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1 Introduction

In our paper, “Discounted Stochastic Games, the 3 Property, and Stationary

Markov Perfect Equilibria,” (Fu and Page, 2022) we show that the upper Caratheodory

Nash correspondence belonging to any one-shot game underlying an uncountable-

compact  satisfying the usual assumptions where players have convex compact

metric action sets contains continuum-valued, minimal upper Caratheodory Nash

correspondences taking minimally essential Nash equilibrium values. We then ar-

gue that any such , as a consequence of having a continuum-valued, minimal

Nash correspondence, has a Nash payoff selection sub-correspondence having fixed

points. While it is true that all convex  have Nash correspondences containing

continuum-valued, minimal Nash correspondences, it is not true that, in general,

these continuum-valued minimal  Nash correspondences induce Nash payoff selec-

tion correspondences having fixed points. Continuum-valuedness is not enough. The

purpose of this Corrigendum is to give a correct statement and proof of our fixed

point result and restore our existence result for stationary Markov perfect equilib-

ria. While it is true that all convex  have continuum-valued minimal Nash

sub-correspondences (or equivalently, have 3 minimal Nash correspondences), it

is not true that the continuum-valuedness of minimal  Nash sub-correspondences

guarantees, in general, that the induced Nash payoff selection sub-correspondences

have fixed points. What is true, as we will show here, is that if the probability space

of states underlying a convex  is nonatomic, then the  Nash correspondence

induces a weak star upper semicontinuous Nash payoff selection correspondence tak-

ing contractible values - and this is enough to restore our fixed point result for Nash

payoff selection correspondences belonging to a nonatomic convex . The critical

property, inherently possessed by all Nash payoff selection correspondences belong-

ing to a nonatomic convex  is the -limit property. A Nash payoff selection

correspondence has the -limit property if and only if its graph contains all of its

Komlos limits (i.e., if and only if its graph is -closed). Thus in a nonatomic, convex

, it is not the 3 property that is critical to the existence of fixed points - and

therefore,  - it is the -limit property that is sufficient to guarantee that the

Nash payoff selection correspondence has fixed points - and therefore, that the 

has stationary Markov perfect equilibria.

In a , the measurable selection valued Nash payoff selection correspondence,

S∞(P(·)), is given by

S∞(P) := {(·) ∈ L∞ :  ∈ P( ) a.e. []}

where P(· ·) is the upper Caratheodory Nash payoff correspondence given by the
composition of the -tuple of real-valued Caratheodory player payoff functions,

(  ) −→ (  ) := (1( 1 )     (  )) (1)

with the upper Caratheodory () Nash correspondence,

( ) −→ N ( ), (2)
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i.e., the Nash payoff correspondence is given by,

( ) −→ P( ) := ( N ( ))

:= {(1( 1 )     (  )) :  ∈ N ( )} 

⎫⎬⎭ (3)

We will show that in a nonatomic convex , because S∞(P(·)) has the -limit
property and takes decomposable values in L∞ , it is weak star upper semicontinuous
and takes contractible values in L∞ .1 As a consequence of S∞(P(·)) being upper
semicontinuous and contractibly-valued, it is approximable, and therefore, has fixed

points, implying that the  to which S∞(P(·)) belongs has stationary Markov
perfect equilibria.

It is important to note that upper semicontinuity and contractible-valuedness are

critical to the existence of fixed points, and therefore, critical to the existence of

stationary Markov perfect equilibria. Not only do they guarantee the existence of

one-shot Nash equilibria, but more importantly, they rule out the existence of circu-

lar one-shot Nash payoffs - a key pathology in the construction of counterexamples to

existence (see Levy 2013 and Levy-McLennan 2015).2 In the absence of the -limit

property and the near equivalence of -convergence and weak star convergence, and

without a nonatomic dominating probability measure and the Lyapunov machinery

it makes available, it would be very difficult to construct a proof that all nonatomic,

convex  have Nash payoff selection correspondences that are upper semicon-

tinuous and contractibly-valued - and both are required in order to establish the

existence of fixed points - and therefore the existence of .

Now to the details.

2 Nonatomic Convex One-Shot Games

A one-shot game (), underlying a discounted stochastic game, is a collection of

strategic form games,

G(Ω×L∞ ) := {G( ) : ( ) ∈ Ω×L∞ }  (4)

where each ( )-game in the collection is given by

G( ) :=

⎧⎪⎨⎪⎩ Φ()| {z }
feasible actions

 (  (· ·))| {z }
payoff function

⎫⎪⎬⎪⎭
∈

, (5)

1S∞(P(·)) has the -limit property if its graph contains all of its Komlos limits (i.e., if its graph
is -closed). S∞(P(·)) takes decomposable values in L∞ if for each  ∈ L∞ , 0

(·) and 
1
(·) in S∞(P),


0
(·)(·) + 

1
(·)Ω\(·) ∈ S∞(P),

where (·) and Ω\(·) are indicator functions and  ∈ Ω
2 If a set of one-shot Nash payoffs is homeomorphic to the unit circle it is said to be a set of

circular one-shot Nash payoffs.
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where  −→ Φ() is player 0measurable constraint correspondence and ( −) −→
(   −), is player 0 payoff function, given by

(   −)

= (1− )(  −) + 
R
Ω
(

0)(0|  −)(0)
(6)

where  := ( −) is the profile of players’ actions,  ∈ L∞ is player 0 value
function summarizing player 0 state-contingent valuations (or prices), ( 0) are the
current and coming states respectively,  is player 

0 discount rate, ( −) −→
(  −) is player 0 immediate payoff function, and (0| ) is the game’s
probability density (with respect to ) over the coming states, 0, given current state
 and action profile . Here the underlying state space is given by (Ω Ω ), where Ω

is a complete separable metric space equipped with the Borel -field and a nonatomic

probability measure .

