Product Differentiation and Oligopoly: a Network Approach

Bruno Pellegrino

Columbia Business School

London School of Economics
Fifth Economic Networks and Finance Conference

Research Question

- Motivation: large dispersion in markups across firms

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?
- Consumer surplus and deadweight loss due to oligopoly

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?
- Consumer surplus and deadweight loss due to oligopoly
- Challenge: IO question in a macroeconomic setting:

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?
- Consumer surplus and deadweight loss due to oligopoly
- Challenge: IO question in a macroeconomic setting:
- Tools of empirical IO are not available (scalability, lack of data)

Research Question

- Motivation: large dispersion in markups across firms
- Rising level \& dispersion (De Loecker, Eeckhout \& Unger, 2020)
- Rising industry concentration (Kwon et al. 2022)
- Research Question: what's behind this heterogeneity? What's driving these trends? What are the welfare implications?
- Consumer surplus and deadweight loss due to oligopoly
- Challenge: IO question in a macroeconomic setting:
- Tools of empirical IO are not available (scalability, lack of data)
- No systematic, objective way to define product markets.

This Paper

- Methodology: use network tools to bring IO into macro.
- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- New demand system: Generalized Hedonic-Linear (GHL).
- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- New demand system: Generalized Hedonic-Linear (GHL).
- Taken to the data (and validated) for universe of US public firms, using product similarity data by Hoberg \& Phillips (2016).

This Paper

- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- New demand system: Generalized Hedonic-Linear (GHL).
- Taken to the data (and validated) for universe of US public firms, using product similarity data by Hoberg \& Phillips (2016).
- Decompose markups into 2 forces: productivity and centrality.

This Paper

- Methodology: use network tools to bring IO into macro.
- Theory of oligopoly and markups in general equilibrium
- Forget about industries: in this model, oligopolistic firms compete in a network of product market rivalries.
- New demand system: Generalized Hedonic-Linear (GHL).
- Taken to the data (and validated) for universe of US public firms, using product similarity data by Hoberg \& Phillips (2016).
- Decompose markups into 2 forces: productivity and centrality.
- Welfare measurement: large, increasing oligopoly deadweight loss (12.7% of total surplus in 2019), major distributional effects.

Literature

- Rising Markups and Industry Concentration: De Loecker, Eeckhout \& Unger (2020), Grullon, Larkin \& Michaely (2019); Kwon, Ma \& Zimmermann (2021), Eeckhout \& Veldkamp (2022).
- Distortions, Input/Output, Micro Origins of Aggregate TFP: Gabaix (2011); Acemoglu, Carvalho, Ozdaglar, Tahbaz-Salehi (2012); Baqaee \& Farhi (2020); Bigio \& La'O (2020); Edmond, Midrigan \& Xu (2019); Carvalho, Elliot \& Spray (2022);
- Hedonic Demand/Empirical IO: Lancaster (1968); Rosen (1974); Epple (1987) Berry, Levinsohn \& Pakes (1994); Nevo (2001)...
- Network Games: Ballester, Calvo-Armengol \& Zenou (2006); Galeotti, Golub, Goyal, Talamer \& Tamuz (2022).
- Text Analysis/Product Similarity: Hoberg \& Phillips (2016).

Theory

Generalized Hedonic-Linear Demand

- $i=1,2, \ldots, n$ firms that behave as oligopolists.

Generalized Hedonic-Linear Demand

- $i=1,2, \ldots, n$ firms that behave as oligopolists.
- Hedonic demand: each firm's product is a bundle of characteristics (Lancaster, 1968; Rosen, 1974; Epple, 1987; Berry, Levinsohn \& Pakes 1994; etc.)

