. 0.0056
Express Scripts Holding Co. 0.0050




Social Multiplier Centrality

v

Quadratic complementarity game (e.g., Jackson and Zenou [2015])

v

Let Y; be a continuously-valued action chosen by agenti=1,... ,N.

v

Let Y be the N x 1 vector of all agents’ actions.

v

Let G be the row-normalised adjacency matrix.


https://www.sciencedirect.com/science/article/abs/pii/B9780444537669000033

» Observe that B
G,’.Y = Z G’IYI = YN(i)
Jj#i
equals the average actional of player i’s direct peers.

» Assume that the network strongly connected (perhaps some open questions
here?)



» The utility agent i/ receives from action profile Y given the network structure is

1 _
u(Y,W) = (ag+¢)Yi— > YZ+ BoYneiYi

]
= (a0 +¢)Yi—5YF +5oGiYY
with 0 < By < 1 and El[¢;] = 0.
» Here ¢; captures heterogeneity in agents’ preferences for action.

» Holding peers’ actions fixed, there are diminishing returns to additional action.



» The marginal utility associated with an increase in Y; is increasing in the
average action of one’s peers, Y:

PuY. W)
—_— = 0-
2YidY neiy

» Own and peer action are complements.

» The magnitude of Sy indexes the strength of any endogenous social
interactions (Manski [1993]).


https://www.jstor.org/stable/2298123

» The observed action Y corresponds to a Nash equilibrium.

» Agents observe W, the network structure, and ¢ the vector of individual level
heterogeneity terms.

» The best response function is:
Yi = ao+ Bo YNy + €i

fori=1,... N.

» Special case of linear-in-means model of social interactions.



» The best response functions define a system of simultaneous equations.

» Writing the system in matrix form gives:

Y = apl + 5oGY + ¢



» For |5p| < 1, solving for the equilibrium action vector, Y, as a function of W
and ¢ alone, yields the reduced form:

Y = ag(In — BoG) "1 + (Iy — BoG) e

» Using a series representation:

Y = Ookke.
| S




v

The infinite series representation provides insight into the social multiplier.

» Consider a policy which increases the i agent’s value of ¢; by A.

v

The full effect of this increase on the network’s distribution of outcomes
occurs in “waves”.

v

In the initial wave only agent /’s outcome increases. The change in the entire
action vector is therefore
Ae;,

where e; is an N-vector with a one in its i’ element and zeroes elsewhere.



» In the second wave all of agent i’s peers experience outcome increases.

» Their best reply actions change in response to the increase in agent i’s action
in the initial wave.

» The action vector in wave two therefore changes by

AﬁoGe,‘.



» In the k" wave we have a change in the action vector of

ABE'GH ey

» Observing the pattern of geometric decay, the “long-run” effect of a A change
in €; on the entire distribution of outcomes is given by

A(ly — BoG) e,



» The effect of perturbing ¢; by A on the equilibrium action vector coincides with
the i column of the matrix A(ly — 5oG) .

» Hence the row vector
MW, B) = (In — BoG) 1

equals the social multiplier centrality.



» In the presence of non-trivial network structure, the full effect of an
intervention will vary heterogeneously across agents.

» Shocks to central agents will have larger aggregate effects than equally-sized
shocks to less central agents.

» If we multiply the elements of ¢cSM(W, ) by (1 — 8)/N we recover PageRank
(without regularisation).



Katz-Bonacich Centrality

» This measure is increasing in the number of direct friends and indirect friends,
with weights discounted according to the degree of separation.

» The vector of centrality measures for each agent is:
cBW,¢) = 1TW+P1TW2 + .
= (A1TW)(Iy+ oW + FPW2 1+ ..))
0
(417W) [2 ¢kwk] .

k=0



» For ¢ < 1/Amax, the sequence converges so that
cBW, ) = (1TW)(Iy — W) .

» For ¢ — 1/Amax from below ¢XB(W, ¢) — cEC(W, ¢).

» Related to equilibrium effort in quadratic complementarity games on networks
(e.g., Jackson and Zenou [2015]).

» See Calvo-Armengol, Patacchini and Zenou [2009] for an early example and
Denbee, Julliard, Li and Yuan [2021] for a recent one.


https://www.sciencedirect.com/science/article/abs/pii/B9780444537669000033
https://www.jstor.org/stable/40247641
https://www.sciencedirect.com/science/article/abs/pii/S0304405X21001926

Laplacian and Some Properties

» The Laplacian matrix for a graph is givenby L = D — W.

- For an undirected, unweighted network the Laplacian is symmetric with node
degrees on the diagonal and 0 or -1 in the off-diagonals.

- L1 =0 = L is singular with 0 as an eigenvalue.

-x'Lx = Z,-jegg(x,- — xj)? = L is positive semi-definite so 0 is the smallest
eigenvalue.

- The multiplicity of the eigenvalue 0 corresponds to the number of components
in the network.



» A related matrix is the normalised Laplacian:
L=D"2LD "2 _W=1-D"2WD /2

(If d; =0, let (D-1/2);; = 0.)
- It has the same properties as L above and in addition:

Let g be connected, and let \.x be the largest eigenvalue of L. Then
Amax < 2, and equality holds if and only if g is bipartite.

» Features of the (normalised) Laplacian are informative about the network and
have been used in different contexts (eg., Jochmans and Weidner [2019],
Leung [2023]). CEEITED CEEITD)


https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA14605
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA19816

» Consider, for example, the conductance of a particular cut:

_ 2ies,jes Wi
min(ies jen, Wiis 2iese jen, Wi

¢(S)

where S c Ny (see, eg., Kannan, Vempala and Vetta [2004]).

> The partition of Ng into S and S¢is a cutand } s s Wj; is the size or weight
of the cut.

- Cuts and related quantities appear in various domains of interest (eg.,
clustering, graphons, etc.)


https://dl.acm.org/doi/10.1145/990308.990313

» The conductance of a network or graph (a.k.a, Cheeger constant or
isoperimetric constant when |S| < £|A;|) is the minimum conductance taken
over all possible (non-trivial) cuts: ¢(g) = minscn,,s22,5-n, ¢(S)

» It encodes how interwoven a graph is and it can be shown that:

(Cheeger’s Inequality for Undirected Graphs) Let G be any undirected graph,
andlet0 = Amin < Ao < -+- < A\max < 2 be the eigenvalues of L.Then

26(g) = X2 = 6(9)?/2

» So... )\ can be seen as a measure of how easy it is to split the network. (It is
known as Fiedler value or algebraic connectivity of the graph.)



Network Formation

» In some cases, peer structure plausibly (econometrically) exogenous or
predetermined ...
... but many times network formed in articulation with outcomes or incentives
determined on those very networks.

» Models for network formation are of interest per se and for their articulation
with the determination of outcomes.

» Useful (though possibly imperfect) categorization:

- Statistical Models
- Strategic Models



Statistical Models

» Statistical model: (G,o(G),P), where P is a class of probability distributions

on (G,o(9)).
» Data is one or more networks.

- Example: Erdds-Rényi. G is the set of 2¥(N="/2 graphs on N nodes, P is indexed by p.
(Zheng, Salganik and Gelman [2006] study a heterogeneous version, see also Hong and Xu
[2019])

- Example: A generalization is given by the ERGM:

P
P(G=g) =exp <Z akSk(g) —A(Oq,,..,ap)) ,
k=1

where Sk(g),k = 1,..., p enumerate features of the graph g (eg., edges, triangles) and
A(a, ..., ap) ensures that probabilities integrate to one.


https://www.tandfonline.com/doi/abs/10.1198/016214505000001168
https://www.sciencedirect.com/science/article/abs/pii/S0304405X18302332
https://www.sciencedirect.com/science/article/abs/pii/S0304405X18302332

» ERGM e exponential family.
- (Sk(9))k_, is a sufficient statistic for (ax);_; (natural parameter);
- Alat,...,ap) =In [deg exp (Xh_s akSk(g))] is its cumulant or log-partition
function;

(See Schweinberger et al. [2020] for a recent survey.)
» In principle, we can use MLE ...but A(aq,. .., ap) involves a sum over
2N(IN-1)/2 graphs.
- N =24 = |G| > # atoms in universe!

- One strategy: (log) pseudo-likelihood Z{,’j} InP(Wj = 1|W_; = w_j; @)
(Besag [1975], Strauss and Ikeda [1990]). Unreliable if not close to indep
links.

- Two alternative avenues:
> Variational principles (Wainwright and Jordan [2008], Blei et al. [2017]);
> MCMC (Kolaczyk [2009]). [ .ycp


https://jrstew.github.io/files/stat_science.pdf
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00999.x?utm_sq=gkcuvopjyw
https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10475327?journalCode=uasa20
https://www.nowpublishers.com/article/Details/MAL-001
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1285773?journalCode=uasa20
https://math.bu.edu/people/kolaczyk/SAND.html

» Variational methods = cumulant function as solution to an optimisation
problem.

» Take an Erdos-Rényi graph on two nodes: {/,j} = W; is a Bernoulli RV.
P(Wj = wj) = exp(aw; — A(a)),

where wj = 0,1 and A(a) = In(1 + exp(a)).
» Since A”(a) = exp(a)/(1 + exp(a))? > 0, we obtain that

Ala) = sup {ap— A*(u)},
nel0,1]

where A*(u) is the convex conjugate or Legendre-Fenchel transformation of
Ala):
A* (1) = sup{pa — Ala)} = pinp + (1 = 1) In(1 — p).

a€eR



» How do we obtain A*(u) without A(«)?

