SYSTEMIC RISK IN FINANCIAL NETWORKS REVISITED

Jason Roderick Donaldson Giorgia Piacentino Xiaobo Yu

FACTS

Banks' gross debts bigger than net
E.g. HSBC's net position $|£ 24 \mathrm{~B}-£ 21.5 \mathrm{~B}| \approx 10 \%$ gross

Thought to habor systemic risk \Longrightarrow Policy makers advocate netting out

Supported by networks models (e.g. Acemoglu-Ozdaglar-Tahbaz-Salehi 15)
Based on one-period debt capturing overnight debts (e.g. repos)
Much interbank debt longer maturity
Germany: Average mat. more than year; frac. overnight less than 10%

QUESTIONS

Do long-term debt networks harbor same systemic risks as short-?

Do the same network structures lead risks to propagate?

Do gross debts serve function that could be undermined by netting out?

THIS PAPER

Model of N banks connected in network of long-term debts

Banks have long-term assets y but could suffer short-term liq. shocks ℓ

THIS PAPER

Model of N banks connected in network of long-term debts

Banks have long-term assets y but could suffer short-term liq. shocks ℓ

Friction: Can pledge only fraction θ of y to borrow to meet shock

THIS PAPER

Model of N banks connected in network of long-term debts

Banks have long-term assets y but could suffer short-term liq. shocks ℓ

Friction: Can pledge only fraction θ of y to borrow to meet shock

Assumption: $y>\ell>\theta y$

LIMITED PLEDGEABILITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
long-term investments	short-term
liq. shock	

LIMITED PLEDGEABILITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	short-term
	equity

LIMITED PLEDGEABILITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	ℓ
	equity

LIMITED PLEDGEABILITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	ℓ
debt from B_{j}	debt to B_{j}
	equity

RESULTS

High indebtedness and connectedness sources of value and stability
Zero net long-term positions have positive NPV
Embed option to dilute with new debt \Longrightarrow liquidity insurance
Contingent transfers via plain debt
"Exponential networks" implement optimal transfers for any shocks

RESULTS MATTER FOR POLICY

Policies that help with short-term debt backfire with long-term debt
Decreasing indebtedness/connectedness can decrease efficiency

MODEL

MODEL OVERVIEW

Two dates: Date 1 and Date 2; no discounting; universal risk neutrality
N banks: Assets y at Date 2 and risk of liquidity shock $\ell<y$ at Date 1

Interbank network: Network of long-term debts $\mathbf{F}=\left[F_{i \rightarrow j}\right]_{i j}$ (due at Date 2)

Friction: Limited pledgeability: Only $\theta y<\ell$ pledgeable

BANKS $_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

BANKS $_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j} \&$ claims $F_{i \models}:=\sum_{j} F_{j \rightarrow i}$

BANKS $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j}$ \& claims $F_{i \leftleftarrows}:=\sum_{j} F_{j \rightarrow i}$
Assumption: Zero net debts: $F_{i \rightrightarrows}=F_{i \leftleftarrows}$ for all B_{i}

BANKS $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j}$ \& claims $F_{i \leftleftarrows}:=\sum_{j} F_{j \rightarrow i}$
Assumption: Zero net debts: $F_{i \rightrightarrows}=F_{i \leftleftarrows}$ for all B_{i}
B_{i} has liquidity needs $\ell \sigma_{i}$ for $\sigma_{i} \in\{0,1\}$

BANKS $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j}$ \& claims $F_{i \leftleftarrows}:=\sum_{j} F_{j \rightarrow i}$
Assumption: Zero net debts: $F_{i \rightrightarrows}=F_{i \leftleftarrows}$ for all B_{i}
B_{i} has liquidity needs $\ell \sigma_{i}$ for $\sigma_{i} \in\{0,1\}$
$\underline{\text { Assumption: }} \mathrm{B}_{i}$ liquidated if can't pay $\ell \sigma_{i}$, destroying $(1-\theta) y$