Under assumptions [] listed below, in a ( )-game, player 0 feasible set
of actions in state , Φ(), is compact and convex, and player 

0 payoff function,
( · ·), in state  is jointly continuous in ( ) for each  and . Moreover, for

each  and , ( · ) is affine in  ∈ L∞ and (  · −) is affine in  ∈ .

Thus, each player’s payoff function, is a uniformly bounded, affinely parameterized,

Caratheodory function. jointly continuous in action profiles,  = (1     ) and

affine in each player’s own action.3

2.1 Assumptions

The convex  we will consider here consist of the following primitives and satisfy

the following list of assumptions (the usual assumptions), labeled [](1)-(11):

(1)  = the set of players, consisting of  players indexed by  = 1 2     and

each having discount rate given by  ∈ (0 1).
(2) (Ω Ω ), the state space where Ω is a complete separable metric spaces with

metric Ω, equipped with the Borel -field, Ω, upon which is defined a nonatomic

dominating probability measure, .4

(3)  := 1 × · · · × , is the space of players’ potential payoff profiles,

 := (1     ), such that for each player ,  := [− ],   0, and is

3Here, ∗× denotes the sum metric,

∗ +  

4A set ⊂Ω is an atom of Ω relative to  if the following implication holds: if ()  0, then

 ⊂  implies that () = 0 or (−) = 0. If Ω contains no atoms relative to , then  is said

to be nonatomic. Because Ω is a complete, separable metric space (·) is nonatomic if and only
if ({}) = 0 for all  ∈ Ω (see Hildenbrand, 1974, pp 44-45). Also, note that the -field, Ω is

countably generated. All the results we present here remain valid if instead we assume that Ω is an

abstract set, but one equipped with a countably generated -field, as in Nowak and Raghavan (1992)

- see assumption (i) p. 521 (also see Ash, 1972).
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equipped with the absolute value metric, ( 
0
) := | −  0| and  is equipped

with the sum metric,  :=
P

 .

(4)  := 1 × · · · × :=
Y


 ⊂  :=
Y


, is the set of player action profiles,

 := (1     ), such that for each player ,  is a convex, compact metrizable

subset of a locally convex Hausdorff topological vector space  and is equipped with

a metric, 
 compatible with the locally convex topology inherited from , and 

is equipped with the sum metric,  :=
P

 
5

(5)  −→ Φ(), is player 0 measurable action constraint correspondence, defined
on Ω taking nonempty, convex, 

-closed (and hence compact) values in .
6

(6)  −→ Φ() := Φ1()× · · · ×Φ(), players’ measurable action profile
constraint correspondence, defined on Ω taking nonempty, convex, and -closed

(hence compact) values in 

(7) L∞, the collection of all -equivalence classes of measurable, essentially
bounded (value) functions, (·) defined on Ω with values in  a.e. [], equipped

with metric ∗

compatible with the weak star topology inherited from L∞ .

(8) L∞ := L∞1 × · · · × L∞ ⊂ L∞, the collection of all -equivalence classes of

measurable (value) function profiles, (·) := (1(·)     (·)), defined on Ω with
values in  a.e. [], equipped with the sum metric ∗ :=

P
 ∗

compatible with

the weak star product topology inherited from L∞ . L∞ is the set of parameter

profiles,  = (1     )

(9) S∞(Φ(·)), the set of all -equivalence classes of measurable functions,
(·) ∈ L∞

 defined on Ω such that in () ∈ Φ() a.e. [], and

S∞(Φ(·)) = S∞(Φ1(·))× · · · × S∞(Φ(·)) (7)

the set of all -equivalence classes of measurable profiles, (·) = (1(·)     (·)) ∈
L∞ , defined on Ω such that

() ∈ Φ() := Φ1()× · · · ×Φ() a.e. [] (8)

(10) (· ·) : Ω× −→  is player 0 affine Caratheodory stage payoff function
(i.e., for each , ( ·) is -continuous on , for each  (· ) is
(Ω )-measurable on Ω, and

 −→ ( ( −)) (9)

is affine in  for each ( −).
5 In Nowak and Raghavan (1992),  = ∆(), where ∆() denotes the collection of all prob-

ability measures with support contained in player ́0 compact metric action set, . ∆() is a

closed, convex, compact metrizable subset of the locally convex Hausdorff topological vector space

() of countably additive, finite signed Borel measures on .
6 In Nowak and Raghavan (1992), the state-contingent, action constraint correspondence, ©(·),

is given by ∆(©(·)). Because ©(·) is lower measurable (and hence measurable - due to compact-
ness), we know by Theorem 3(ii) in Himmelberg and Van Vleck (1975) that ∆(©(·)) is also lower
measurable (and hence measurable).
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(11) (·|· ·) : Ω× −→ ∆(Ω) is the law of motion defined on Ω× taking values

in the space of probability measures on Ω, having the following properties: (i) each

probability measure, (·| ), in the collection

(Ω×) := {(·| ) : ( ) ∈ Ω×} (10)

is absolutely continuous with respect to  the dominating probability measure,

denoted (Ω×)  , (ii) for each  ∈ Ω, (|· ·) is jointly measurable on
Ω×, and (iii) the collection of probability density functions,

 := {(·| ) : ( ) ∈ Ω×} , (11)

of (·| ) with respect to  is such that for each current state  and a.e. [] in

coming states 0 the real-valued function

 := ( −) −→ (0|  −) (12)

is continuous in  and affine in  a.e. [] in 0.7

2.2 Comments

(1) Under the stochastic continuity assumptions made above, [](11), we have by

Scheffee’s Theorem (see Billingsley, 1986, Theorem 16.11) that for each  ∈ Ω,°°(·| )− (·| 0)
°°
∞