» |t turns out that

A (i) = —maxH(p) st Ep(Wp) = p.
where H(p) = —pInp — (1 — p)In(1 — p) is the Shannon entropy (for the
Bernoulli distribution).

» More generally: to obtain A*(u), compute H and domain of optimisation
problem (not always easily characterised) = various approximations are
employed to estimate A(«).

(Jordan [2004], Wainwright and Jordan [2008], Blei et al. [2017]; Braun and McAuliffe [2010],
Athey et al. [2018], Ruiz et al. [2020], Mele and Zhu [2023])


https://www.jstor.org/stable/4144379
https://www.nowpublishers.com/article/Details/MAL-001
https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1285773?journalCode=uasa20
https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.tm08030
https://www.aeaweb.org/articles?id=10.1257/pandp.20181031
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-14/issue-1/SHOPPER--A-probabilistic-model-of-consumer-choice-with-substitutes/10.1214/19-AOAS1265.full
https://direct.mit.edu/rest/article-abstract/105/1/113/98191/Approximate-Variational-Estimation-for-a-Model-of?redirectedFrom=fulltext

» MCMC: various protocols (see, e.g., Kolaczyk [2009]).

> e.g., following Geyer and Thompson [1992]: optimise

P
= Y (ak — 6K)Sk(9) — [Alas, ..., ap) — AGr, ..., p)]

k=1
for a fixed & where L() is the (log-)likelihood function for the ERGM.
> Note that

p
explA(at, ..., ap) — A@, . ..,dp)] = Ea [exp <Z (ak — ak)sk(e)” .
k=1

Then, estimate this by simulation under & and obtain the SMLE.

> The simulation can be done by Gibbs sampling (Glauber dynamics), Metropolis-Hastings, or
other methods (e.g., inversion); one edge per iteration, or possibly more (e.g., triads) (see
Snjiders [2002], Kolaczyk [2009], Mele [2017]).


https://math.bu.edu/people/kolaczyk/SAND.html
https://www.jstor.org/stable/2345852
https://www.semanticscholar.org/paper/Markov-Chain-Monte-Carlo-Estimation-of-Exponential-Snijders/c7c09c5d3b84edfdc77776a43bcee1d1c735ef59
https://math.bu.edu/people/kolaczyk/SAND.html
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10400

» MCMC: various protocols (see, e.g., Kolaczyk [2009]).

> e.g., following Robbins and Monro [1951] (Snjiders [2002]): MLE solves the moment equations

(see, e.g., Lehmann and Casella [1998]).
> Update estimate according to

&(tv1) = & — Dy (St — S(g))
where a; — 0, D; plays the role of the Hessian (ie., an estimate for JE., [S(G)] /d«) and St is

generated according to &:.

> “The Robbins-Monro algorithm may be considered to be a Monte Carlo variant of the
Newton-Raphson algorithm.” (It is a precursor to stochastic gradient descent methods used in
ML.)

> As before, one also needs a simulation scheme for S.

- For recent related developments see, e.g., Zhang and Liang [2023]


https://math.bu.edu/people/kolaczyk/SAND.html
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://www.semanticscholar.org/paper/Markov-Chain-Monte-Carlo-Estimation-of-Exponential-Snijders/c7c09c5d3b84edfdc77776a43bcee1d1c735ef59
https://link.springer.com/book/10.1007/b98854
https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Bayesian-Analysis-of-Exponential-Random-Graph-Models-Using-Stochastic-Gradient/10.1214/23-BA1364.full

» Beware!

> Degeneracy or near degeneracy: abrupt changes in probable graphs as parameters change
(see Snjiders [2002]). Rinaldo et al. [2009], Geyer [2009]: general in discrete exponential
families. When observed sufficient statistics at or near support boundary, MLE does not exist
and, when it does, MC-ML badly behaved.

> “Whenever the observed graph statistics fall on the convex hull of the sample space of graph
statistics, then the MLE does not exist (Barndorff-Nielsen [1978]; Handcock [2003]) (.. .) this
problem is virtually guaranteed to occur, since typically at least one element of S(g) is zero for
any realistic network.” (Handcock and Hunter [2006])

> For parameter regions where distribution is multimodal, mixing time is slow (see discussion in
Mele [2017] and the formalization in Bhamidi et al. [2011] for Glauber dynamics).

> For parameter regions where distribution is unimodal, Bhamidi et al. [2011], Chatterjee and
Diaconis [2013] show that graph draws ~ Erdés-Rényi model with indep link formation.


https://www.semanticscholar.org/paper/Markov-Chain-Monte-Carlo-Estimation-of-Exponential-Snijders/c7c09c5d3b84edfdc77776a43bcee1d1c735ef59
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-3/issue-none/On-the-geometry-of-discrete-exponential-families-with-application-to/10.1214/08-EJS350.full
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-3/issue-none/Likelihood-inference-in-exponential-families-and-directions-of-recession/10.1214/08-EJS349.full
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118857281
https://csss.uw.edu/Papers/wp39.pdf
https://www.tandfonline.com/doi/abs/10.1198/106186006X133069
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10400
https://www.jstor.org/stable/41408081
https://www.jstor.org/stable/41408081
https://projecteuclid.org/journals/annals-of-statistics/volume-41/issue-5/Estimating-and-understanding-exponential-random-graph-models/10.1214/13-AOS1155.full
https://projecteuclid.org/journals/annals-of-statistics/volume-41/issue-5/Estimating-and-understanding-exponential-random-graph-models/10.1214/13-AOS1155.full

» P(Wj; = 1|W_; = w_j; a) = P(Wj; = 1; o) = focus on dyads.

- Example: Holland and Leinhardt [1981] (directed network).
P(Wj = W = 1)acexp(a’™ + 2a + o™ + o' + o™ + o)

and ‘
P(Wj =1, W; = 0)acexp(a + o™ + ).

Dzemski [2019] takes as to be “fixed effects.”

- Example: Chatterjee et al. [2011], Yan and Xu [2013] (undirected network, 8-model). Graham
[2017] characterizes MLE (with covar) and studies a conditional ML (using sufficient stats for
;).

- (A similar conditional MLE for the directed case is studied in Charbonneau [2017], Jochmans
[2018].)

- These are special cases of ERGMs (see Schweinberger et al. [2020]).


https://www.jstor.org/stable/2287037
https://direct.mit.edu/rest/article-abstract/101/5/763/58549/An-Empirical-Model-of-Dyadic-Link-Formation-in-a?redirectedFrom=fulltext
https://projecteuclid.org/journals/annals-of-applied-probability/volume-21/issue-4/Random-graphs-with-a-given-degree-sequence/10.1214/10-AAP728.full
https://www.jstor.org/stable/43304576
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12679
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12679
https://academic.oup.com/ectj/article-abstract/20/3/S1/5056388
https://www.tandfonline.com/doi/abs/10.1080/07350015.2017.1286242?journalCode=ubes20
https://www.tandfonline.com/doi/abs/10.1080/07350015.2017.1286242?journalCode=ubes20
https://jrstew.github.io/files/stat_science.pdf

» In the models above, exchangeability plays a salient role. In particular, a
result due to Aldous and Hoover for infinite random graphs (Kallenberg
[2005], Theorem 7.22):

The simple (infinite) random graph W is jointly exchangeable if and only if
Wy £ B, &6, G V(i) € N2 #

for some i.i.d. random variables (50, (Evien > (Civ(i jyene,i #) all uniformly distributed

in [0, 1], with ¢j = ¢, and for some Borel measurable function h : [0,1]* — {0, 1},
symmetric in &;, &;.

> If our data is on a single network, it is customary to condition on the realised
h(&, -, -, -) and express the kernel function as h(&o, -, -, ) = h(-, -, ")


https://link.springer.com/book/10.1007/0-387-28861-9
https://link.springer.com/book/10.1007/0-387-28861-9

» Let 7 : N — N be a one-to-one mapping and W o 7 be a simple random graph
defined as
Worm= ((Won’),-j v(i,J) eN?,j ;éj)

with the random variable (W o 7)j = Wy V(i J) € N2 with i # |.

» W is jointly exchangeable if W o Lwy permutations = of N permuting a
finite number of elements in N2



» This is a generalisation of the celebrated representation theorem by De Finetti
([1930],[1937], Hewitt and Savage [1955]):

An infinite sequence { W} , is exchangeable if and only if there exists a random
variable &y with probability distribution F(&y) such that:

p(Wh,..., W) = f N1 p(Wilo) OF (&)

» This is seen as a foundational result in Bayesian statistics as it says that if the
data are exchangeable, then (i) a parameter £, must exist; (ii) a likelihood
must exist; (iii) a prior distribution on £, must exist (Schervish [1995], Ch. 1).


http://www.brunodefinetti.it/Opere/funzioneCaratteristica.pdf
https://web.mit.edu/6.435/www/deFinetti37.pdf
https://www.ams.org/journals/tran/1955-080-02/S0002-9947-1955-0076206-8/S0002-9947-1955-0076206-8.pdf
https://link.springer.com/book/10.1007/978-1-4612-4250-5

» In general, & will turn out to be related to the limit of the empirical
distributions for W4, ..., W,.