BANKS $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j}$ \& claims $F_{i \leftleftarrows}:=\sum_{j} F_{j \rightarrow i}$
Assumption: Zero net debts: $F_{i \rightrightarrows}=F_{i \leftleftarrows}$ for all B_{i}
B_{i} has liquidity needs $\ell \sigma_{i}$ for $\sigma_{i} \in\{0,1\}$
$\underline{\text { Assumption: }} \mathrm{B}_{i}$ liquidated if can't pay $\ell \sigma_{i}$, destroying $(1-\theta) y$
B_{i} has pledgeable assets $\theta y+\mathrm{PV}\left[F_{i \leftleftarrows}\right]$

BANKS $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{N}$ AND BALANCE SHEETS

B_{i} has total interbank liabilities $F_{i \rightrightarrows}:=\sum_{j} F_{i \rightarrow j}$ \& claims $F_{i \leftleftarrows}:=\sum_{j} F_{j \rightarrow i}$
Assumption: Zero net debts: $F_{i \rightrightarrows}=F_{i \leftleftarrows}$ for all B_{i}
B_{i} has liquidity needs $\ell \sigma_{i}$ for $\sigma_{i} \in\{0,1\}$
Assumption: B_{i} liquidated if can't pay $\ell \sigma_{i}$, destroying $(1-\theta) y$
B_{i} has pledgeable assets $\theta y+\mathrm{PV}\left[F_{i \leftleftarrows}\right]$
$\underline{\text { Assumption: }}$ New debt senior (e.g. repo) $\Longrightarrow F_{i \rightrightarrows}$ diluted

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \leftleftarrows<}<\ell \sigma_{i}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0$

Defaults at Date 2 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i}+F_{i \rightrightarrows}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0$
Defaults at Date 2 if $\theta y+R_{i \leftleftarrows<\ell \sigma_{i}}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=\left[\theta y+R_{i \leftleftarrows-\ell \sigma_{i}}\right]^{+}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \models<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0}$
Defaults at Date 2 if $\theta y+R_{i \leftleftarrows<\ell \sigma_{i}}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=\left[\theta y+R_{i \leftleftarrows-\ell \sigma_{i}}\right]^{+}$

Repays in full at Date 2 if $\theta y+R_{i \Leftarrow} \geq \ell \sigma_{i}+F_{i \rightrightarrows}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \models<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0}$
Defaults at Date 2 if $\theta y+R_{i \leftleftarrows<\ell \sigma_{i}}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=\left[\theta y+R_{i \leftleftarrows-\ell \sigma_{i}}\right]^{+}$

Repays in full at Date 2 if $\theta y+R_{i \leftleftarrows \geq} \geq \ell \sigma_{i}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=F_{i \rightrightarrows}$

REPAYMENTS

Denote B_{i} 's equilibrium repayment to B_{j} by $R_{i \rightarrow j}$
Total repayments: $R_{i \rightrightarrows}:=\sum_{j} R_{i \rightarrow j}$ and $R_{i \leftleftarrows}:=\sum_{j} R_{j \rightarrow i}$
Sequential rationality:
B_{i} liquidated at Date 1 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i} \Longrightarrow R_{i \rightrightarrows}=0$

Defaults at Date 2 if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=\left[\theta y+R_{i \leftleftarrows-\ell \sigma_{i}}\right]^{+}$

Repays in full at Date 2 if $\theta y+R_{i \leftleftarrows} \geq \ell \sigma_{i}+F_{i \rightrightarrows} \Longrightarrow R_{i \rightrightarrows}=F_{i \rightrightarrows}$

NB: Liquidation inefficient (destroys $(1-\theta) y$), default alone is not (transfer)

EQUILIBRIUM

A payment equilibrium is a repayment profile $\left[R_{i \rightarrow j}\right]_{i j}$ for each $\left(\sigma_{i}\right)_{i}$ s.t.
Repayments are sequentially rational
Repayments are paid pro rata: $\frac{R_{i \rightarrow j}}{R_{i \rightrightarrows}}=\frac{F_{i \rightarrow j}}{F_{i \rightrightarrows}}$

TIMELINE/SUMMARY

Date 1: Shocks realized; banks raise new liq.; banks liquidated/continue

Date 2: Assets y realized; banks repay or default

DEFINITION: EFFICIENCY

DEFINITION: EFFICIENCY

A network more efficient than another if fewer banks liquidated $\forall\left(\sigma_{i}\right)_{i}$