:= sup∈B(Ω) |(| )− (| ∗)|

≤ R
Ω
|(0| )− (0| ∗)| (0) −→ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (13)

for any sequence of action profiles {} in Φ() converging to ∗ ∈ Φ() (i.e.,
for each  ∈ Ω the conditional density mapping,  −→ (·| ), is continuous in
1 norm with respect to action profiles ). Thus, by Scheffee’s Theorem, the 1
norm continuity of  −→ (·| ) in each state  is equivalent to the continuity

of  −→ (| ) in each state  with respect to action profiles  uniformly in

 ∈ Ω.
8

(2) Under assumptions [](11), if  −→∗


∗ and  −→


∗, then

R
Ω
 (

0)(0| )(0) −→


R
Ω
∗(

0)(0| ∗)(0). (14)

7The strong stochastic assumptions stated here are the same as those in Nowak and Raghavan

(1992) - see assumption (v) and Remark 1, p. 521.
8Again, note that our convex  model includes the Nowak-Raghavan (1992)  model over

behavioral strategies.
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This is because¯̄R
Ω
 (

0)(0| )(0)− R
Ω
∗(

0)(0| ∗)(0)
¯̄

≤
¯̄̄̄Z

Ω

 (
0)(0| )(0)−

Z
Ω

 (
0)(0| ∗)(0)

¯̄̄̄
| {z }

()

+

¯̄̄̄Z
Ω

 (
0)(0| ∗)(0)−

Z
Ω

∗(
0)(0| ∗)(0)

¯̄̄̄
| {z }

()

,

and under assumptions [](8) and (11),

() ≤ k(·| )− (·| ∗)k∞ −→ 0,

and because  −→∗


∗ and (·| ∗) ∈ L1, where L1 is the norm dual of L∞ ,

() =
¯̄R
Ω
( (

0)− ∗(
0))(0| ∗)(0)

¯̄
−→ 0.

2.3 Nash Equilibria and the Three Nash Correspondences

In a ( )-game each player  = 1 2    , seeks to choose a feasible action,  ∈
Φ() so as to maximize 

0 payoff - i.e., so as to solve the problem

max
∈©()

(  ( −)),

given the state  ∈ Ω, player 0 value function,  ∈ L∞ , and the feasible actions,
−, chosen by other players.

A profile of player actions, ∗ = (∗1     
∗
) ∈ Φ1()× · · · × Φ() := Φ(), is

a Nash equilibrium for the ( )-game, G(), if for each player  ∈ 

(  (
∗
 

∗
−)) = max∈©() (  ( 

∗
−)).

Under assumptions [] for each ( ) ∈ Ω × L∞ the ( )-game, G(), has a
nonempty, -compact set of Nash equilibria, N ( ), and it is straightforward to
show that the Nash correspondence,

N (· ·) : Ω×L∞ −→  () (15)

is upper Caratheodory, (Ω×∗  )-measurable in ( ) and ∗--upper semi-

continuous in  with nonempty, -compact values.

Given the one-shot game, i.e., the , specified above, with upper Caratheodory

() Nash correspondence, ( ) −→ N ( ), the ’s  Nash payoff correspon-
dence, ( ) −→ P( ), is given by

( ) −→ P( ) := ( N ( )), (16)
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where

( N ( )) := ∪∈N () {(1( 1 )     (  ))} 

The Nash payoff correspondence induces a Nash payoff selection correspondence,

 −→ S∞(P) := S∞(P(· )), (17)

where S∞(P) is the set of all -equivalence classes of measurable (value) functions,
(·), such that  ∈ P( ) a.e. [].

Our main objective is to show that, under assumptions [], the Nash payoff

selection correspondence, S∞(P(·)), has fixed points - i.e., therefore we propose to
show that there exists ∗ ∈ L∞ such that ∗ ∈ S∞(P∗).

Summary of Our Approach and Results:

We will show that any one-shot game () satisfying assumptions [] nat-

urally has a Nash payoff selection correspondences, S∞(P(·)), having the -limit

property - and therefore is a -correspondences. We say that the Nash payoff

selection correspondence, S∞(P(·)), has the -limit property if for any sequence

{( 
(·))} ⊂ S∞(P(·)) -converging to (b b(·)) ∈ L∞ × L∞ , where 

 ∈
P( ) a.e. [] for each , the -limit, b(·), is such that b ∈ {

} a.e. [].
Here, {

} denotes the set of cluster points of the sequence, {
}, in  ⊂ .

Because P( ·) is upper semicontinuous on L∞ for  a.e. [], we have for any se-

quence, {( 
(·))} ⊂ S∞(P(·)) -converging to (b b(·)) that {

} ⊂ P( b)
a.e. []. Thus, if S∞(P(·)) has the -limit property, we have for any sequence,

{( 
(·))} ⊂ S∞(P(·)) -converging to (b b(·)) that

b ∈ {
} ⊂ P( b) a.e. []
implying thatb(·) ∈ S∞({

(·)}) ⊂ S∞(P)

⎫⎪⎬⎪⎭ (18)

where S∞({
(·)}) denotes the collection of -equivalence classes of a.e. selections

of the  correspondence, S∞({
(·)}), and S∞(P) denotes the collection of -

equivalence classes of a.e. selections of the measurable part of the  Nash payoff

correspondence at value function profile b,  −→ P( b). We then show that for any
one-shot game where players have convex, compact metric action sets and player’s

payoff functions are given by

(   −)

:= (1− )(  −) + 
R
Ω
(

0)(0|  −)(0)

satisfying assumptions [] above, then (18) holds. Given the near equivalence of

-convergence and weak star convergence (see 22 below), it is then a simple matter
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to show that the Nash payoff selection correspondence, S∞(P(·)), is upper semicon-
tinuous and given the decomposability of S∞(P) for each  ∈ L∞ and the Lyapunov

machinery made available by the nonatomicity of , it then becomes possible to show

that S∞(P(·)) takes contractible values (with respect to the weak star topologies).
Together, the upper semicontinuity and contractible valuedness of S∞(P(·)), imply
that S∞(P(·)) is approximable, and therefore, has fixed points.