Generalized Hedonic-Linear Demand

- $i=1,2, \ldots, n$ firms that behave as oligopolists.
- Hedonic demand: each firm's product is a bundle of characteristics (Lancaster, 1968; Rosen, 1974; Epple, 1987; Berry, Levinsohn \& Pakes 1994; etc.)
- 1 unit of product i provides:
- 1 unit of an idiosyncratic characteristic i

Generalized Hedonic-Linear Demand

- $i=1,2, \ldots, n$ firms that behave as oligopolists.
- Hedonic demand: each firm's product is a bundle of characteristics (Lancaster, 1968; Rosen, 1974; Epple, 1987; Berry, Levinsohn \& Pakes 1994; etc.)
- 1 unit of product i provides:
- 1 unit of an idiosyncratic characteristic i
- a vector of k common characteristics \mathbf{a}_{i} (length 1)

A basic example: 2 firms, 2 characteristics

Aggregating common characteristics

| Characteristics
 (Nutrient Intake) |
| :---: | | Matrix of Coordinates
 (Nutrition Facts) |
| :---: | | Product |
| :---: |
| Bundle |

$\left[\begin{array}{c}x_{1} \\
x_{2} \\
\vdots \\
x_{k}\end{array}\right]=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}\end{array}\right]\left[\begin{array}{c}q_{1} \\
q_{2} \\
\vdots \\
q_{n}\end{array}\right]$
$\mathbf{x}=$

Defining Cosine Similarity

Defining Cosine Similarity

Defining Cosine Similarity

Representative Consumer-Worker-Investor

- Quadratic utility $U(\mathbf{x}, \mathbf{y}, H)=$

$$
\alpha \cdot \sum_{k=1}^{m}\left(b_{k}^{x} x_{k}-\frac{1}{2} x_{k}^{2}\right)+(1-\alpha) \sum_{i=1}^{n}\left(b_{i}^{y} y_{i}-\frac{1}{2} y_{i}^{2}\right)-H
$$

Representative Consumer-Worker-Investor

- Quadratic utility $U(\mathbf{x}, \mathbf{y}, H)=$

$$
\alpha \cdot \sum_{k=1}^{m}\left(b_{k}^{x} x_{k}-\frac{1}{2} x_{k}^{2}\right)+(1-\alpha) \sum_{i=1}^{n}\left(b_{i}^{y} y_{i}-\frac{1}{2} y_{i}^{2}\right)-H
$$

- $H=$ hours worked - numeraire

Representative Consumer-Worker-Investor

- Quadratic utility $U(\mathbf{x}, \mathbf{y}, H)=$

$$
\alpha \cdot \sum_{k=1}^{m}\left(b_{k}^{x} x_{k}-\frac{1}{2} x_{k}^{2}\right)+(1-\alpha) \sum_{i=1}^{n}\left(b_{i}^{y} y_{i}-\frac{1}{2} y_{i}^{2}\right)-H
$$

- $H=$ hours worked - numeraire
- Consumer faces vector of prices \mathbf{p} and chooses demand \mathbf{q}, subject to profits and labor income being $\geqslant \mathbf{p}^{\prime} \mathbf{q}$.

Inverse Demand and Conduct

$$
\mathbf{p}=\mathbf{b}-(\mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q}
$$

Inverse Demand and Conduct

$$
\begin{gathered}
\mathbf{p}=\mathbf{b}-(\mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q} \\
\text { where } \quad \boldsymbol{\Sigma} \stackrel{\text { def }}{=} \alpha\left(\mathbf{A}^{\prime} \mathbf{A}-\mathbf{I}\right)
\end{gathered}
$$

Inverse Demand and Conduct

$$
\mathbf{p}=\mathbf{b}-(\mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q}
$$

where

$$
\boldsymbol{\Sigma} \stackrel{\text { def }}{=} \alpha\left(\mathbf{A}^{\prime} \mathbf{A}-\mathbf{I}\right)
$$

- Cournot Competition: firm i chooses supply q_{i} to maximize profits function $\pi_{i} \rightarrow$ (Linear-quadratic) Network game - Ballester, Calvó-Armengol \& Zenou, 2006

Inverse Demand and Conduct

$$
\mathbf{p}=\mathbf{b}-(\mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q}
$$

where

$$
\boldsymbol{\Sigma} \stackrel{\text { def }}{=} \alpha\left(\mathbf{A}^{\prime} \mathbf{A}-\mathbf{I}\right)
$$