> (Schervish [1995], Ex.1.45) Let { W}, be Bernoulli random variables. Then,

W, converges (a.s.) to £, and W, are iid Bernoulli conditional on &y = P(W).
&o is itself a random variable and its distribution is unique.


https://link.springer.com/book/10.1007/978-1-4612-4250-5

» It is important to recognise that De Finetti (or Aldous-Hoover) will not hold for
finite sequences (or arrays) (see, eg., Diaconis and Freedman [1980]) though
a similar representation holds with signed measures (see Konstatopoulos and
Yuan [2019], Thrm 1).

» That said, AH allows one to represent the probability of a link as a mixture of
conditionally independent dyadic (CID) models. A CID model is one where

]P)(Vvlj = 1|517§]) = E(£I>€j)>
and Wy 1L Wy it ij n kl = &.


https://projecteuclid.org/journals/annals-of-probability/volume-8/issue-4/Finite-Exchangeable-Sequences/10.1214/aop/1176994663.full
https://www.ams.org/journals/tran/2019-371-10/S0002-9947-2018-07701-7/
https://www.ams.org/journals/tran/2019-371-10/S0002-9947-2018-07701-7/

» According to Aldous-Hoover,
P(Wj = 1[¢,§) = Jh(ﬁo,iié/)dﬁo,
with h(&o, &1, &) = § h(&o, &, &, ) A

» So, when |Ny| = oo, joint exchangeability = mixture of CID models (AH). It
can also be shown that (even when |Ny| < o) a mixture of CID models is
jointly exchangeable.

» If |INg| < oo, exchangeability does not necessarily imply that links are formed
according to a mixture of CID models (see Graham [2020]).

» Graham [2020] discusses the inclusion of covariates where permutations are
taken conditional on realisations of the covariates (see Crane and Towsner
[2018] and Crane [2018]). Additional work on this includes Yan et al. [2019]
and Chandna et al. [2022] and references therein. Ly |


https://www.sciencedirect.com/science/article/pii/S1573441220300015
https://www.sciencedirect.com/science/article/pii/S1573441220300015
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/relatively-exchangeable-structures/003EB5ECF553B5BD20FB8CD0A74C32EE
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/relatively-exchangeable-structures/003EB5ECF553B5BD20FB8CD0A74C32EE
https://www.routledge.com/Probabilistic-Foundations-of-Statistical-Network-Analysis/Crane/p/book/9781138630154
https://www.tandfonline.com/doi/abs/10.1080/01621459.2018.1448829?journalCode=uasa20
https://academic.oup.com/biomet/article/109/3/721/6425670

» If the sampling framework is one where the network is the one induced by
randomly drawn nodes from a large (i.e., infinite) population, exchangeability
would nonetheless allow one to resort to AH.

» |In this case,
Wi =1 (h(&. &, &) = ¢) =1 (ho(&,8)) = ¢j)

where hy(-,-) corresponds to the realised h(&, --) and is symmetric in its
arguments.

» Such a measurable, symmetric function mapping [0, 1] x [0, 1] into [0, 1] is
usually referred to as a graphon.

» The “sampling distribution” for particular statistics is thus the one induced by
repeated random sampling from the underlying infinite population and there is
an active, related literature on graphons and graph limits. (A recent set of
lectures on this topic can be found here: Lecture 1, Lecture 2 and Lecture 3.)


https://simons.berkeley.edu/talks/graphons-graph-limits-1
https://simons.berkeley.edu/talks/graphons-graph-limits-2
https://simons.berkeley.edu/talks/graphons-graph-limits-3

Strategic Formation

» Statistical framework “indexed” by economic models.
(Payoff structure and equilibrium notion)

» A common u;(g) (in undirected network) is a variation of

DIWyx (U + ) + [Upwy=1Ni(9) — Ni(@) — {i} v + > > Wy Wi Wikw
J#i J k>j

» W # O if there is a link between / and j.

» u : direct utility from a link; v : utility from indirect links (friends of friends); w :
utility from common links (friends who are friends).

» Similar specifications for directed networks.



» Transferable or non-transferable utility.

“The issue, here, is whether a technology exists that would allow one to transfer utility
between agents participating to a matching process. (...) [W]hen available, they allow agents
to bid for their preferred mate by accepting the reduction of own gain from the match in order to
increase the partner’s. The exact nature of these bids depends on the context and may not
take the form of monetary transfers; in family economics, for instance, they typically affect the
allocation of time between paid work, domestic work, and leisure; the choice between current
and future consumption; or the structure of expenditures for private or public goods.” (Matching
with Transfers, Chiappori, pp.5-6)


https://press.princeton.edu/books/hardcover/9780691171739/matching-with-transfers
https://press.princeton.edu/books/hardcover/9780691171739/matching-with-transfers

» NTU: no technology enabling agents to decrease their utility to the benefit of a
potential partner;

» TU: allows transfer of utility at a constant “exchange rate” and the total gain
from the matching (surplus) is what matters for stability;

» (ITU: allows for transfers but recognizes that the exchange rate between
individual utilities is not constant and endogenous to the economic
environment; surplus maximisation # stability.)

» Network formation:

- iterative;
(Blume [1993], Watts [2001], Jackson and Watts [2002])

- static.
(Jackson and Wolinsky [1996], Bala and Goyal [2000])


https://www.sciencedirect.com/science/article/pii/S0899825683710237
https://www.sciencedirect.com/science/article/abs/pii/S0899825600908030
https://web.stanford.edu/~jacksonm/pathsje.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0022053196901088
https://www.jstor.org/stable/2999447

lterative Network Formation

» lterative network formation: sequential meeting protocol and individuals add
or subtract links at each iteration

- Example: Christakis, Fowler, Imbens and Kalyanaraman [2020], Ch.6,
undirected.
(formation = stochastic stability analysis in Jackson and Watts [2002])

- Example: Mele [2017], Badev [2021], directed. @EEED
(Potential function = NE or k-Nash stable equilibria w/o unobservables)
(Meeting protocol + myopic updating = unique invariant distr on graphs)

> i.i.d. EV unobservables = ERGM...
(Mele [2017] suggests MC scheme to improve on performance)

- Models are fitted to AddHealth data on friendships (Mele [2020]) and outcomes (smoking,
Badev [2021]) using Bayesian methods or ML.


https://www.sciencedirect.com/book/9780128117712/the-econometric-analysis-of-network-data
https://web.stanford.edu/~jacksonm/pathsje.pdf
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10400
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12576
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10400
https://www.aeaweb.org/articles?id=10.1257/pol.20170604
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12576

Static Network Formation

» “Static” network formation: e.g., pairwise stability (Jackson and Wolinsky
[1996]).

» For undirected, NTU case:

Vije w, u(w) = ui(w — ij) and y(w) > y(w - ij)
Vij ¢ w, uj(w) > ui(w + if) or ui(w) > ui(w + if)

Any link is beneficial to both parties; and
Non-existing links are detrimental to at least one of the parties.
» Not pairwise stability as in Gale and Shapley [1962]!

Other versions (e.g., for TU) and alternative solution concepts (e.g., Nash for
directed) are also possibilities. [ aie

v


https://www.sciencedirect.com/science/article/abs/pii/S0022053196901088
https://www.sciencedirect.com/science/article/abs/pii/S0022053196901088
https://www.eecs.harvard.edu/cs286r/courses/fall09/papers/galeshapley.pdf

» Example: N = 3 with payoffs 3 SIIWI=1 (1 4 ;) — |Nj(w)|. For ¢j = e,

j€1,...,nj#i
0< €23 <5/(1 _5): ije n,j#i

€12
(12,13}
12} [{12,23
2y 02,28 o o (12,13}
5/(1 — &)
(12,13}
{23} |{12,23}
1234233 {13, 23} {12,13} {13,23}
e 5/(1—26 —
b /=0 {13, 23} 13
@3y %\v {23}
—X {13123} (13}



» Usual approach (e.g., Berry and Tamer [2006]) = bounds on §.

> In this graph above, for example,
P(e12, €13 2 0) = P({12,13}) > P(e12, €13 = 6/(1 - 6))

...and one could form similar bounds for all (= 8) possible networks
(exploring the whole space of unobservables).

» Issue: explore equilibrium networks in the space of unobservables for
different 0, but N = 24 = |G| > # atoms in the observable universe!


https://www.cambridge.org/core/books/abs/advances-in-economics-and-econometrics/identification-in-models-of-oligopoly-entry/3041ADCCB34D1D2BF86440C2D2ADE86D

» de Paula, Richards-Shubik and Tamer [2018]: pairwise stability in
(non-transferable utility) /arge networks.

- Large networks: N is continuous (see Lovasz [2012] on cont graphs).

- Payoffs: depend on characteristics (not identity), finite links and finite depth = sparse,
bounded degree graph (graphing).

> Focus on network types: characteristics of local payoff-relevant networks. Covariates with finite
support = # network types is finite.

Given parameters, proportion of network types in possible equilibria can be matched to data.

* Verifying whether parameter is consistent with (necessary, sometimes sufficient) conditions for
pairwise stability is a quadratic programme!