Before we present our results, we review the notions of weak star convergence,

Komlos convergence, and decomposability.

3 ∗-Convergence and -Convergence in L∞
A sequence, {} ⊂ L∞ , converges weak star to ∗ = (∗1(·)     ∗(·)) ∈ L∞ ,
denoted by  −→

∗
∗, if and only if

Z
Ω

h() ()i () −→
Z
Ω

h∗() ()i () (19)

for all (·) ∈ L1 .

A sequence, {} ⊂ L∞ , -convergences (i.e., Komlos convergence - Komlos,
1967) to b ∈ L∞ , denoted by  −→


b, if and only if every subsequence, {(·)},

 {(·)} has a sequence of arithmetic mean functions, {b(·)}, where
b(·) := 1



X
=1

(·) (20)

such that b() −→


∗() a.e. [] (21)

The relationship between ∗-convergence and -convergence is summarized via the

following results (see Theorem A 2.1, Page, 2016): For every sequence of value func-

tions, {} ⊂ L∞ , and b and ∗ in L∞ the following statements are true:

(i) If the sequence {} -converges to b ∈ L∞ ,
then {} ∗-converges to 

∗ ∈ L∞ and b() = ∗() a.e. []

(ii) If the sequence {} ∗-converges to 
∗ ∈ L∞ , then

every subsequence {} of {}
has a further subsequence, { }, -converging to to b ∈ L∞ ,

and ∗() = b() a.e. []

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

For any sequence of value function profiles, {} in L∞ it is automatic that



Z
Ω

k()k ()  +∞ (23)
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Thus, by the classical Komlos Theorem (1967), any such sequence, {}, has a
subsequence, {} that -converges to some -limit, ∗ ∈ L∞ . By Page (1991)
Proposition 1(1) b() ∈ {()} a.e. []
and Proposition 1(2) there exists an integrable -valued function, ∗(·), such that
∗() ∈ {()} a.e. [] andZ

Ω

∗()() =
Z
Ω

b()().
Moreover, by Proposition 2 in Page (1991). if 

R
Ω
()() exists, then the

usual Fatou’s Lemma in Several Dimensions holds, and we have



R
Ω
()() =

R
Ω
∗()() =

R
Ω
b()().

4 Decomposability in L∞
A subset S of L∞ is said to be decomposable if for any two functions 0

(·) and 
1
(·) in

S and for any  ∈ Ω, we have

0
(·)(·) + 1

(·)Ω\(·) ∈ S.

For any  Nash payoff correspondence, P(· ·) : Ω×L∞ −→  ( ), the induced Nash

payoff selection correspondence, S∞(P(·)), takes decomposable values. Moreover, for
each , S∞(P) is k·k1-closed (or L1-closed) in L∞ . Thus, for any sequence {

(·)}
in S∞(P) converging in L1-norm to 0

(·) ∈ L∞ , we have 0(·) ∈ S∞(P). We will
denote by 1S∞(P) the L1-closure of S∞(P) in L∞ . By Lemma 1 in Pales and

Zeidan (1999), we know that, in addition to S∞(P) being decomposable, S∞(P) is
L1-closed in L∞ . Thus, we have

1S∞(P) = S∞(P).
We also know by Corollary 1 in Pales and Zeidan (1999) that

1S∞(P)

=
n
(·) ∈ L∞ : ∃ {

(·)} ⊂ S∞(P) such that lim

°°°
(·) − (·)

°°°
1
= 0

o
.

Finally, note that L∞ is L1-closed in L∞ and decomposable.

5 The -Limit Property

Let ( ) −→ P( ) := ( N ( )) be a Nash payoff correspondence induced
by a Nash correspondence belonging to a convex  satisfying assumptions []

and let

 −→ S∞(P)

9



be the induced Nash payoff selection correspondence. We have the following formal

definition of the -limit property.

Definition 1 (The -Limit Property and -Correspondences):

We say that the Nash payoff selection correspondence, S∞(P(·)), has the -limit

property if for any -converging sequence,

{( 
(·))} ⊂ S∞(P(·))

the  limit, (b b(·)), is such thatb ∈ {
} ⊂ P( b) a.e. [].

Because {( 
(·))} -converges to (b b(·)), {} ∗-converges to b and {

(·))
∗-converges to

b(·). Moreover, because P( ·) is ∗- -upper semicontinuous,
( 

 ) ∈ P( ·) a.e. [] implies that {
} ⊂ P( b) a.e. []. Thus, if

the Nash payoff selection correspondence, S∞(P(·)), has the -limit property, and
therefore is a -correspondence, then for any -converging sequence,

{( 
(·))} ⊂ L∞ ×L∞ 

with ( 
(·)) ∈ S∞(P(·)) for each  the  limit, (b b(·)) ∈ L∞ × L∞ , is such

that b(·) ∈ S∞({
(·)}) ⊂ S∞(P).