- Cournot Competition: firm i chooses supply q_{i} to maximize profits function $\pi_{i} \rightarrow$ (Linear-quadratic) Network game - Ballester, Calvó-Armengol \& Zenou, 2006
- Why? the matrix of cosine similarities $\mathbf{A}^{\prime} \mathbf{A}$ (proportional to Σ) can be thought of as an adjacency matrix of a network

Cournot-Nash Equilibrium

$$
\mathbf{q}=(2 \mathbf{I}+\boldsymbol{\Delta}+\boldsymbol{\Sigma})^{-1}\left(\mathbf{b}-\mathbf{c}^{0}\right)
$$

Cournot-Nash Equilibrium

$$
\mathbf{q}=(2 \mathbf{I}+\boldsymbol{\Delta}+\boldsymbol{\Sigma})^{-1}\left(\mathbf{b}-\mathbf{c}^{0}\right)
$$

Cournot-Nash Equilibrium

$$
\mathbf{q}=\left(2 \mathbf{I}+\underset{\substack{\text { Scale } \\ \text { Economies }}}{\boldsymbol{\Delta}}+\underset{\substack{\text { Network } \\ \text { Position }}}{\left.\mathbf{\Sigma})^{-1}\left(\mathbf{b}-\mathbf{c}^{0}\right)\right)}\right.
$$

Cournot-Nash Equilibrium

$$
\mathbf{q}=(2 \mathbf{I}+\mathbf{\Delta}+\mathbf{\Sigma})^{-1} \underbrace{\left(\mathbf{D}-\mathbf{c}^{0}\right)}_{\substack{\text { Scale } \\ \text { Economies }}}
$$

Cournot-Nash Equilibrium

$$
\mathbf{q}=\left(2 \mathbf{I}+\underset{\substack{\text { Scale } \\
\text { Economies }}}{\substack{\text { Network } \\
\text { Position }}} \begin{array}{c}
\text { Marginal Surplus } \\
\text { at } q_{i}=0
\end{array}\right)
$$

The expression above can be shown to be a measure of network centrality (Katz-Bonacich)

Hedonic-Adjusted Productivity

def b_{i}
 ω_{i}

 C_{i}

- Accounts for product quality
- Volumetric-invariant
- Comparable across widely-different firms

Decomposing Markups

$$
\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}
$$

Decomposing Markups

Monopolistic Markup
 $=\left(1+\omega_{i}\right) / 2$
 \downarrow

Decomposing Markups

Monopolistic Markup
 $=\left(1+\omega_{i}\right) / 2$

$\mu_{i}=\chi_{i}+\left(1-\chi_{i}\right) \bar{\mu}_{i}$

Product Market Centrality

Depends on the entire matrix of cosine
similarities $\mathbf{A}^{\prime} \mathbf{A}$. The profit share of surplus
is a decreasing function of χ_{i} alone

Data and Validation

Hoberg \& Phillips (2016 JPE) Product Similarity

- Similarity scores constructed by text mining the "Business Description" section of 10-K filings; already standard in Finance.

Hoberg \& Phillips (2016 JPE) Product Similarity

- Similarity scores constructed by text mining the "Business Description" section of 10-K filings; already standard in Finance.
- Solve long-standing problems with NAICS/SIC: static, binary do not really reflect product market competition (not used in I.O.)

Hoberg \& Phillips (2016 JPE) Product Similarity

- Similarity scores constructed by text mining the "Business Description" section of 10-K filings; already standard in Finance.
- Solve long-standing problems with NAICS/SIC: static, binary do not really reflect product market competition (not used in I.O.)
- Construction:

$$
\mathbf{v}_{i}=\left[\begin{array}{c}
v_{i, 1} \\
v_{i, 2} \\
\vdots
\end{array}\right] \quad \cos _{i j}^{\mathrm{HP}} \stackrel{\text { def }}{=} \frac{\mathbf{v}_{i}^{\prime} \mathbf{v}_{j}}{\sqrt{\left\|\mathbf{v}_{i}\right\|\left\|\mathbf{v}_{j}\right\|}}
$$