BENCHMARK: SHORT-TERM DEBT

BENCHMARK: SHORT-TERM DEBT

Suppose interbank liabilities $F_{i \rightarrow j}$ are due at Date 1

BENCHMARK: SHORT-TERM DEBT

Suppose interbank liabilities $F_{i \rightarrow j}$ are due at Date 1
\Longrightarrow Interbank liabilities can't be diluted with new debt at Date 1

BENCHMARK: SHORT-TERM DEBT

Suppose interbank liabilities $F_{i \rightarrow j}$ are due at Date 1
\Longrightarrow Interbank liabilities can't be diluted with new debt at Date 1
$\Longrightarrow \mathrm{B}_{i}$ liquidated if $\theta y+R_{i \sqsubseteq}<\ell \sigma_{i}+F_{i \rightrightarrows}$ (liquidation \equiv default)

BENCHMARK: SHORT-TERM DEBT

Suppose interbank liabilities $F_{i \rightarrow j}$ are due at Date 1
\Longrightarrow Interbank liabilities can't be diluted with new debt at Date 1
$\Longrightarrow \mathrm{B}_{i}$ liquidated if $\theta y+R_{i \leftleftarrows}<\ell \sigma_{i}+F_{i \rightrightarrows}$ (liquidation \equiv default)

Benchmark isomorphic to AOT mutatis mutandis

BM1: INCREASING DEBT DECREASES EFFICIENCY

BM1: DEBT DECREASES EFFICIENCY

Let $\mathbf{F}=\left[F_{i \rightarrow j}\right]_{i j}$ be regular $\left(F_{i \rightrightarrows} \equiv F\right)$
$\alpha \mathbf{F}$ is less efficient than \mathbf{F} whenever $\alpha>1$

BM1: DEBT DECREASES EFFICIENCY

Let $\mathbf{F}=\left[F_{i \rightarrow j}\right]_{i j}$ be regular $\left(F_{i \rightrightarrows} \equiv F\right)$
$\alpha \mathbf{F}$ is less efficient than \mathbf{F} whenever $\alpha>1$
\Longrightarrow No debt $(\alpha=0)$ is best

BM1: DEBT DECREASES EFFICIENCY

Let $\mathbf{F}=\left[F_{i \rightarrow j}\right]_{i j}$ be regular $\left(F_{i \rightrightarrows} \equiv F\right)$
$\alpha \mathbf{F}$ is less efficient than \mathbf{F} whenever $\alpha>1$
\Longrightarrow No debt $(\alpha=0)$ is best \Longrightarrow should net out

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F$

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always

$$
\theta y<\ell \text { by assumption and } R_{j \rightarrow i} \leq \alpha F \text { given zero-net debts }
$$

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always

$$
\theta y<\ell \text { by assumption and } R_{j \rightarrow i} \leq \alpha F \text { given zero-net debts }
$$

$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: Liquidated if $\theta y+R_{i \rightarrow j}<\alpha F$

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always

$$
\theta y<\ell \text { by assumption and } R_{j \rightarrow i} \leq \alpha F \text { given zero-net debts }
$$

Not-shocked B_{j} : Liquidated if $\theta y+R_{i \rightarrow j}<\alpha F \Longrightarrow$ if α high enough

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked
$\underline{\text { Shocked bank } \mathrm{B}_{i}}$: Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always
$\theta y<\ell$ by assumption and $R_{j \rightarrow i} \leq \alpha F$ given zero-net debts
Not-shocked B_{j} : Liquidated if $\theta y+R_{i \rightarrow j}<\alpha F \Longrightarrow$ if α high enough
Face value of liability αF increasing faster than value of claim $R_{i \rightarrow j}$

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always
$\theta y<\ell$ by assumption and $R_{j \rightarrow i} \leq \alpha F$ given zero-net debts
Not-shocked B_{j} : Liquidated if $\theta y+R_{i \rightarrow j}<\alpha F \Longrightarrow$ if α high enough
Face value of liability αF increasing faster than value of claim $R_{i \rightarrow j}$
Overall: High short-term debt creates claims on the LHS of balance sheet