Let∞ be the exceptional set (i.e., the set of -measure zero) such for  ∈ Ω\∞,

 ∈ P( ) for all . For each , we have by the Measurable Implicit Function

Theorem (e.g., Himmelberg, 1975, Theorem 7.1) a (Ω )-measurable function,

(·) : Ω −→ , such that for each  and  ∈ Ω\∞,


 = (  ()) ∈ P( ) with () ∈ N ( ),

and thus,

{( (·  (·))} ⊂ S∞(P(·)) ⊂ L∞ ×L∞ .
An alternative statement of the -limit property is

S∞(P(·)) has the -limit property, and therefore, is a -correspondence, if for any

-converging sequence,

{( (·  (·)))} ⊂ S∞(P(·)) ⊂ L∞ ×L∞ 

with -limit, (b b(·)) ∈ L∞ ×L∞ , the -limit, (b b(·)), is such thatb ∈ ( b{()}) ⊂ P( b) a.e. [],
where

( b {()}) := {( b ) ∈  :  ∈ {()}}.
We note that {

} = ( b {()}).
10



Now we have our main result on the -limit property for nonatomic convex

.

Theorem 1 (The -Limit Theorem for nonatomic convex  - the Nice

Lemma)

Let

( ) −→ P( ) := ( N ( ))

=
©¡
(1− )( ) + 

R
Ω
(

0)(0| )(0)¢

:  ∈ N ( )ª 

be the Nash payoff sub-correspondence induced a Nash correspondence belonging to a

nonatomic convex . Then the induced Nash payoff selection correspondence,

S∞(P(·)), has the -limit property.

Proof: Let {( 
(·))} ⊂ L∞ ×L∞ be any-converging sequence with-limit,

(b b(·)) ∈ L∞ ×L∞ , where for each  and  a.e. [],


 = (  ()) ∈ P( )

and

() ∈ N ( )

⎫⎬⎭ (24)

with


 = (  ())

=
¡
(1− )( 

()) + 
R
Ω
 (

0)(0| ())(0)¢
∈ 

(25)

Let {} and {
(·)} be sequences in L∞ , and let

b(·) := 1



X
=1

(·) and b
(·) :=

1



X
=1


(·) (26)

denote the arithmetic mean functions induced by the sequences, {} and {
(·)}.

Because {} and {
(·)} -converge to b and b(·) in L∞ , any sequence of arith-

metic mean functions, {b} and {b
(·) } belonging to any subsequences, {} and

{
(·) } of {} and {

(·)}, respectively, converge pointwise a.e. to b and b(·), re-
spectively, implying that the sequences themselves, {} and {

(·)}, ∗-converge
to b and b(·), respectively. We note that the set of -measure zero off of which
pointwise arithmetic mean convergences takes place depends on the subsequences

over which arithmetic means are computed. With this being noted, consider the

following: For each  let

( 0) := ((1− )( 
()) + 


 (

0)(0| ()))

, (27)

11



and note that


 :=

Z
Ω

( 0)(0) (28)

Because |( ())| ≤  and | (0)| ≤  and because (·| ()) is a prob-
ability density, we have for all ,  and ( 0) that the sequence of functions,
{(· ·)} ⊂ L1(Ω × Ω), is norm bounded. By Komlos (1967), there is a sub-

sequence, {(· ·)}, -converging to b(· ·) ∈ L1(Ω×Ω). Consider the sequence
of arithmetic mean functions, { b(· ·)}, induced by the subsequence, {(· ·)},
where b(· ·) := 1



X
=1

(· ·)

We have that b( 0) −→ b( 0) for ( 0) off an exceptional set b ∈
Ω × Ω with ( b) = 0, where  is the product probability measure given by

 := ⊗ . For the exceptional set b we have by the Product Measure Theorem

(Ash 2.6.2, 1972) that

( b) =

Z
Ω

( b())() = 0,

where b() :=
n
0 ∈ Ω : ( 0) ∈ b

o


implying that for some b
 with ( b

 ) = 0 ( b()) = 0 for all  ∈ Ω\ b
 .

Thus for each  ∈ Ω\ b
b( 0) −→ b( 0) for 0 a.e. [],

Also, let b be the exceptional set off of which {b
(·) } converges pointwise to b(·)

(i.e., b
 −→ b for all  ∈ Ω\ b). Thus, we have for all  ∈ Ω\( b ∪ b

 ) that

1


P
=1 


 = 1



P
=1

R
Ω
( 0)(0)

=
R
Ω
1


P
=1

( 0)(0) =
R
Ω
b( 0)(0)

−→ R
Ω
b(0)(0) = b.

Next let ∗
(·) be any measurable selection of the  correspondence,  −→ {

 },
(a selection whose existence is guaranteed by Kuratowski-Ryll-Nardzewski, 1965). By

the Measurable Implicit Function Theorem (e.g., Himmelberg, 1975, Theorem 7.1)

there exists an everywhere measurable selection, ∗(·) of the  correspondence,

{(·)}, such that

∗ =
¡
(1− )( 

∗()) + 
R
Ω
b(0)(0| ∗())(0)¢∈

∈ {R
Ω
( 0)(0)}

12



Thus, for each  ∈ Ω there is some further subsequence, { ()} -converging

to ∗() and given that  −→
∗

b, we have that


 =

¡
(1− )( 

 ()) + 
R
Ω


 (0)(0|  ())(0)¢



−→ ¡
(1− )( 

∗()) + 
R
Ω
b(0)(0| ∗())(0)¢

= ∗ ∈ {R
Ω
( 0)(0) = {

 } ⊂ {
}.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(29)

Now consider the auxiliary function

( 0) := ((1− )( 
()) + b(0)(0| ()))  (30)

where for each  the value function,  (·), in the definition of the function (· ·)
(see expression (27)) is replaced by the -limit (i.e., the weak star limit), b(·), in
the definition of the function (· ·) in expression (30).9 Note that for any ( 0) ∈
Ω×Ω, and for any subsequence, {(·)}, if () −→


∗(), then

( 0) −→  ∗( 0)

:= ((1− )( 
∗()) + b(0)(0| ∗())).