Hoberg \& Phillips (2016 JPE) Product Similarity

- Similarity scores constructed by text mining the "Business Description" section of 10-K filings; already standard in Finance.
- Solve long-standing problems with NAICS/SIC: static, binary do not really reflect product market competition (not used in I.O.)
- Construction:

$$
\mathbf{v}_{i}=\left[\begin{array}{c}
v_{i, 1} \\
v_{i, 2} \\
\vdots \\
v_{i, 61146}
\end{array}\right] \quad \cos _{i j}^{\mathrm{HP}} \stackrel{\text { def }}{=} \frac{\mathbf{v}_{i}^{\prime} \mathbf{v}_{j}}{\sqrt{\left\|\mathbf{v}_{i}\right\|\left\|\mathbf{v}_{j}\right\|}}
$$

- Identification: \mathbf{a}_{i} and \mathbf{v}_{i} are collinear $\Rightarrow \mathbf{a}_{i} \mathbf{a}_{j} \equiv \cos _{i j}{ }^{\mathrm{HP}}$

			Demand Elasticity $\left(\frac{\partial q_{i}}{\partial p_{j}} \cdot \frac{p_{j}}{q_{i}}\right)$	
Market	Firm i	Firm j	Micro Estimate	GHL $($ text-based $)$
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

Empirics

Distribution of Hedonic-Adjusted Productivity

Distribution of Product Market Centrality

Total Surplus and its Distribution

Deadweight Loss from Oligopoly

Robustness \& Extensions

- Private and foreign firms, entry and exit

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost
- Exclude "non-tradable" industries

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost
- Exclude "non-tradable" industries
- Bertrand

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost
- Exclude "non-tradable" industries
- Bertrand
- Multi-product firms (using Compustat Segments)

Robustness \& Extensions

- Private and foreign firms, entry and exit
- Aggregation result: add competitive fringes of atomistic firms in the form of a representative firms.
- Can be located using firm-sector similarity from FHP.
- Non-flat marginal cost
- Exclude "non-tradable" industries
- Bertrand
- Multi-product firms (using Compustat Segments)
- Input-Output Linkages (using Atalay et al. 2011 IO data)

A Tale of Two Networks:
 Common Ownership and Product Market Rivalry

Florian Ederer
BU Questrom

Bruno Pellegrino
 Columbia GSB

London School of Economics
Fifth Economic Networks and Finance Conference

Common Ownership

- Definition: the degree to which two firms that compete in product and/or labor markets are owned by few, overlapping investors.

Common Ownership

- Definition: the degree to which two firms that compete in product and/or labor markets are owned by few, overlapping investors.
- The Common Ownership hypothesis (Rotemberg, 1984):
- Consider a standard oligopolistic market, but assume that instead of maximizing profits, firms maximize investors' value.

Common Ownership

- Definition: the degree to which two firms that compete in product and/or labor markets are owned by few, overlapping investors.
- The Common Ownership hypothesis (Rotemberg, 1984):
- Consider a standard oligopolistic market, but assume that instead of maximizing profits, firms maximize investors' value.
- CO leads to softening of competition without any collusion.

Common Ownership

- Definition: the degree to which two firms that compete in product and/or labor markets are owned by few, overlapping investors.
- The Common Ownership hypothesis (Rotemberg, 1984):
- Consider a standard oligopolistic market, but assume that instead of maximizing profits, firms maximize investors' value.
- CO leads to softening of competition without any collusion.
- Rising Common Ownership (Gilje, Gormley \& Levit 2020; Backus, Conlon \& Sinkinson, 2021) \rightarrow Huge policy/research interest:
- Consolidation in asset management industry is putting stock ownership in the hands of a few large institutional investors.

Research Question

What are the welfare implications of common ownership?

Research Question

What are the welfare implications of common ownership?

\rightarrow Depends on ownership as well!