N = 500 = 30secs. per parameter (on average).


https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA13564
https://bookstore.ams.org/coll-60/

» Application to co-authorship networks: Anderson and Richards-Shubik [2022]


https://direct.mit.edu/rest/article-abstract/104/6/1241/98190/Collaborative-Production-in-Science-An-Empirical

» Sheng [2020]. Use small size subnetworks consistent with PS + additional
payoff structures = bounds. (In the article, Sheng imposes (exchangeability)
restrictions (on egm sel and payoff primitives) that guarantee that these
bounds are nontrivial and (if estimable), sample versions converge.)
(Exchangeability = dense network: total number of links = O, (N?).))

» Miyauchi [2016]. Payoff restrictions = complementarity (supermodularity). Use lattice
structure of equilibrium set to improve computation.

» Other examples: Boucher and Mourifié [2013], Leung [2015], Gualdani [2021] ...


https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12558
https://www.sciencedirect.com/science/article/abs/pii/S0304407616301592
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12096
https://www.sciencedirect.com/science/article/abs/pii/S0304407615001396
https://www.sciencedirect.com/science/article/abs/pii/S0304407620303729

» Dynamic (farsighted) network formation: e.g., Lee and Fong [2013] (bipartite),
Johnson [2012] ... a few more recent developments.
(~ empirical dynamic games)

» Network formation and outcomes: Gilleskie and Zheng [2009], Badev [2021],.
Goldsmith-Pinkham and Imbens [2013] (dyadic formation + linear-in-means),
Hsieh and Lee [2016] (ERGM + linear-in-means).

(Partial identification in formation model = partial identification in outcome model parameters.

E.g., Ciliberto, Murry and Tamer [2021].)


https://robinlee.sites.fas.harvard.edu/papers/MPNENetworkFormation.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ff44d12e3709f45c469cf6c9c27d511bd5fad1d0
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA12576
https://www.jstor.org/stable/43702718
https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2426
https://www.journals.uchicago.edu/doi/abs/10.1086/715848

Outcomes on Networks
» Many interdependent outcomes are mediated by connections (“networks”).

» A popular representation follows the linear-in-means specification suggested
in Manski [1993]. For example,

N N
Yi=a+BY, Wy +nxi+v ), Wix + e,
= =

with E(¢;|x, W) = 0.

» In matrix form, we have

Yux1 = alnxt + BWxnYnxt + 0Xnst + Y WnxvXnxt + enx
&
y=a(ll=W)y "M+ (1=W)" "l +yW)x+ (11— BW) e


https://www.jstor.org/stable/2298123

» uncover<1-3>This system can be obtained from interaction models with
maximizing agents with quadratic payoffs.

- Example: Blume, Brock, Durlauf and Jayaraman [2015]. Bayes-Nash equilibrium with
1
Uy; W) = (a + X + ng Wix; + z,) yi+ ﬁ; Wiyiy; — Ey,?-

- Example: Calvo-Armengol, Patacchini and Zenou [2009]. Nash equilibrium with y; = €; + ¢;
and

1 15, av
Ui(ei,e; W) = <77X,‘ + ’yj; W,ij) e — Ee'z + (aWil + vj)ei — Ee,z + ﬂ; Wieie;

—Sy= %(I—BW)“BW + (l+ W)X + (1= W)~ "v.

(e.g., Denbee, Julliard, Li and Yuan [2021] and other studies.)

» See also Besley and Case [1995], De Giorgi, Frederiksen and Pistaferri
[2020].


https://www.journals.uchicago.edu/doi/abs/10.1086/679496
https://www.jstor.org/stable/40247641
https://www.sciencedirect.com/science/article/abs/pii/S0304405X21001926
https://www.jstor.org/stable/2117994
https://academic.oup.com/restud/article/87/1/130/5486072
https://academic.oup.com/restud/article/87/1/130/5486072

» Manski [1993] categorises “social effects” as:
- Endogenous effect: group outcomes on individual outcome;
- Exogenous or contextual effect: group characteristics on individual outcome;
- Correlated effects.

..and the “reflection problem”.

de Paula


https://www.jstor.org/stable/2298123

If 18] <1,n8+~v#0, Wy=(N—-1)""ifi # jand W; = 0, (o, B,1,7) is not
point-identified.

Corollary to Proposition 1 in Bramoullé et al. [2009], also in Manski [1993], Kelejian et al.
[2006] and others.

» Outlook improves with further restrictions on the model and/or data.
- Example. Take the related representation originally considered in Manski [1993]:

Vi = o+ BE(Y|W) + nxi + vE(|W) + e, E(eilx, w) = w.
Manski [1993] (Prop 2) = («, 8, 7n) are point-identified when 6 = v = 0 and 1, E(x;|w), x; are

“linearly independent in the population”.
(A similar result appears in Angrist [2014].)

» This identification argument uses between-group variation in E(x;|w), not
used in the proposition.


https://www.sciencedirect.com/science/article/abs/pii/S0304407609000335
https://www.jstor.org/stable/2298123
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9787.2006.00449.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9787.2006.00449.x
https://www.jstor.org/stable/2298123
https://www.jstor.org/stable/2298123
https://www.sciencedirect.com/science/article/abs/pii/S0927537114000712

» Alternative strategies explore restrictions to higher moments.

If 18] <1, Wj=(N—1)"1ifi # j, Wj =0, and V(e[x) = ol then («, 8,7, 7) is
point-identified.
Moffitt [2001] (N = 2) and reminiscent of results like Fisher [1966].

» The cov restriction also leads to testable implications!

Proposition. If 3| <1, W = (N—1)1if i # j, W; = 0, and V(e[x) = o?l then

C(yi, yj1%) 4 — 3N
V(yilx) 4N2 — 11N + 8

N > 3 = lower bound on Corr(y;, yj|x), e.g.: N = 3 = lower bound > —0.5.


https://direct.mit.edu/books/book/2492/chapter-abstract/66726/Policy-Interventions-Low-Level-Equilibria-and?redirectedFrom=fulltext
https://www.amazon.co.uk/Identification-Problem-Econometrics-Franklin-Fisher/dp/0070210756

- Additive group effect or shock = identification with cov restrictions and at
least two groups of different size. (Davezies, d’Haultfoeuille and Fougére [2009])
- Graham [2008] also uses higher moments to identify
Vinx1 =AW nyxnj€r vyt + a1 + € nyxt,

(see also Glaeser, Sacerdote and Scheinkman [2003]).

4 is identified if there are two groups under random assignment and additional
distributional restrictions.

- Blume, Brock, Durlauf and Jayaraman [2015] explore similar ideas for the
more general model.


https://onlinelibrary.wiley.com/doi/full/10.1111/j.1368-423X.2009.00296.x
https://www.jstor.org/stable/40056460
https://academic.oup.com/qje/article-abstract/111/2/507/1938401
https://www.journals.uchicago.edu/doi/abs/10.1086/679496

» One setting that bears some reseblance and also uses higher-order moment
restrictions is Gabaix and Koijn [2023]:

To explain the intuition, we specialize our analysis to the case where there is only a single factor
and all entities have the same loading on the factor, A\; = 1., and there are no other controls,
C? = CY = 0. The single factor is then absorbed by a time fixed effect. It allows us to develop the

main intuition in a transparent way. The system is

Pt = Yyst + &, (38)
Yit = ¢dpt + M+ Uit (39)

To take advantage of the great analytical simplicity of that example, we retrace the derivation steps
in an elementary manner. We cannot estimate 1) and ¢ by OLS as ¢, and 7, are typically correlated,

implying that yg, is correlated with & in (38), and p, with 7, in (39).

N
where ys; = >i2¢ Siyit.


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368612

> Letyor=prYe=[Yor --- Yn]'.S=[0Sy ... Sy]" ande =[1,0,...,0]
and notice that the system before can be written as

YST €t
daT
e t + Uy
yi= | OO |y | T
o] Lo+ |
—W(h g9 X) —er

Then, var(Yy) = (I = W(y,¢% 8)T) " var(e) (I = W(y,¢?,8))".

» The article assumes restrictions on var(e;) (i.e., u; L n;, ¢; and
homoscedasticity for u; or known heteroscedasticity). Under these conditions,
one can see the above as an equation system on the parameters of interest.



» Another avenue: “exclusion restrictions” in W.

If n3 4+~ # 0 and I, W, W? are linearly independent, (a, 3,7,7) is
point-identified.
(Bramoullé, Djebbari and Fortin [2009])

- W= (N=1)"i#iWi=0=> W= N-1)""1+(N-2)/(N-1)W

- W block diagonal and two blocks of different sizes =

B(nB +7) . nf+v
(1=B)(N =1 +,3)]XI+ (1-p( +%)

(Lee [2007], Davezies, d’Haultfoeuille and Fougére [2009])

+|n+ Xi +vj.

o «
y/_1_/8

» Linear independence valid more generally. In fact,

Zj’\; Wj = 1 and I, W, W2 linearly dependent = W block diagonal with blocks

of the same size and nonzero entries are (N, — 1)~".
(Blume, Brock, Durlauf and Jayaraman [2015]) m


https://www.sciencedirect.com/science/article/abs/pii/S0304407609000335
https://www.sciencedirect.com/science/article/abs/pii/S0304407606001394
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1368-423X.2009.00296.x
https://www.journals.uchicago.edu/doi/abs/10.1086/679496
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de Paula, Rasul and Souza [2023]

» What if W is unknown?