⎫⎬⎭ (31)

Thus, given that  −→
∗

b, we have that  ∗(· ·) is an everywhere measurable se-
lection of the  correspondence, {(· ·)} if and only if there is an everywhere
measurable selection, ∗(·), of the  correspondence, {(·)}, such that for all 
and ( 0)

( 0) =
¡
(1− )( 

()) + b(0)(0| ())¢ 
and if at ,  () −→


∗(), for some further subsequence, then we have at this

,

 ( 0) −→ ((1− )( 
∗()) + b(0)(0| ∗()))

:=  ∗( 0) a.e. [] in 0.

⎫⎬⎭ (32)

and in general we have for each  ∈ Ω, R
Ω
0

( 0) −→


R
Ω
 ∗( 0) where {0()}


0


is any further subsequence of {()} such that 0() −→


∗().

We have the following observations:

9Because {} -converges to , any sequence of arithmetic mean functions, {}, induced
by any subsequence, {}, of {}, converges pointwise a.e. [] to  - i.e., () −→ () a.e.
[] and  −→

∗
. Moreover, the subsequence itself ∗ -converges to  - i.e.,  −→

∗
.

13



We have already that for any everywhere measurable selection, ∗(·), of the cor-
respondence,  −→ {()}, (whose existence is also guaranteed by Kuratowski-
Ryll-Nardzewski, 1965), if at  ∈ Ω\( b ∪ b

 ), 
0
() −→


∗(), for some further

subsequence, {0()}, then by (14) and (29)R
Ω
0

( 0)(0)

=
³
(1− )( 

0
()) + 

R
Ω

0


 (
0)(0| 0())(0)

´

,

−→ ¡
(1− )( 

∗()) + 
R
Ω
b(0)(0| ∗())(0)¢ .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(33)

Also, we have at  ∈ Ω\( b ∪ b
 ), where 

0
() −→


∗(), that

0
( 0) =

³
(1− )( 

0
()) + b(0)(0| 0())´



−→ ((1− )( 
∗()) + b(0)(0| ∗()))

:=  ∗( 0) a.e. [] in 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(34)

implying that, R
Ω
0

( 0)(0)

=
³
(1− )( 

0
()) + 

R
Ω
b(0)(0| 0())(0)´


,

0
−→ ¡

(1− )( 
∗()) + 

R
Ω
b(0)(0| ∗())(0)¢

=
R
Ω
 ∗( 0)(0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(35)

Thus, we have that,

lim


Z
Ω

0
( 0)(0) =

Z
Ω

(lim

0

( 0))(0), (36)

and in general, we have for  ∈ Ω that



½Z
Ω

( 0)(0)
¾
=

Z
Ω

{( 0)}(0). (37)

Note that while the strategies, (·) in the sequence, {(·)}, are, state by state
for  ∈ Ω\( b ∪ b

 ) Nash equilibria relative to the sequence of value function

profiles, {(·)}, in (27), they may not be state by state Nash equilibria relative to
the valuation function profile, b(·), in (30) - except in the limit (i.e., ∗(·) is, state
by state for  ∈ Ω\( b ∪ b

 ) a Nash equilibrium relative to the -limit valuation

function profile, b(·), appearing in both (33) and (35)).
14



Finally, by Page (1991) Proposition 1(1), we have for  ∈ Ω\( b ∪ b
 ) that

b ∈ {
 } = {

Z
Ω

( 0)(0)}, (38)

and therefore by (37) we have for  ∈ Ω\( b ∪ b
 ) thatb ∈ {

 } = {R
Ω
(0)(0)}

= 
R
Ω
{( 0)}(0)

⎫⎬⎭ (39)

By the properties of Aumann integrals over nonatomic probability spaces (see Hilden-

brand, 1974), we have that



Z
Ω

{( 0)}(0) =
Z
Ω

{( 0)}(0). (40)

and again by (37) we have thatR
Ω
{( 0)}(0) = {R

Ω
( 0)(0)}

= {
 } ⊂ {

}.

⎫⎬⎭ (41)

Thus, by Proposition 1(1) in Page (1991) and (37)-(41) above, we have for  ∈
Ω\( b ∪ b

 ) thatb ∈ {
 } = {R

Ω
(0)(0)}

=
R
Ω
{( 0)}(0)

= {R
Ω
( 0)(0)} = {

 } ⊂ {
}.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (42)

Finally, for each  ∈ Ω, because P( ·) is upper semicontinuous, we have for
 ∈ Ω\( b ∪ b

 ) thatb ∈ {
} = ( b {()}) ⊂ P( b) (43)

We can conclude, therefore, that in a nonatomic, convex , if we are given any

-converging sequence {( 
(·))} with -limit (b b(·)), where for each 


 = (  ()) ∈ P( ) and () ∈ N ( ) a.e. [],

then there exists for each , off some exceptional set of measure zero, a ∗ ∈ {
}

such that ∗ = b - implying thatb ∈ P( b)
so thatb(·) ∈ S∞(P).

⎫⎬⎭ (44)
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Thus, the Nash payoff selection sub-correspondence, S∞(P(·)), belonging to any
nonatomic convex has the-limit property, and therefore, is a-correspondence.

Q.E.D.

By Theorem 1 above, the -limit b(·) of a -converging sequence of Nash payoff
selections, {

(·)}, of a nonatomic convex  is an a.e. measurable selection of the

 correspondence, {
(·)}, induced by the sequence.