BM1: \uparrow DEBT \downarrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked bank B_{i} : Liquidated if $\theta y+R_{j \rightarrow i}<\ell+\alpha F \Longrightarrow$ always
$\theta y<\ell$ by assumption and $R_{j \rightarrow i} \leq \alpha F$ given zero-net debts
Not-shocked B_{j} : Liquidated if $\theta y+R_{i \rightarrow j}<\alpha F \Longrightarrow$ if α high enough
Face value of liability αF increasing faster than value of claim $R_{i \rightarrow j}$
Overall: High short-term debt creates claims on the LHS of balance sheet
But claims more than fully encumbered by liabilities created on RHS

BM2: DEFAULT RADIUS

BM2: DEFAULT RADIUS (STATED INFORMALLY)

All banks "close" enough to shocked banks default
Formalized via "harmonic distance" (captures direct and indirect links)

BM2: DEFAULT RADIUS (STATED INFORMALLY)

All banks "close" enough to shocked banks default
Formalized via "harmonic distance" (captures direct and indirect links)

Intuition: Shocked bank's neighbors provide it liquidity

BM2: DEFAULT RADIUS (STATED INFORMALLY)

All banks "close" enough to shocked banks default
Formalized via "harmonic distance" (captures direct and indirect links)

Intuition: Shocked bank's neighbors provide it liquidity
Neighbors' neighbors provide them liquidity...

BM2: DEFAULT RADIUS (STATED INFORMALLY)

All banks "close" enough to shocked banks default
Formalized via "harmonic distance" (captures direct and indirect links)
Intuition: Shocked bank's neighbors provide it liquidity
Neighbors' neighbors provide them liquidity...

Overall: Not-shocked near shocked pay out so much that can't meet shocks

BM3: CONNECTEDNESS

BM3: CONNECTEDNESS (STATED INFORMALLY)

Increasing connectedness decreases efficiency
Formalized using "bottleneck parameter"/ "delta connectedness"

BM3: CONNECTEDNESS (STATED INFORMALLY)

Increasing connectedness decreases efficiency
Formalized using "bottleneck parameter"/ "delta connectedness"
Intuition: Liquidations propagate through network per default radius (BM2)

RESULTS

R1: INCREASING DEBT INCREASES EFFICIENCY

R1: INCREASING DEBT INCREASES EFFICIENCY

Let \mathbf{F} be regular
$\alpha \mathbf{F}$ is more efficient than \mathbf{F} whenever $\alpha>1$

R1: INCREASING DEBT INCREASES EFFICIENCY

Let \mathbf{F} be regular
$\alpha \mathbf{F}$ is more efficient than \mathbf{F} whenever $\alpha>1$
\Longrightarrow Zero debt $(\alpha=0)$ is worst

R1: INCREASING DEBT INCREASES EFFICIENCY

Let \mathbf{F} be regular
$\alpha \mathbf{F}$ is more efficient than \mathbf{F} whenever $\alpha>1$
\Longrightarrow Zero debt $(\alpha=0)$ is worst \Longrightarrow should not net out

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0$

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked
$\underline{\text { Shocked } \mathrm{B}_{i}}$: liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0$

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0 \Longrightarrow$ never

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0 \Longrightarrow$ never
B_{i} can dilute liability αF without causing B_{j} to be liquidated

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0 \Longrightarrow$ never
B_{i} can dilute liability αF without causing B_{j} to be liquidated

Overall: High long-term debt creates claims on the LHS of balance sheet

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0 \Longrightarrow$ never
B_{i} can dilute liability αF without causing B_{j} to be liquidated
Overall: High long-term debt creates claims on the LHS of balance sheet
Claims not encumbered by liabilities created on RHS

R1: \uparrow DEBT \uparrow EFFICIENCY: PROOF (SKETCH)

Say B_{i} and B_{j} have offsetting debts $\alpha F_{i \rightarrow j}=\alpha F_{j \rightarrow i}=\alpha F$ and B_{i} shocked