- “If researchers do not know how individuals form reference groups and
perceive reference-group outcomes, then it is reasonable to ask whether
observed behavior can be used to infer these unknowns” (Manski [1993])

» Suppose one has panel data on outcomes and covariates:

Yit = po ZjN:1 Wo,iyit + BoXit + Yo Z/-N:1 Wo,iXit + at + ai + €t
P
Yinxt = poWonxnYinxi + BoXenxt + Yo WoXe + arlyxt + o™ + e nx

with E(ej|x¢, at, ™) = 0.


https://arxiv.org/abs/1910.07452

Identification

» The model has reduced-form (assuming, for simplicity that a; = 0)
yt = MoX; + Vi
where

Mo = (1= poWo) " (Bol + 10 Wo)

» If (po, Bo,Y0) Were known, Wy would be identified:

Wo = (Mo — Bol) (polMo + ol) ™

» In practice, (po, 5o, Y0) is not known.



Identification

» Further assumptions are necessary to identify 6y = (po, 5o, Y0, Wo)-

» Take, for example, 6y and 6 such that 5o = 8 =1, po = 0.5, p = 1.5, 79 = 0.5,

v =-2.5,
0 05 O 0 05 0 0 05 05 O
05 0 05 0 0 0 0 0 05 05
W = 0 05 0 05 O W=] 05 0 0 0 05
0 0 05 0 05 05 05 0 0 0
05 0 0 05 O 0 05 05 0 0

> Then (I — poWo) " (Bol + 10 Wo) = (I — pW) (81 + A W).

» (Notice that /, Wp and W2 are LI and so are I/, W and W?2)



Local Identification

» Can the model identify 6y = (po, Bo, Y0, Wo)?

» Assume:
(A1) (Wh);i=0,i=1,...,N (no self-links);
(A2) |Z/N|1 lpo(Wo)jl < 1foreveryi=1,....N, |W]| < C for some positive C € R and
po| <1;
(A3) There is i such that Z].N:1(Wo),-j = 1 (normalization);
(A4) There are / and k such that (WZ); # (W§) i (= I, Wo, WE LI as in Bramoullé,

Djebbari and Fortin [2009]);
(A5) Bopo + Yo # 0 (social effects do not cancel). @

» Under (A1)-(A5) (po, Bo, 0, Wo) is locally identified.
(Application of Rothenberg [1971].)
Ly |



Global Identification
» It is nevertheless possible to strengthen local identification conclusions
obtained previously.

» Assume (A1)-(A5). {6 : T1(0) =T(6p)} is finite.
(This obtains as MM(0) is a proper mapping.)

» Let©, = {# € ©: pp + v > 0}. Then we can state that:

Assume (A1)-(A5), then for every 6 € © we have that T1(0) = M(Ay) = 6 = 6.
That is, 0y is globally identified with respect to the set ©, .



Global Identification

» This uses the following result:
Suppose the function T1(-) is continuous, proper and locally invertible with a
connected image. Then the cardinality of N~ ({T1}) is constant for any T in
the image of T().
(see, e.g., Ambrosetti and Prodi [1995], p.46)

» We show that the mapping I : ©,. — RV*N is proper with connected image,
and non-singular Jacobian at any point.

» This implies that the cardinality of the pre-image of {[1(6)} is finite and
constant.

» Take 0 € ©, suchthaty =0, Wjo = Wo 1 =1and W;; = 0, otherwise. The
cardinality of M~'({11(#)}) is one for such # and the result follows.



Global Identification

» Since an analogous result holds for ©_ = {6 € © such that p3 + v < 0}, we
can state that:

Assume (A1)-(A5). The identified set contains at most two elements.

» Furthermore, if pg > 0 and (Wp); > 0 one is able to sign pofo + 7o and obtain
that:

Assume (A1)-(A5), po > 0 and (Wp); = 0. Then 6y is globally identified.

» Finally, if W, is non-negative and irreducible, one is also able to sign pg /50 + 70!

Assume (A1)-(A5). (Wp); = 0 and Wy irreducible. Then 0y is globally
identified if Wy has at least two real eigenvalues or |py| < v/2/2.



A Few Remarks

» One can also allow for Stovaryby i=1,... N:

- ...with multivariate x; ; as long as one of the covariates has homogeneous g; or
- ...ify=0aslong as 3; # 3; for every i # .

» Time-varying (p:, 5t, v, W;) can be identified from MN;. Estimation can be

adapted from strategies available in the current literature (e.g., kernels, STAR,
etc.).

» Further extensions in the paper!



Estimation Strategies

» Identification results hold for any protocol delivering an estimator for M.

» Ty has N? parameters, and possibly NT « N? (N = 48 = N? = 2,304
parameters).

» Feasible if W, (or IMy) are sparse.
(e.g., Atalay et al. [2011] < 1%; Carvalho [2014] =~ 3%; AddHealth ~ 2%; US state neighbors
~ 7%; Manresa [2016] (8 = 0, LASSO), Bonaldi, Hortacsu and Kastl [2014] (8 = 0, elastic
net)).


https://www.dropbox.com/s/erc8gr4yo0favyx/Manresa_2016_final.pdf?dl=0
https://www.nber.org/papers/w21462

» Penalization in the structural form (e.g., Adaptive Elastic Net GMM of
Caner and Zhang [2014]:

- X; L ¢ = moment conditions.
. n n
6=01+x/T) arg min {g(G)TMrg(O) + A Y Wil + X2 ) |w,,,|2}
OeR ij=1 ij=1

and

6= +A2/T).argmin{g(@)TMTg(e)H;“ > [wi,| +Xe Y] |wf,,|2}

OeRP W; j#0 |'7V’7/|’Y ij=1

where 6 = (vec(W) ", p, 8,7)" and A\¥, A\; and X chosen by BIC.

- The convergence rate for this estimator is shown to be /T /(dN), where d is
the density of the network.


https://www.tandfonline.com/doi/abs/10.1080/07350015.2013.836104

» Nonlinearities:

- “social effects might be transmitted by distributional features other than the mean” Manski
[1993], and/or

- in the “link” function (i.e., y; = f(Zj’\’:1 Wiy, i, S, V\/,,-)(,7e,)).
- Example: Tao and Lee [2014], Tincani [2018].

- Example: Brock and Durlauf [2001, 2007], Xu and Lee [2015] « Bramoullé et al. [2014];
Blume, Brock, Durlauf and loannides [2011].

» Multiplicity. (de Paula [2013])

» Manski [2013]: potential outcomes with social interactions.
.y/(d) = f(VVhy*i(d)vdﬂfi)

(Consumption in PROGRESA, Angelucci and De Giorgi [2009]; spillovers in scholarship
program, Dieye et al. [2014]; epidemiology)

- W also possibly affected by the treatment (Comola and Prina [2021]).


https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12031
https://www.homepages.ucl.ac.uk/~uctpmt1/Tincani_2018_heterogeneous.pdf
https://academic.oup.com/restud/article/68/2/235/1523094
https://www.sciencedirect.com/science/article/abs/pii/S0304407606002235
https://www.sciencedirect.com/science/article/abs/pii/S0304407615001657
https://www.jstor.org/stable/42920723
https://www.sciencedirect.com/science/article/abs/pii/B9780444537072000013
https://www.ucl.ac.uk/~uctpand/ARE_2013.pdf
https://onlinelibrary.wiley.com/doi/10.1111/j.1368-423X.2012.00368.x
https://www.aeaweb.org/articles?id=10.1257/aer.99.1.486
https://www.iza.org/publications/dp/8340/accounting-for-peer-effects-in-treatment-response
https://direct.mit.edu/rest/article-abstract/103/3/597/97667/Treatment-Effect-Accounting-for-Network-Changes?redirectedFrom=fulltext

Appendix




Triad Census

Empty One edge Two star Triangle
: NN N\
3 2 3 2 3 2 3 — )




» Triads come in four types (isomorphisms):

- no connections or empties;

- one connection or one-edges;
- two connections or two-stars;
- three connections or triangles.

» A complete enumeration of them into their four possible types constitutes a
triad census.



Triad Census: Triangles
» Each agent can belong to as many as (V') = W triangles.
» The N diagonal elements of W2 count those triangles as we have seen

before, but we need to adjust for ‘double counting’:

TH(W?
Tr = (6 )

» In our toy example, this is zero.

(There might be more efficient ways of counting triangles: see here.)


https://www.ics.uci.edu/~goodrich/teach/cs165/notes/NetworkAlgs.pdf

Triad Census: Two-Stars

» Each dyad can share up to N — 2 links in common.

» These counts are contained in the lower (or upper) off-diagonal elements of
W2,

» Each triad appears three times in these counts: as {/,/, k}, {/, k, j} and
{j,k,i}. Ifitisa
- two-star, only one of W; W;, W;; W,; or Wix Wy quantities will equal one.
- triangle, then all three will equal one.



» This means that vech(W?) "1 gives the network count of three times the
number of triangles plus the number of two-stars.

» Therefore

Tr(W3)
2

equals the number of two-star triads in the network.