6 A Fixed Point Theorem for Nonatomic Convex 

Let ( ) −→ P( ) := ( N ( )) be a Nash payoff correspondence induced
by a Nash correspondence belonging to a nonatomic convex . We will show that

because the  Nash payoff selection correspondence, S∞(P(·)), induced by a Nash
correspondence belonging to a nonatomic convex  has the -limit property,

S∞(P(·)) is a ∗-∗-USCO taking contractible values - implying that S∞(P(·)) is
∗-∗-approximable and therefore that S∞(P(·)) has fixed points.10

6.1 The Contractibility Result

Theorem 2 (S∞(P(·)) is a ∗-∗-USCO taking contractible values in L∞ )
Let

( ) −→ P( ) := ( N ( ))
be the Nash payoff correspondence induced by a Nash correspondence belonging to a

nonatomic convex . Then S∞(P(·)) is a ∗-∗-USCO and for each  ∈ L∞ ,
S∞(P) is contractible.

Proof: First, by Theorem 1 above, S∞(P(·)) is a -correspondence, under as-

sumptions [](1)-(11) it follows from Komlos (1967) and Page (1991) that for

each  ∈ L∞ , S∞(P) is ∗-compact. Therefore, to show that S∞(P(·)) is a ∗-

∗-USCO, it suffices to show that S∞(P(·)) is ∗×∗-closed in L∞ × L∞ . Let
{( 

(·))} be any sequence in S∞(P(·)) such that  −→
∗

∗ and 
(·) −→∗ ∗

(·).

We have then a subsequence, {(  
(·) )}, such that

 −→

b and 


(·) −→

b(·), with b() = ∗() and b = ∗ a.e. [].

Because S∞(P(·)) is a -correspondence, (b b(·)) ∈ S∞(P(·)). Thus, we have

(∗ ∗
(·)) ∈ S∞(P(·)).

Next, for S∞(P(·)) a ∗-∗-USCO, we will show that because the dominating

probability measure, , is nonatomic, for each , S∞(P) is contractible.
As shown by Fryszkowski (1983), if  is nonatomic, Lyapunov’s Theorem (1940)

on the range of a vector measure guarantees the existence of a family of measurable

10An  is an upper semicontinuous correspondence taking nonempty, compact values (e.g.,

Hola and Holy, 2015).
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sets, {}∈[01], such that

0 ≤ ⇒ 0 ⊆ , 0 = ∅ and 1 = Ω, and

() = (Ω) = .

¾
(45)

Using the properties of this system of measurable sets and the decomposability of

S∞(P) for each  ∈ L∞ , we will show that for each  the function (· ·) given by

((·) ) := 1(·)(·) + (·)Ω\(·) (46)

is a homotopy (i.e., (· ·) : S∞(P) × [0 1] −→ S∞(P) is jointly continuous in
((·) ) on S∞(P) × [0 1] and is a contraction of S∞(P) to 1

(·)). Here  ∈ L∞
is fixed, (·) is the indicator function of set  and 1

(·) is any fixed selection in
S∞(P).

It suffices to show that (· ·) is ∗×|·|-∗-continuous. Let {(
(·) 

)} be a
sequence such that


(·) −→∗ ∗

(·) and  −→


∗

We must show that

(

(·) 

) −→
∗

(
∗
(·) 

∗) ∈ S∞(P). (47)

Rewriting and substituting, we must show that for all  ∈ L1 ,

 =

Z
Ω

¡
1 ()− 1∗ ()

¢
 ()

®
()| {z }

()

+

Z
Ω

¡

 Ω\ ()− ∗Ω\∗ ()

¢
 ()

®
()| {z }

()

−→ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(48)

We have for (48)(b) thatZ
Ω

¡

 Ω\ ()− ∗Ω\∗ ()

¢
 ()

®
()| {z }

()

=
R
Ω



  ()Ω\ ()

®
()− R

Ω


∗ ()Ω\∗ ()

®
()

Because the sequence {(·)Ω\ (·)} ⊂ L1 k·k1-converges to (·)Ω\∗ (·) ∈ L1 ,

the fact that 
(·) −→∗ ∗

(·) implies thatR
Ω



  ()Ω\ ()

®
() −→ R

Ω


∗ ()Ω\∗ ()

®
() (49)
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Thus, in expression (48), () −→ 0. Similarly, for (48)(a) we have thatZ
Ω

¡
1 ()− 1∗ ()

¢
 ()

®
()| {z }

()

=
R
Ω


1 () ()

®
()− R

Ω


1 ()∗ ()

®
(),

and because the sequence {(·) (·)} ⊂ L1 k·k1-converges to (·)∗ (·) ∈ L1 ,

we have thatZ
Ω


1 () ()

®
() −→

Z
Ω


1 ()∗ ()

®
(). (50)

We have then, in expression (48), () −→ 0.

Together, (49) and (50) imply that (47) holds. Thus, given the properties of the

Lyapunov system (45), the function given in (46) is, for each  ∈ L∞ , ∗×|·|-∗-
continuous, and therefore, specifies a homotopy for the set of measurable selections,

S∞(P) - and thus for each , S∞(P) is contractible. Q.E.D.
Our proof that S∞(P) is contractible for each  is a modified version of the

proof given by Mariconda (1992) showing that if the underlying probability space is

nonatomic then any decomposable subset of -valued, Bochner integrable functions

in L1 is contractible (where  is a Banach space). In Mariconda’s result, the space

of functions is equipped with the norm in L1 , while here our space of functions (with
each function taking values in  ⊂ ) is equipped with the metric, ∗ , compatible

with the ∗ topology.

6.2 The Approximability and Fixed Point Results

The importance of the -limit property in a nonatomic probability space derives

from the fact that it guarantees that S∞(P(·)) is a ∗-∗-USCO taking contractible

values. This in turn guarantees approximability and the existence of fixed points, as

our next results show.