Common Ownership

- There are Z funds indexed by $z=1,2, \ldots, Z$. Fund z own shares $s_{i z}$ in company i. Then fund z 's total income is:

$$
V_{z} \stackrel{\text { def }}{=} \sum_{i=1}^{n} s_{i z} \pi_{i} \quad \text { and }
$$

$$
\sum_{z=1}^{Z} s_{i z}=1
$$

Common Ownership

- There are Z funds indexed by $z=1,2, \ldots, Z$. Fund z own shares $s_{i z}$ in company i. Then fund z 's total income is:

$$
V_{z} \stackrel{\text { def }}{=} \sum_{i=1}^{n} s_{i z} \pi_{i} \quad \text { and } \quad \sum_{z=1}^{Z} s_{i z}=1
$$

- Firm i picks q_{i} to maximize the share-weighted profits of its investors (Rotemberg 1984 - we shall relax this later):

Common Ownership

- There are Z funds indexed by $z=1,2, \ldots, Z$. Fund z own shares $s_{i z}$ in company i. Then fund z 's total income is:

$$
V_{z} \stackrel{\text { def }}{=} \sum_{i=1}^{n} s_{i z} \pi_{i} \quad \text { and } \quad \sum_{z=1}^{Z} s_{i z}=1
$$

- Firm i picks q_{i} to maximize the share-weighted profits of its investors (Rotemberg 1984 - we shall relax this later):

$$
\phi_{i} \stackrel{\text { def }}{=} \sum_{z=1}^{Z} s_{i z} V_{z}
$$

Profit Weights

- We can write i's objective function in terms of profit weights:

$$
\phi_{i} \propto \pi_{i}+\sum_{j \neq i} \kappa_{i j} \pi_{j}
$$

Profit Weights

- We can write i's objective function in terms of profit weights:

$$
\phi_{i} \propto \pi_{i}+\sum_{j \neq i} \kappa_{i j} \pi_{j} \quad \kappa_{i j}=\frac{\sum_{z=1}^{Z} s_{i z} s_{j z}}{\sum_{z=1}^{Z} s_{i z} s_{i z}}
$$

Profit Weights

- We can write i's objective function in terms of profit weights:

$$
\phi_{i} \propto \pi_{i}+\sum_{j \neq i} \kappa_{i j} \pi_{j} \quad \kappa_{i j}=\frac{\sum_{z=1}^{Z} s_{i z} s_{j z}}{\sum_{z=1}^{Z} s_{i z} s_{i z}}
$$

- Using institutional shareholding data (forms 13-F) we can compute all of the profit weights and perform counterfactuals.

Profit Weights

- We can write i's objective function in terms of profit weights:

$$
\phi_{i} \propto \pi_{i}+\sum_{j \neq i} \kappa_{i j} \pi_{j} \quad \kappa_{i j}=\frac{\sum_{z=1}^{Z} s_{i z} s_{j z}}{\sum_{z=1}^{Z} s_{i z} s_{i z}}
$$

- Using institutional shareholding data (forms 13-F) we can compute all of the profit weights and perform counterfactuals.
- Equilibrium:

$$
\mathbf{q}=(2 \mathbf{I}+\boldsymbol{\Delta}+\boldsymbol{\Sigma}+\mathbf{K} \circ \boldsymbol{\Sigma})^{-1}(\mathbf{b}-\mathbf{c})
$$

A Tale of Two Networks

Product Market Similarity - A'A based on 10-K (Hoberg \& Phillips, 2016)

Common Ownership Weights - K based on 13-F data (Backus et al. 2021)

Deadweight Loss

Effect of CO on Profits and Consumer Surplus

Take-aways

- A new GE theory of oligopoly with hedonic demand.
- Estimated for Compustat using 10-K product similarities.
- Distribution of markups is jointly determined by productivity and product market centrality.
- Both have undergone significant changes
- Rising Oligopoly Power
- increasing deadweight loss
- lower consumer surplus share.

I share the data! (elasticities, centrality, productivity...)

thank you

Product Market Centrality

$$
\begin{aligned}
\mathbf{q} & =(2 \mathbf{I}+\boldsymbol{\Sigma})^{-1}(\mathbf{b}-\mathbf{c}) \\
& =\frac{1}{2}\left[\begin{array}{cccc}
1-\chi_{1} & 0 & \cdots & 0 \\
0 & 1-\chi_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1-\chi_{n}
\end{array}\right](\mathbf{b}-\mathbf{c})
\end{aligned}
$$

Submarket 1: Entertainment (Sample Focal Firm:IWanderlust Interactive)!