Trs = vech(W?)™1 —

» In our toy example, this is two and correspondsto1 —2 -4 and 2 — 4 — 5.



Triad Census: One-Edges

» If all triads are empty or have only one edge, then there will be
(N — 2)vech(W)"1 one edge triads.

» If some triads are two-stars or triangles, this count will be incorrect.

» Subtracting twice the number of two stars and three times the number of
triangles gives the correct answer:

Tr(W?)

Toe = (N —2)vech(W) ™1 — 2vech(W?)™1 +

» In our toy example, thisis (5 —-2) x 3 -2 x 2 =5.



Triad Census: Empties

» The number of empty triads, Tg, equals ('g’) minus the total number of other
triad types.

> In our toy example this is equal to (3) —0—2—5=10—7 = 3. These are the
triads {1,3,4},{2,3,4} and {2, 3, 5}.



Table: Triad Census: Nyakatoke Network

Empty One-Edge Two-Star Triangle
Count 221,189 48,245 4,070 315
Proportion  0.8078 0.1762 0.0149 0.0012
Random 0.8049 0.1812 0.0136  0.0003




Clustering

v

The clustering index (a.k.a. transitivity index) is

377

Cl=—_>T__
TTS +3TT

v

In random graphs, the C/ should be close to network density.

v

For the Nyakatoke network C/ = 0.1884 and py = 0.0698.

v

In the economics co-authors network, Cligggs = 0.157 and
PN,1990s = 0.0000206.



v

Let Pr(Wj = 1) = py with all edges forming independently.

v

Probability that a randomly drawn triad is a triangle is p,3v.

v

Probability that a randomly drawn triad is a two-star is 3 x p3,(1 — pn).

v

In a random graph,

3O
3(5)o% + (5)30%(1 — o)

Cl~ = PN-



Degree Distribution Redux

> Average degree equals \y = W

» Degree Variance equals

2

Sh=n

(Trs +3T7) — An(1 = An)

» Knowledge of mean degree, variance and number of triangles is equivalent to
knowledge of triad census.

» Degree distribution constrains other (local) features of the network.



Example 1: Jochmans and Weidner [2019]

» This paper studies how network structure (in particular, algebraic connectivity)
affects the accuracy of fixed effects estimates in linear models on bipartite
networks (eg., worker-firm, teacher-student,. . .).

» Other papers dealing with related aspects include:

- Andrews et al. [2008] (downward bias on worker-firm effect correlation);
- Rockoff [2004] (upward bias on teacher effect variance in teacher-student
panel).


https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA14605
https://www.jstor.org/stable/30135090?seq=18
https://www.aeaweb.org/articles?id=10.1257/0002828041302244

» Consider an undirected network g on [Ny| = nvertices and |£4| = m edges
with (possibly weighted) adjacency matrix W as before.

» Foree &y, letee € {1,..., m} be an enumeration of its edges. (The paper
allows g to be a multigraph, but | will abstract from that.)

» Its m x n (oriented) incidence matrix B is given by

VWe  ife={i,j} forsomeje Ngand i</,
(B)eoi =3 —/We if e = {i,j} for some j e Ngand i > j,
0 otherwise.

(The choice of orientation is immaterial for their analysis.)

> The (oriented) incidence, adjacency and Laplacian matrices are related as
L:=B'B= D~ W. (If Bis the unoriented incidence matrix,
BB=D+W=L+2W.)



» Given the graph g, for each edge e € £, we observe an outcome y., and a
p-vector of covariates x.,. (A multi-graph would accomodate a panel!)

» Leta := (ay,...,an)" € R" be a vector of vertex-specific parameters.

» Stacking the observations one gets:

Yiggix1 = Bieg|x g @ngIx1 + Xigg|xpBpx1 + Ujgg|x1



» The outcomes for a given pair (/,j) depend on the individual effects through
aj — Q which
remains the same if we switch to &; = a;+c¢, ¢ € R. (In other words, 1 € N(B).)

» Letd := (d,, ..., dy) and impose the normalisation:

n

ZZ )i (ai+a)) =0 da=0

i=1j=1



The standard estimator of « is the constrained least-squares estimator

&= (d,...,0p) = argmin  [Mxy — MXBaHZ’
ae{aecR™:d'a=0}

where || - || is the Euclidean norm, My := I, — X (X’X)_1 X', and I, is the identity
matrix of dimension m x m.



» For any matrix Cpxn, let C' be its Moore-Penrose pseudoinverse. Define
C* . D12 (D_1/2CD_1/2>T D172,

(C™* is itself a pseudoinverse of C.)

Let g be connected, rank(X) = p, andrank((X,B)) = p+n—1. Then
& = (BIM)(B)* BIMXy

and is unique.



» Omit X for simplicity so that

&:= (B'B)" By

» To study how the structure of g affects the estimation problem, assume first
that u ~ (0,0%1,). Then

var(&) = o® (B'B)" = o°L*

i
where L* = D '/2 (D*1/2LD*1/2> D 2=D '2(£)' D /2 and L is the
normalised Laplacian.



» This implies that

» The estimator precision will depend on sample size through d;, but even as it
grows with the sample the variance is still dependent on £, which may change
as the network grows.



» Let

—1
wW)H2
h; = ;2 (d')lj
TjeNGy

This is a (weighted) harmonic mean which is increasing in the degree of i’s
direct neighbours.

Let g be connected and suppose that u ~ (0,0%1n). Then'

1 1 1 1 1
o0 1\ _ ay e 21 LAY
o (di m)\var(a,)\a (d,- (1+)\2hi> m)

» This indicates that hjA\, — o0 = &; converges at parametric rates (ie., d,’1/2).

'In the paper, the result has 2/m instead of 1/m. This is a typo. ! ! I I



» The paper connects the above model to two-way fixed effects in bipartite
graphs representing workers and firms, teachers and students, etc. where

Yiggix1 = Bi gy 1xvi By x1 + Bz g [ xva My x1 T+ XjggIxpBpxt + Uggx1s

where a = (i, —n')’, and B = (By, —Bo) .

» There, one can also look at the projection on one side of the graph (eg, firms
or teachers).

» This corresponds to a graph g’ where two teachers are connected by an edge
if there is at least one student who was taught by both. The edge weight will
be larger the more students in common there are.






The device of a one-mode projection highlights the importance of having movers
in panel data. In matched worker-firm data sets, workers do not frequently switch
employers over the course of the sampling period. This lack of mobility is one
cause of the substantial bias that is observed in the correlation coefficient between
(estimated) worker and firm effects (...). While this is now well recognized, limited
mobility has broader consequences. (...) Therefore, the induced graph may be
only weakly connected (and A, will be close to zero) and the variance of the
estimator of the firm effects may be large. This is not only detrimental for
identifying sorting between workers and firms, but, indeed, complicates estimation
and inference of the firm effects as well as all their moments, such as their
variance. (Jochmans and Weidner [2019], p.1552)



Example 2: Leung [2023]

» This paper studies clustering for econometric inference for settings where
observations pertain to a network.

» Here, the parameter of interest is 6 € R% which relates to the following
moment condition:

Elg(W,00)] =0 VieNg

» Estimates can be obtained using the sample analogues
G(0) = n=' Y1, g (W, 0) through GMM:

0 = argminG(0)'V,G(6),
0

where V¥, is a weighting matrix.


https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA19816

» A clustering scheme partitions the observations into L observation clusters
{Cot-_, with ny = |Cyl.

» For this to work, one needs the observations to be unrelated or weakly related
across clusters.

» Notice that a particular cluster C, defines a cut of the graph!

» Consequently, one can compute ¢(Cy) and an overall conductance measure
for the clustering scheme: maxey. 1 ¢(Co).



ey e o 0%
o

. - ot 48 N s
'Q. z .‘.;'o@@:}'-%’w : ‘r
;%ao é&t‘ o :-'_ | o see -

P Labe Mty B

050 @oo 0000% ® L3

Qéy%‘.. 2e @%:{.’.@




> Let §, the GMM estimator and Gy(0) = ;' Yee, 9 (W;, 0) be the sample
moment vector constructed using only observations in C;.

» Small-L cluster-robust methods use estimates (ég)[ , or moments

=1,

(Gg (é€>>g_ to construct tests and confidence sets for the parameters of

interest.



» Under weak network dependence, the article argues that

ny Gy (6o)

d ®
% K I N (O,Z ) .
nGy (6o)

» This is an internzediate result for the vector of GMM estimates
(\/ﬁ (9} - 00>)z , 1o be asymptotically normal.
» Theorem 1 then establishes that if maximal conductance across clusters

(times average degree) goes to zero, the off-diagonal elements in £* go to
zero.

» This provides (asymptotic) guarantees for the deployment of a clustering
scheme.



» The analysis relies on a generalisation of the Cheeger constant we examined
before.

» For any integer L > 1, the Lth-order Cheeger constant of g is given by:

¢1(g) = min {1T?<XL &(Cp) - {Cz}é=1 partitions Ng}

» This is the lowest possible maximal conductance over all possible partitions of
size L. As before,

% < oL(g) < CA?

where 0 = A\pin < Xo < --- < A\ < - -+ < Anax < 2 are the eigenvalues of the
(normalised) Laplacian matrix.