Theorem 3 (S∞(P(·)) is ∗-∗-approximable)
Let

( ) −→ P( ) := ( N ( ))
be the Nash payoff correspondence induced by a Nash correspondence belonging to a

nonatomic convex . Then S∞(P(·)) is a ∗-∗-approximable

Proof: Because S∞(P(·)) is a contractibly-valued ∗-∗-USCO, by Corollary

5.6 in Gorniewicz, Granas, and Kryszewski (1991), because S∞(P(·)) is defined on
the ANR (absolute neighborhood retract) space of value functions L∞ and takes non-

empty, compact, and contractible values in L∞ (and hence ∞-proximally connected
values - see Theorem 5.3 in Gorniewicz, Granas, and Kryszewski, 1991), S∞(P(·)) is
a  mapping. Therefore, by Theorem 5.12 in Gorniewicz, Granas, and Kryszewski

(1991), S∞(P(·)) is ∗-∗-approximable. Q.E.D.
We can now state our main fixed point result.
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Theorem 4 (S∞(P(·)) has fixed points)
Let

( ) −→ P( ) := ( N ( ))
be the Nash payoff correspondence induced by a Nash correspondence belonging to a

nonatomic convex . Then S∞(P(·)) has a fixed point (i.e., there exists
∗ ∈ L∞ such that ∗ ∈ S∞(P∗)).

Proof: By Theorem 3 above S∞(P(·)) is ∗-∗-approximable. Therefore, we
have for each , a ∗-∗-continuous function, 

(·) : L∞ −→ L∞  such that for

each ( 
(·)) ∈  ⊂ L∞ × L∞ (i.e., for each ( 

(·)) ∈ L∞ × L∞ , with 
(·) =

() ∈ L∞ ) there exists ( 

(·)) ∈ S∞(P(·)) such that

∗(
 ) + ∗(


(·) 


(·)) 

1

. (51)

Equivalently, for any positive integer, ,  ⊂ ∗×∗( 1  S∞(P(·))). Thus, the
graph of the continuous function  : L∞ −→ L∞ is contained in the ∗×∗-open
ball of radius 1


about the graph of S∞(P(·)).

Because each of the functions, , is ∗-∗-continuous and defined on the ∗-

compact and convex subset, L∞ , in L∞ , taking values in L∞ , it follows from the

fixed point theorem of Schauder (see Aliprantis and Border, 2006), that each 

has a fixed point,  ∈ L∞ (i.e., for each  there exists some  ∈ L∞ such that

 = ()) Let {} be a fixed point sequence corresponding to the sequence of
∗-∗-continuous approximating functions, {(·)}. Expression (51) can now be
rewritten as follows: for each  in the fixed point sequence, there is a corresponding

pair, ( 

(·)) ∈ S∞(P(·)), such that

∗(
 ) + ∗(

() 

(·)) 

1

,

and therefore such that

∗(
 )| {z }


+ ∗(
 


(·))| {z }



 1

.

(52)

By the ∗-compactness of L∞ , we can assume WLOG that the fixed point sequence,
{} ⊂ L∞ , ∗-converges to a limit ∗ ∈ L∞ . Thus, by part A of (52), as  −→∞
we have

 −→
∗

∗ and  −→
∗

∗

and therefore by part B of (52), as  −→∞ we have



(·) −→

∗
∗.

Because S∞(P(·)) is ∗×∗-closed in L∞ ×L∞ ,

{( 
(·))} ⊂ S∞(P(·)),

and  −→
∗

∗ and 

(·) −→

∗
∗ imply that (∗ ∗) ∈ S∞(P(·)). Therefore, ∗ ∈

S∞(P∗). Q.E.D.
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7 The Error In Our Earlier Paper and Its Correction

In our earlier paper, we considered  correspondences, N (· ·), having continuum-
valued  sub-correspondences, (· ·), i.e., continuum-valued  correspondences

such that

( ·) ⊆ N ( ·) a.e. []. (53)

We will denote by UCN () the set of all continuum-valued  sub-correspondences

belonging to the  correspondence, N (· ·). Here  () denotes the collection

of all nonempty, closed (and hence, compact), connected subsets of  - i.e., the

collection of all sub-continua belonging to). Noting that under assumptions [],

if (· ·) ∈ UCN (), then for each  = 1 2    ,

( ) −→ ( ) := (  ( )), (54)

player 0Nash payoff sub-correspondence, (· ·), is interval-valued, hence contractibly-
valued. We then showed that there exists ∗ ∈ L∞ such that

∗() ∈ 1( 
∗)× · · · × 1( 

∗) a.e. []. (55)

This is all correct - but this is not what we intended to show, nor does (55) allow us

to concluded that all convex  have stationary Markov perfect equilibria. Our

objective was to show that there exists ∗ ∈ L∞ such that

∗() ∈ ( ∗) := {(1( ∗1 )     (( 
∗
 )) :  ∈ ( ∗)} a.e. [].

(56)

But we incorrectly stated that (56) could be deduced from (55) using implicit mea-

surable selection methods (e.g., Theorem 7.1 in Himmelberg, 1975). This is not the

case. We note that ( ∗) is a subset of 1( ∗) × · · · × 1( 
∗). Therefore, a

∗ ∈ L∞ satisfying (??) does not necessarily satisfy (56). Moreover, in order to con-

clude that all convex  have stationary Markov perfect equilibria (and in this

case nonatomic, convex ), we must be able to show that there exists ∗ ∈ L∞
satisfying (56). Here we have corrected our earlier paper, and proved the fixed point

result we intended to prove. We have shown that under assumptions [] there

exists ∗ ∈ L∞ satisfying (56).
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