Shocked B_{i} : liquidated if $\theta y+R_{j \rightarrow i}<\ell+0 \Longrightarrow$ not if α high $(2 \theta y>\ell)$
$\theta y<\ell$ but (i) $R_{j \rightarrow i}$ increasing in α and (ii) B_{i} can dilute liability αF
$\underline{\text { Not-shocked } \mathrm{B}_{j}}$: liquidated if $\theta y+R_{i \rightarrow j}<0 \Longrightarrow$ never
B_{i} can dilute liability αF without causing B_{j} to be liquidated
Overall: High long-term debt creates claims on the LHS of balance sheet
Claims not encumbered by liabilities created on RHS (can be diluted)

SHOCKED BANK B_{i} NEEDS LIQUIDITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
long-term investments	short-term
liq. shock	

SHOCKED BANK B_{i} NEEDS LIQUIDITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	short-term
	equity

SHOCKED BANK B_{i} NEEDS LIQUIDITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	ℓ
	equity

SHOCKED BANK B_{i} NEEDS LIQUIDITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	ℓ
debt from B_{j}	debt to B_{j}
	equity

SHOCKED BANK B_{i} NEEDS LIQUIDITY

$\underline{B_{i} \text { 's Balance Sheet }}$

Assets	Liabilities
y	ℓ
αF	αF
	equity

B_{i} RAISES CASH VIA NEW DEBT AGAINST $y \& \alpha F$

$\underline{\mathrm{B}_{i} \text { 's Balance Sheet }}$

Assets	Liabilities	Assets	Liabilities
y	ℓ	y	ℓ
${ }_{\alpha} F$	${ }^{*} F$	αF	αF
	equity	cash	new debt
			equity

DILUTES B $_{j}$

B_{i} 's Balance Sheet

B_{j} NOT WORSE OFF EX ANTE

Gross debts mean B_{j} diluted when B_{i} is shocked
But B_{j} can also dilute B_{i} when it is shocked
Gross debt implement transfer from not-shocked to shocked bank
Coinsurance via option to dilute

PRACTICAL IMPLEMENTATION

Banks hold gross long-term dilutable debts
E.g. interbank loans/bonds

Rationalizes why long-maturity

Banks dilute with short-term senior debt

Rationalizes e.g. super-seniority for repos

Explains large interbank positions (quarter of balance sheets)

DILUTION COMPLEMENTS DEFAULT

Banks use the option to default to implement contingencies
Implements transfer from not-shocked to shocked at Date 2
Allen-Gale 98, Dubey-Geanakoplos-Shubik 88, and Zame 93

But default not enough here
Need dilution to prevent liquidation at Date 1

Like defaultable debt, dilutable debt can be good
Implements transfers before maturity

R2: SALVATION RADIUS

R2: SALVATION RADIUS (STATED INFORMALLY)

Banks close enough to not-shocked bank do not default (via harmonic dist.)

R2: SALVATION RADIUS (STATED INFORMALLY)

Banks close enough to not-shocked bank do not default (via harmonic dist.)

Intuition: Not-shocked bank's neighbors dilute its debt to get liquidity

R2: SALVATION RADIUS (STATED INFORMALLY)

Banks close enough to not-shocked bank do not default (via harmonic dist.)

Intuition: Not-shocked bank's neighbors dilute its debt to get liquidity
Neighbors' neighbors dilute their debt to get liquidity...

R2: SALVATION RADIUS (STATED INFORMALLY)

Banks close enough to not-shocked bank do not default (via harmonic dist.)

Intuition: Not-shocked bank's neighbors dilute its debt to get liquidity
Neighbors' neighbors dilute their debt to get liquidity...
Overall: Banks near not-shocked banks dilute so much that meet shocks

R3: CONNECTEDNESS INCREASES EFFICIENCY

R3: CONNECTEDNESS \uparrow EFF. (INFORMALLY)

Increasing connectedness increases efficiency
Formalized using "bottleneck parameter"/ "delta connectedness"

R3: CONNECTEDNESS \uparrow EFF. (INFORMALLY)

Increasing connectedness increases efficiency
Formalized using "bottleneck parameter"/ "delta connectedness"
Intuition: Liquidity propagates through network per salvation radius (R2)

TO SUM UP: LT DEBT NETWORKS UNLIKE ST

Indebtedness and connectedness sources of efficiency
Reason: Option to dilute gross debts provides insurance

TO SUM UP: LT DEBT NETWORKS UNLIKE ST

Indebtedness and connectedness sources of efficiency
Reason: Option to dilute gross debts provides insurance
Question: Do high indebtedness and connectedness suffice for efficiency?