» Based on this, the article offers a few recommendations:
1. (Conductance): Given a candidate set of clusters {Ce}é=1,, compute its maximal
conductance. The asymptotic results suggest this should be small compared to
n. (In simulations, it should be no larger than 0.1 to ensure adequate size
control.)

2. (Laplacian): Based on simulations, select the largest L such that A, is at most
0.05 to ensure that clusters have sufficiently small conductance. (L > 5 appears
to ensure sufficient power.)

3. (Computing clusters): Given L, ideally select the partition that minimizes
conductance. An exact solution is computationally infeasible, alternatives such
as spectral clustering can be employed.



Spectral clustering algorithms work like this (see von Luxburg [2007] and von
Luxburg et al. [2008]):
1. Given a graph g and desired number of clusters L, compute the
(unnormalised) Laplacian and its eigenvalues 0 = Apin < ... < Apax-

2. Let V, be the eigenvector associated with A\, and V,; its i th component.
Embed the n units in RE by associating each unit i with a position

Xi = Vi 120 W 12
(2 v2) (zhv2)

3. Cluster the positions {X;}/_, using k-means with k = L to obtain Cy,...,C,.

Variations using the normalised Laplacian, are also discussed in the above
reference.


https://link.springer.com/article/10.1007/s11222-007-9033-z
http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/LuxBelBou08.pdf
http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/LuxBelBou08.pdf

Graph Limits

» We can characterise the moments of a graph by the frequency at which
configurations or subgraphs appear in the sampled graph.

» In doing this, it is important to distinguish partial and induced subgraphs and
to note potentially isomorphic graphs (see Graham [2020]):

The graphs R and S are isomorphic if there exists a structure-maintaining

bijection ¢ : N(R) — N(S). (Structure is maintained if the edges and
non-edges in R correspond to edges and non-edges in S.)

» Example: S = A.


https://www.sciencedirect.com/science/article/pii/S1573441220300015

» One can then define the frequency at which a graph S (on p nodes) appears
as an induced subgraph in G (on n > p nodes).
» This can be expressed as

1
tind(S7 G) ==

PRICEECA)
( g ) | i50(S) | VeeCon) ’

where v, are p different nodes in N, G[V,] is the induced subgraph on those
nodes, = indicates isomorphism, Cp , denotes the (unordered) set of possible
such p nodes and |iso(S)| is the number of isomorphisms of S.



» For a generic graph S, one can then obtain that

E[ta(S.G)] = E| [] m&& [] [1-h(&§)

{i./}e€(S) {ijyeg(8)
= tna(S; ho).

» A related notion of subgraph density that often appears in the literature is
injective homomorphism density.

» A homomorphism of a graph S into G is an edge preserving map Ng — Ng.?

2Note that non-adjecencies are not necessarily preserved.



v

Formally,
1

n
i S) | REKa,R=S
(7))

where K, is the complete graph on n nodes.
Example: S= A in G =
As before, we have that under AH:

E[tn(S, G)] = [ [T hol 5,,5,]

{i./}e€(S)
= tlnj(Sv hO)-

(S, G) = 1(Rc G),

v

v

v

Related concepts are discussed in Lovasz [2012].


https://bookstore.ams.org/coll-60/

» If G, is a random graph on n nodes, the frequency measures above (with
respect to a particular S) are random variables.

» Diaconis and Janson [2008] study random graph limits through the
(probability) limits of fg, &n; (or variations) across all subgraphs S as n grows
larger.

» They also note that limits obtained by such criteria are (infinite) exchangeable
random graphs (see their Theorem 5.2) and thus amenable to AH.

» In this case the limiting graph can be expressed using the graphon related to
the kernel function in AH. (This limit is unique up to measure-preserving
mappings, ie, relabeling. See Section 7 in Diaconis and Janson [2008].)


https://arxiv.org/abs/0712.2749
https://arxiv.org/abs/0712.2749

» In related work, Borgs et al. [2008] analyse related notions of convergence
and rely on a particular (pseudo-)metric on graphons known as the cut metric.

» Intuitively, it is defined in terms of the cut distance:

d+(G,G) = Juax IEG(S, T) —Ea (S, T)

|V|2
where V = Vg = Vg and S, T form a partition for V. £g(S, T) is the count of
edges between S and T. The cut distance minimises the above across all
isomorphic graphs:

o0(G, G) = min d+(G, G).
G~

» A recent set of lectures on this topic can be found here: Lecture 1, Lecture 2

and Lecture 3.


https://www.sciencedirect.com/science/article/pii/S0001870808002053
https://simons.berkeley.edu/talks/graphons-graph-limits-1
https://simons.berkeley.edu/talks/graphons-graph-limits-2
https://simons.berkeley.edu/talks/graphons-graph-limits-3

» In fact, one can embed a finite graph G, in [0, 1] x [0, 1] by defining:

[un],[vn]) € € (Gp)
otherwise '

ha(uv) = o

» With this in hand, the cut metric can be used to compare any simple graph.




» While one can evaluate the limit for finite graphs using the framework above, it
is important to keep in mind that sparse random graphs will converge to a
trivial graphons (ie., the zero graphon).

» Intuitively, take the average degree, A, among n agents to be a small positive
constant (indep on n). The prob of an edge between the two indep random
draws from this population is

1
Pr(Wie = 1) = 2o ~

“Exchangeable graphs are not sparse. If a random graph is exchangeable, it
is either dense or empty.” (Orbanz and Roy [2015], Fact 7.2).


https://ieeexplore.ieee.org/document/6847223

» One possible way of accommodating sparsity is to allow for drifting
parameters. For example,

Pr(Wj=1]&=u& =v)=pph(u,v),

(see Bickel and Chen [2009], Bickel, Chen and Levina [2011], Olhede and
Wolfe [2013]). The rate at which p, — 0 then controls the rate of the average
degree growth as n grows large.

» This relates to earlier work by Bollobas and Riordan [2009] who rescale the
graph metrics but in doing so assume that there are “no dense spots”.

» Other recent works relax those conditions (see, eg, Borgs et al. [2019]) but
still retain other features (eg, unbounded degrees).


https://www.pnas.org/doi/10.1073/pnas.0907096106
https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-5/The-method-of-moments-and-degree-distributions-for-network-models/10.1214/11-AOS904.full
https://arxiv.org/pdf/1309.5936.pdf
https://arxiv.org/pdf/1309.5936.pdf
https://arxiv.org/abs/0708.1919
https://arxiv.org/abs/1401.2906

Mele [2017, 2020]

» Directed network: Wj = 1if i — jand = 0, otherwise.

» The utility function for individual / is given by:

0 6 0 0
DIWiu + Y WyWami + 3 Wy Y Wik + Y Wy Y Wigp
i i vy vy

uf’- = u(X;, X;; 0): direct utility
m(X;, Xj; 6): mutual link

5 = v(X;, X;; 0): friends of friends
pj = p(X;, X;; 6): popularity.

When an agent forms a link, he/she automatically creates an indirect link for other agents that
are connected to him/her, thus generating externalities and impacting his/her ‘popularity.

I



» Assumption 1: Preferences are such that mg. = m]‘-’, and ug = pz
“...iinternalizes the externality he creates ...”

= The deterministic components of utitility are summarised by a potential
function:

QW X;0) = > Wyul + > WyWemfl + DWW
(i) (i) (i:j.k)

» Maxima for this function correspond to Nash equilibria of the game with
payoffs as defined previously.



» Network formation process: stochastic best-response dynamics (Blume
[1993]). There is a meeting sequence m = {m'}2, where m' = (i, ) (i plays)
and

P(m' = Wt X) = p(WHT, X, X)).

> Assumption 2: p(W'™1, X, X)) = p(W'', X;, Xj) > 0, Vij.

The meeting probability does not depend on the existence of a link between them and each
meeting has positive probabiility of occuring.

= likelihood does not depend on p.


https://www.sciencedirect.com/science/article/pii/S0899825683710237
https://www.sciencedirect.com/science/article/pii/S0899825683710237

» Conditional on the meeting ij, i receives an idiosyncratic shock ¢ ~ F, and
wt . iff
—j

U(Wj =1, W X;0) + e = U(W) =0, W', X; 0) + eot

= Markov chain of networks.
= Absent shocks (i.e., F. = 1(0 <)), chain converges to one of the NE with
probability one.
» Assumption 3: F. is EV Type |, i.i.d. among links and across time.



» Under Assumptions 1-3, the Markov chain above converges to a unique
stationary distribution

exp[Q(w, X; 0)]
2weg P[Q(w, X; 0)]

where Q is the potential function previously defined.

» Appears to bypass issues of multiplicity, but in the long-run the chain spends
more time around networks with high potential (NE of the game without
shocks).

» The model generates dense networks: as n — oo, the unconditional
probability of a link does not decrease.

m(w, X;0) =



» If the utility functions are linear in parameters (Q(w, X; 6) = 0t(w, X)), the
stationary distribution =(w, X; #) describes an exponential random graph
(ERGM) e exponential family.

» The normalizing constant 3, . exp[Q(w, X; 0)] = exp(A(f)) is an important
computational obstacle.

» n=10 = 2% ~ 10%" network configurations.
“A supercomputer that can compute 10'2 potential functions in one second would take almost
40 million years to compute the constant.”