43 rivals: Maxis, Piranha Interactive Publishing, Brilliant Digital Entertainment, Midway
Games, Take Two Interactive Software, THQ, 3DO, New Frontier Media, . . .
SIC codes of rivals: computer programming and data processing [SIC-3 = 737] (24 rivals), motion picture production and allied services [SIC-3 $=781$] (4 rivals), miscellaneous other (13 rivals)

- Core words: entertainment (42), video (42), television (38), royalties (35), internet (3 $\overline{4}$), । content (33), creative (31), promotional (31), copyright (31), game (30), sound (29), publishing (29), ...

Submarket 2: Medical Services (Sample Focal Firmy Quadramed Corp.)
66 rivals: IDX Systems, Medicus Systems, Hpr, Simione Central Holdings, National Wireless Holdings, HCIA, Apache Medical Systems, . . .
SIC codes of rivals: computer programming and data processing [SIC-3 = 737] (45 rivals), insurance agents, brokers, and service [SIC-3 = 641] (5 rivals), miscellaneous health services [SIC-3 $=809$] (4 rivals), management and public relations services [SIC-3 $=$ 874] (3 rivals), miscellaneous other (9 rivals)
 (47), physician (47), hospital (46), health care (46), server (45), resource (44), functionality (44), billing (44), . . .

Linear Demand

1. Allows to write demand in terms of cosine similarity
2. Already standard in literature (see Syverson 2019 JEP review)
3. Data is begging you to use it

Variable: $\log \left|\frac{\partial q_{i}}{\partial p_{j}} \cdot \frac{p_{j}}{q_{i}}\right|$, residualized on $(i=j)$ dummy and Market Fixed Effects

Markups: Time Series

Profits, Potential and Welfare

$$
\begin{aligned}
\Pi(\mathbf{q}) & =\mathbf{q}^{\prime}\left(\mathbf{b}-\mathbf{c}^{0}\right) \\
\Phi(\mathbf{q}) & -\frac{1}{2} \cdot \mathbf{q}^{\prime}(2 \mathbf{I}+\boldsymbol{\Delta}+2 \boldsymbol{\Sigma}) \mathbf{q}-F \\
W(\mathbf{q}) & =\mathbf{q}^{\prime}\left(\mathbf{b}-\mathbf{c}^{0}\right) \\
-\frac{1}{2} \cdot \mathbf{q}^{\prime}\left(\mathbf{}\left(\mathbf{b}-\mathbf{c}^{0}\right)\right. & -\frac{1}{2} \cdot \mathbf{q}^{\prime}(\mathbf{I}+\boldsymbol{\Delta}+\boldsymbol{\Sigma}) \mathbf{q}-F \\
\text { where } \quad \boldsymbol{\Delta}) & \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\delta_{1} & 0 & \cdots & 0 \\
0 & \delta_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0
\end{array}\right] \quad \text { and } \quad F \stackrel{\text { def }}{=} \sum_{i=1}^{n} f_{i}
\end{aligned}
$$

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.
- Assume $\delta_{i}=0$ (later relaxed). Only one free parameter: α.

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.
- Assume $\delta_{i}=0$ (later relaxed). Only one free parameter: α.
- Proposition: $\partial \log p_{i} / \partial \log q_{j}$ is observed for firm pair (K,Q):

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.
- Assume $\delta_{i}=0$ (later relaxed). Only one free parameter: α.
- Proposition: $\partial \log p_{i} / \partial \log q_{j}$ is observed for firm pair (K,Q):

$$
\alpha=-\frac{\varepsilon_{\mathrm{KQ}} \cdot p_{\mathrm{K}} q_{\mathrm{K}}+\varepsilon_{\mathrm{QK}} \cdot p_{\mathrm{Q}} q_{\mathrm{Q}}}{2 \cdot \cos _{\mathrm{KQ}}^{\mathrm{HP}} \cdot \sqrt{p_{\mathrm{K}} q_{\mathrm{K}}-\mathrm{TVC}_{\mathrm{K}}} \cdot \sqrt{p_{\mathrm{Q}} q_{\mathrm{Q}}-\mathrm{TVC}_{\mathrm{Q}}}}
$$