TO SUM UP: LT DEBT NETWORKS UNLIKE ST

Indebtedness and connectedness sources of efficiency
Reason: Option to dilute gross debts provides insurance
Question: Do high indebtedness and connectedness suffice for efficiency?

Answer: No!

TO SUM UP: LT DEBT NETWORKS UNLIKE ST

Indebtedness and connectedness sources of efficiency
Reason: Option to dilute gross debts provides insurance
Question: Do high indebtedness and connectedness suffice for efficiency?

Answer: No! Complete network (fully connected) inefficient no matter debt

R4: COMPLETE NETWORK INEFFICIENT

R4: COMPLETE NETWORK INEFFICIENT

Let S be number of shocked banks and suppose $S \ell>N \theta y$

If \mathbf{F} is complete $\left(F_{i \rightarrow j} \equiv F\right)$ then all shocked banks are liquidated

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete \Longrightarrow each not-shocked bank pays at most $\frac{\theta y}{S}$ to each shocked

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete \Longrightarrow each not-shocked bank pays at most $\frac{\theta y}{S}$ to each shocked
\Longrightarrow shocked liquidated

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete \Longrightarrow each not-shocked bank pays at most $\frac{\theta y}{S}$ to each shocked
\Longrightarrow shocked liquidated: $\ell-\theta y>\max R_{i \leftleftarrows}$

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete \Longrightarrow each not-shocked bank pays at most $\frac{\theta y}{S}$ to each shocked
\Longrightarrow shocked liquidated: $\ell-\theta y>\max R_{i \Leftarrow}=(N-S) \frac{\theta y}{S}$

R4: COMPLETE INEFFICIENT: PROOF (SKETCH)

Complete \Longrightarrow each not-shocked bank pays at most $\frac{\theta y}{S}$ to each shocked
\Longrightarrow shocked liquidated: $\ell-\theta y>\max R_{i \Leftarrow}=(N-S) \frac{\theta y}{S}$ or $S \ell>N \theta y$

R4: COMPLETE INEFFICIENT: INTUITION

Complete network delivers all shocked banks same net payment
If not enough to save all, each gets same insufficient amount of liquidity
None saved

R4: COMPLETE INEFFICIENT: INTUITION

Complete network delivers all shocked banks same net payment
If not enough to save all, each gets same insufficient amount of liquidity
None saved

Question: How much better can we do?

DEFINITION: CONSTRAINED EFFICIENCY

DEF: CONSTRAINED EFFICIENCY

A network is constrained efficient if L is minimized for each $\left(\sigma_{i}\right)_{i}$ s.t.

$$
(S-L)(\ell-\theta y) \leq(N-S) \theta y
$$

DEF: CONSTRAINED EFFICIENCY

A network is constrained efficient if L is minimized for each $\left(\sigma_{i}\right)_{i}$ s.t.

$$
(S-L)(\ell-\theta y) \leq(N-S) \theta y
$$

I.e. liq. provided to shocked not-liquidated \leq available from not-shocked

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

Implementation: Priority

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

Implementation: Priority
One bank always gets liquidity needed to survive

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

Implementation: Priority
One bank always gets liquidity needed to survive
Next bank does too if enough left in total after saving first...

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

Implementation: Priority
One bank always gets liquidity needed to survive
Next bank does too if enough left in total after saving first...

NB: Banks symmetric \Longrightarrow order need not depend on state

PRINCIPLES OF EFFICIENCY

Planner should allocate liquidity to save largest number of shocked banks:
(i) Not-shocked banks pay out all liquidity (θy)
(ii) Allocate none to liquidated banks (so all used to save shocked)

Implementation: Priority
One bank always gets liquidity needed to survive
Next bank does too if enough left in total after saving first...