» Mele [2017, 2020] relies on a Metropolis-Hastings algorithm.



» Metropolis-Hastings for Network Simulations.

> Fix a parameter 4. At iteration r, with current network w;:

1. Propose a network w’ from a proposal distribution w’ ~ gy (W'|w;).
2. Accept network w’ with probability

exp[Q(W', X 6)] qw(WrIW’)}

xmh(Wr, W) = min {1’ exp[Q(wr, X: 0)] qu(W'|wy)

= The network transitions from w; to w’ with probability T(w;, w') = qu (W'|W:)cmn(wr, ') and
amn(wr, w') guarantees “detailed balance™:
(W) T(We, w') = (W) Gu (W |Wr) tmn(wr, w')
min {7 (W) quw(W'|W;), 7(W') Qu
7 (W) gw(We W) amn (W', wy) = 7(W) T(W, w;)

8
g,
=

» It does not depend on the normalising constant.



In Mele’s model, with u? = o and m? = 3, we have:

ks densiy

ks densty
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(A) (B) ©

FIGURE 1.—Network simulations at different parameter values. Traceplots of simulations of model (9) using
Algorithm 1 with local chains. The simulations are obtained for a network with n = 100 players, with param-
eters a = —3 and B = {1/n,3/n,7/n} (Panel (A), (B), and (C), respectively). Each simulation is started at
10 different starting networks, each corresponding to a directed Erdés—Rényi network with probability of link
©=1{0,0.111,0.222,0.333, 0.444, 0.555, 0.666, 0.777, 0.888, 1}.



» While these illustrate the “degeneracy” issue referred to above in (1.), Mele
[2017] also establishes the existence of parameter regions where
convergence is slow (for a given parametrisation) (Theorem 5).

In this region, “once the sampler reaches a local maximum, there is probablity exp(—Cn?) to
escape such state of the network. As a consequence, the sampling is practically infeasible with
a local sampler”

» An algorithm with larger step sizes (Appendix B) is also shown to help with
these issues.



» Likewise, he also demonstrates that when 5 > 0, the model is asymptotically
(in n) indistinguishable from a directed Erdos-Renyi model or a mixture of
such models (Theorem 2), but not when 5 < 0 (Theorem 3). (Similar results
when include externality on cyclic triangles, Theorem 4.)

= These problems are related to the existence of multiple NE in the game
without shocks.

» Multiple networks: identification can be attained with variation in sufficient

statistics (across networks).
“If the sufficient statistics are not linearly dependent, then the exponential family is minimal and
the likelihood is stricly concave, therefore the mode is unique.” [Mele, 2017]



Mele [2020] studies racial segregation using this model and AddHealth data (14-16 schools).

Table 1: Descriptive Stati for the schools in the Saturated Sample

School 1 2 3 7 8 28 58 77 81 88 106 115 1®» 175 1% ]
Students ER) 50 17 159 110 150  ®I1 1664 98 50 )] 0 5 52 a3 52
Links 12 120 125 344 239 355 3290 3604 163 308 162 M 123171 42 48
Females 05 0517 0419 044 Q5 0587 0473 0483 0531 052 0531 055 0491 0538 0512 0.654
Clustering 0.000 0421 015 022 028 0291 0197 019 024 0362 0202 039 039 028 0064 0.056
Density 0.006 0034 000 00K 0020 0016 006 0001 0017 0038 0024 0116 0045 0064 0023 0018
A. Racial Composition
Whites 05 095 0983 0981 0973 042 0978 0055 098 0989 0 1 0472 0769 0977 0.942
Blacks 0136 0 0 0006 0018 0453 00@R 0233 0 0 098 0 0151 0019 0 0
Asians 0 0 0 0 0009 0007 0005 029 001 0 0 0 0038 003 0 0
Hispanics 0364 005 007 0006 0 0107 001 03%2 Q01 0 0025 0 032 0154 0023 0.058
Orhers 0 0 0 0 0 0013 0004 Q02 0 oon 0 0 0038 0019 0 0

Racial Fragm 0.5% 0.005 0034 0037 0053 0606 004 06% 004 002 0072 0 0661 0382 0045 0109

B Grade Camposition

Tth Grade 0.159 a2 0128 0145 0227 0173 002 0001 0112 014 0506 a4 0491 0462 0488 0.538
&h Grade 0.159 0217 0154 015 a2 0173 0004 0008 0155 0178 0481 a6 0472 0538 048 0462
Oth Grade 0.114 a2 012 0214 0136 02 028 0004 0153 0122 0012 0 0.038 o 0 0
10th Grade 0273 0133 0206 015 018 0167 0277 0346 0214 0167 0 0 0 0 0 0
11th Grade 0.136 0167 0179 0164 0118 014 0223 0345 0265 0211 0 0 0 4] 0.023 0
12th Grade 0.159 0083 0214 0164 0136 0147 0205 0301 0102 0178 o 0 0 o 0 0
C. Segregation
FSI gender 0348 0035 0095 0263 0100 0206 0142 0228 01% 0107 018 0123 0095 005 018 0.000
FSI race 0.000 068 0180 055 0000 0671 0014 06% 0819 0816 0000 0403 0000 0000 0.560

FSlinoome 90 0.9% 0332 0000 018 0000 0118 002 0000 0000 0077 0000 0000 0000 0272 0000 0.384
FSlincome S0 0.0 0000 0027 0133 0000 0013 0077 0082 0064 0116 0012 0000 0260 0060 0131 0.000
$51 gender 0305 0541 0493 0697 058 0659 0798 0727 0614 0618 0601 0658 0561 069% 0488 0461
SSlrae 0.146 0882 0791 08% 086 0754 0927 0748 0806 0921 0761 0550 0632 078 0817
SSlincome 90 0.409 0767 0.641 0783 0735 0808 0820 0767 0684 0836 07065 0778 0726 0825 0709 0.681
SSlincome 50 0.214 0469 0444 0601 0501 0547 0726 0620 0439 0563 0460 0419 0535 0611 0484 0.421




Table 2: Posterior mean of estimated models

[0 2) 3) [ 3) (6)
A_Direct utllity (i)

CONSTANT 69201 55381 66300 50132 7218 58070
MALE i ). 0.0463 02718 0.2350
WHITE i 01710  0.0044% 0.0440* 03023
BLACK i 1.0451 11310 07074

HISP i 2000 22806 14590

INCOME i (logs) 20543 L6402 LB  -L46dS
SAME GENDER 04545 0850 02067 04851 03154 0764
SAME GRADE 23124 22384 23817 20113 25185 21800
WHITE-WHITE 03504 05414 LOI3 05720 0959 02739
BLACK-BLACK 0143 03660 L6401 L1445 L5347 0.0405
HISP-HISP 1.8597 1.6794 0.3186 0.2269 0.7130 -0.1394
ATTRACTIVE i (Phys) 02757 0.3068 -2.3568 -22413 -1.9291 -1.9430
ATTRACTIVE j (Phys) 00410 02322 25166 15861 27615 12609
ATTRACTIVE i (Pers) 04402 0.0063% 04964 -01ST0 08646  -0.1631
ATTRACTIVE j (Pers) L0672 08678 10932 07390 06361 03939
INCOME i - INCOME j (logs) Q1793 01462 08883 09012 09938 07403
INCOME i + INCOME j (logs) -0.0882 -0.0806 1.0947 09244 0.8977 0.6892
SHARE WHITES 0.9070 -0.4814 -1.7088 -1.4420 -1.5748 -1.6126
SHARE BLACKS 3238 30985 13416 18309 07645 19618
SHARE HISP 2504 2444 08307 07798 L0078 07731

'WHITE-WHITE * SHARE WHITES 1.3962 1.0094 4.3915 27840 47269 23272
BLACK-BLACK * SHARE BLACKS | 0.4664 0.1478 0.2528 04028 01172 0.2516
HISP-HISP * SHARE HISP -1.5643 14255  -1.6908  -1.3630 -1.3872 -1.1400

B. Mutual utility (m.;)

CONSTANT 1.1853 6.1668 53139

SAME GENDER 1.1652 1.0716 1.1539

SAME GRADE -1.6882 -3.0514 -3.0575

'WHITE-WHITE 0.00732 -0.6017 -0.4960

BLACK-BLACK 0.7468 11177 0.7067

HISP-HISP 071719 -1.4659 -1.4639

C. Indirect utility and Popularity (v, ;)

CONSTANT -0.2891 04705 -0.4308

SAME GENDER 0.1721 -0.4074 -0.3987

SAME GRADE 03145 0.1136 03266

WHITE-WHITE 02239 0.1856 02978

BLACK-BLACK -0.1364 0.1372 0.1202

HISP-HISP 04328 -0.5067 02859

SCHOOL DUMMIES YES YES YES YES YES YES

D_ Sample size

# Schools 14 14 o ™ 16 16

# Students 1129 1129 1129 129 3604 3604

# Pairs/Dyads 112751 112751 112751 112751 3536893 3,536,893
Models (1)-(4): posterior sample of 100,000 parameter and 5000 network simulations per parameter. Models (5)-(6): m
posterior sample of 20,000 parameter and 10,000 network simulations per parameter. ® credible 95% interval contains
both positive and negative values. <« Back
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