Identification

- Compustat: Revenues $\left(p_{i} q_{i}\right)$, COGS $\left(\mathrm{TVC}_{i}\right)$, SG\&A $\left(f_{i}\right)$.
- Assume $\delta_{i}=0$ (later relaxed). Only one free parameter: α.
- Proposition: $\partial \log p_{i} / \partial \log q_{j}$ is observed for firm pair (K,Q):

$$
\alpha=-\frac{\varepsilon_{\mathrm{KQ}} \cdot p_{\mathrm{K}} q_{\mathrm{K}}+\varepsilon_{\mathrm{QK}} \cdot p_{\mathrm{Q}} q_{\mathrm{Q}}}{2 \cdot \cos _{\mathrm{KQ}}^{\mathrm{HP}} \cdot \sqrt{p_{\mathrm{K}} q_{\mathrm{K}}-\mathrm{TVC}_{\mathrm{K}}} \cdot \sqrt{p_{\mathrm{Q}} q_{\mathrm{Q}}-\mathrm{TVC}_{\mathrm{Q}}}}
$$

- Every other object is identified in closed form (correct units).

Identification

$$
\begin{gathered}
q_{i}=\sqrt{\pi_{i}} \\
c_{i}=\frac{\mathrm{TVC}_{i}}{q_{i}} \\
\mathbf{b}=(2 \mathbf{I}+\boldsymbol{\Sigma}) \mathbf{q}+\mathbf{c}
\end{gathered}
$$

Entry and Exit

The paper takes into account entry and exit in two ways.

- Atomistic Firms with quadratic cost and Pareto-distributed productivity that enter/exit endogenously, modelled through a representative firm. New aggregation result that allows for intensive and extensive margin. Results are virtually unchanged under this extension.
- Granular Firms have a choke price: when the social planner forces firms to price at marginal cost (Perfect Competition) some exit. Fewer firms compete much more aggressively (TS \uparrow)

Adding a representative competitive firm

Proposition 9. Assume that there is a continuum of potential entrants that are indexed by a productivity parameter $\zeta \in(\underline{\zeta}, \infty)$, with $\underline{\zeta}>0$, and that produce a homogeneous good using the following quadratic cost function:

$$
\begin{equation*}
h(\zeta)=\frac{1}{2 \zeta} \cdot q^{2}(\zeta) \tag{2.75}
\end{equation*}
$$

Assume also that the firms face cost of entry equal to one unit of labor and that the probability density of type- ζ potential entrants is given by

$$
\begin{equation*}
p d f(\zeta)=\frac{\beta-1}{\zeta^{\beta+1}} \tag{2.76}
\end{equation*}
$$

implying that ζ follows a Pareto distribution with shape parameter β and scale parameter $\underline{\zeta} \stackrel{\text { def }}{=}[(\beta-1) / \beta]^{\frac{1}{\beta}} .9$ Then, as the parameter β converges down to 1 , the cost function of the corresponding aggregate representative firm is approximated by

$$
\begin{equation*}
h_{n+1}=\frac{q_{n+1}^{2}}{2} \tag{2.77}
\end{equation*}
$$

where and h_{n+1} and q_{n+1} are, respectively, the labor input and the output of the representative firm, and the productivity cutoff for entry converges to $\zeta_{\min }=\frac{1}{q_{n+1}}$.

Because employment and revenues are proportional to ζ, it follows that, if the assumptions above are respected, both the revenue and employment distribution of firms also approximate a Pareto distribution with shape parameter $\beta=1$, sometimes called a Zipf Law.