NB: Banks symmetric \Longrightarrow order need not depend on state (cf. extension)

DEFINITION: EXPONENTIAL NETWORK

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

In words: Every bank

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

In words: Every bank
is connected to every other one

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

In words: Every bank
is connected to every other one
has larger liabilities to those with lower indices ("assortativity")

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

In words: Every bank
is connected to every other one
has larger liabilities to those with lower indices ("assortativity")
has liabilities decaying exponentially in indices (" s-dominance")

DEFINITION: EXPONENTIAL NETWORK

Call \mathbf{F} "exponential with base s " if is its fully connected and for all i, j

$$
\frac{F_{i \rightarrow j+1}}{F_{i \rightarrow j}} \leq s<1
$$

In words: Every bank
is connected to every other one
has larger liabilities to those with lower indices ("assortativity")
has liabilities decaying exponentially in indices (" s-dominance")
NB: Ordering by indices arbitrary, can consider permutation

R5: EXPONENTIAL NETWORKS ARE CONSTRAINED EFFICIENT

R5: EXP. NETWORKS CONSTRAINED EFFICIENT

Let \mathbf{F} be an exponential network with base s small enough

For α large enough, $\alpha \mathbf{F}$ is generically constrained efficient

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) $\operatorname{High} \alpha$

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low s

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low $s \Longrightarrow$ shocked with high indices exp. smaller claims on not-shocked

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low $s \Longrightarrow$ shocked with high indices exp. smaller claims on not-shocked
\Longrightarrow liquidated banks allocated (almost) no liquidity

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low $s \Longrightarrow$ shocked with high indices exp. smaller claims on not-shocked
\Longrightarrow liquidated banks allocated (almost) no liquidity (all left for saved)

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low $s \Longrightarrow$ shocked with high indices exp. smaller claims on not-shocked
\Longrightarrow liquidated banks allocated (almost) no liquidity (all left for saved)
NB: "Almost" is enough except in non-generic cases

R5: EXP. NETWORKS EFF.: PROOF (SKETCH)

Echoes principles of efficiency
(i) High $\alpha \Longrightarrow$ not-shocked banks' liabilities high
\Longrightarrow pay out (almost) all liquidity
(ii) Low $s \Longrightarrow$ shocked with high indices exp. smaller claims on not-shocked
\Longrightarrow liquidated banks allocated (almost) no liquidity (all left for saved)
NB: "Almost" is enough except in non-generic cases (also manageable)

EXTENSIONS

EXTENSIONS

(i) Liquidation can be efficient

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good
(ii) Default can be costly

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good
(ii) Default can be costly
\Longrightarrow Calibrate debts to avoid liquidation without inducing default

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good
(ii) Default can be costly
\Longrightarrow Calibrate debts to avoid liquidation without inducing default
(iii) Banks can be heterogeneous

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good
(ii) Default can be costly
\Longrightarrow Calibrate debts to avoid liquidation without inducing default
(iii) Banks can be heterogeneous
\Longrightarrow Exp. network imperfect as ranking ind. of state

EXTENSIONS

(i) Liquidation can be efficient
\Longrightarrow Calibrate debts to avoid bad liquidation but not prevent good
(ii) Default can be costly
\Longrightarrow Calibrate debts to avoid liquidation without inducing default
(iii) Banks can be heterogeneous
\Longrightarrow Exp. network imperfect as ranking ind. of state (but not that bad)

CONCLUSION

CONCLUSION

Off-setting long-term debts provide insurance
Indebtedness and connectedness sources of efficiency
Contrary to conclusions based on short-term debt

Indebtedness and connectedness implement efficiency if network exponential
Minimize number of liquidations no matter realization of shocks
"Robust but never fragile"

SYSTEMIC RISK IN FINANCIAL NETWORKS REVISITED

APPENDIX

NON-CONTINGENT LIQUIDTY

If transfer ℓ to all banks at Date 0 at rate $R=\frac{L-\pi \theta y}{(1-\pi) L}$
All banks meet their shocks
Shocked banks repay θy, not-shocked banks repay $R L$
Outside lender breaks even

Works, but requires outside liquidity $N L \gg M L$ at Date 0

OUTSIDE CREDIT LINES

Extend credit line to all banks to borrow ℓ at Date 1 at rate ϵ
For non-contingent repayment $F=\frac{L-\pi \theta y}{1-\pi}$
Shocked banks draw down, not shocked banks don't
Outside lender breaks even

Works, but requires commitment from outside lender