Input-Output Linkages

- Leontief production function links intermediate/final output

$$
\mathbf{q}^{\mathrm{I}}=\mathbb{F}^{\prime} \mathbf{q} \quad \text { and } \quad \mathbf{q}^{\mathrm{C}}=(\mathbf{I}-\mathbb{F})^{\prime} \mathbf{q}
$$

- Firms are price-takers in input markets - profit vector:

$$
\boldsymbol{\pi}=\operatorname{diag}(\mathbf{q})\left(\mathbf{p}-\mathbf{c}^{0}-\mathbb{F} \mathbf{p}\right)-\mathbf{f}
$$

$$
\mathbf{q}=\left\{\left(\mathbf{I}+\mathbf{1 1}^{\prime}\right) \circ\left[(\mathbf{I}+\boldsymbol{\Sigma})(\mathbf{I}-\mathbb{F})^{\prime}\right]\right\}^{-1}\left[(\mathbf{I}-\mathbb{F}) \mathbf{b}-\mathbf{c}^{0}\right]
$$

Total Surplus and its Breakdown (input-output)

Deadweight Loss (Input-Output)

Multi-Product Firms and Mergers

Company z maximizes the sum of profits over all product lines i where $o_{i z}=1$ if company z produces product i :

$$
\begin{gathered}
\varpi_{z}=\sum_{i=1}^{n} o_{i z} \pi_{i} \\
\mathbf{K} \equiv\left[\begin{array}{cccc}
\kappa_{11} & \kappa_{21} & \cdots & \kappa_{1 n} \\
\kappa_{12} & \kappa_{22} & \cdots & \kappa_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\kappa_{n 1} & \kappa_{n 2} & \cdots & \kappa_{n n}
\end{array}\right] \stackrel{\text { def }}{=} \mathbf{O}^{\prime} \mathbf{O} \\
\mathbf{q}^{\Phi}=(2 \mathbf{I}+\boldsymbol{\Delta}+\boldsymbol{\Sigma}+\mathbf{K} \circ \boldsymbol{\Sigma})^{-1}\left(\mathbf{b}-\mathbf{c}^{0}\right)
\end{gathered}
$$

Construction of Product Cosine Similarities

Company z maximizes the sum of profits over all product lines i where $[\mathbf{O}]_{i z}=1$ if company z produces product i :

$$
\begin{gathered}
{[\mathbb{Q}]_{i \mathcal{S}}=\left\{\begin{array}{lll}
1 & \text { if } & i \in \mathcal{S} \\
0 & \text { if } & i \notin \mathcal{S}
\end{array}\right.} \\
{[\mathbb{S}]_{z \mathcal{S}}=z^{\prime} \text { s share of SIC code } \mathcal{S} \text { sales }} \\
\left(\mathbf{A}^{\prime} \mathbf{A}\right)_{\mathrm{P}}=\frac{1}{2}\left[\mathbf{O}\left(\mathbf{A}^{\prime} \mathbf{A}\right)_{\mathrm{F}} \mathbf{O}^{\prime}+\mathbb{Q}^{\prime} \mathbb{S}^{\prime}\left(\mathbf{A}^{\prime} \mathbf{A}\right)_{\mathrm{F}} \mathbb{S} \mathbb{Q}\right]
\end{gathered}
$$

Total Surplus and breakdown (Multi-Product)

Deadweight Loss (Multi-Product)

Bertrand Equilibrium (flat marginal cost)

$$
\mathbf{q}^{\Psi}=\left(\mathbf{I}+\mathbb{D}^{-1}+\boldsymbol{\Sigma}\right)^{-1}(\mathbf{b}-\mathbf{c})
$$

Deadweight Loss (Cournot v/s Bertrand)

Profit Share of Surplus (Cournot v/s Bertrand)

Take-aways

- A new GE theory of oligopoly with hedonic demand.

Take-aways

- A new GE theory of oligopoly with hedonic demand.
- Estimated for Compustat using 10-K product similarities.

Take-aways

- A new GE theory of oligopoly with hedonic demand.
- Estimated for Compustat using 10-K product similarities.
- Distribution of markups is jointly determined by productivity and product market centrality.
- Both have undergone significant changes

Take-aways

- A new GE theory of oligopoly with hedonic demand.
- Estimated for Compustat using 10-K product similarities.
- Distribution of markups is jointly determined by productivity and product market centrality.
- Both have undergone significant changes
- Rising Oligopoly Power
- increasing deadweight loss
- lower consumer surplus share.

Product Differentiation and Oligopoly: a Network Approach
Bruno Pellegrino (Columbia Business School)

