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Abstract

Innovativity—an economy’s ability to produce the innovations that drive total factor

productivity (TFP) growth—requires both ideas and the ability to process those

ideas into new products and/or techniques. We model innovativity as a function of

endogenous idea processing capability subject to an exogenous idea supply constraint

and derive an empirical measure of innovativity that is independent of the TFP data

itself. Using exogenous shocks and theoretical restrictions, we establish that: i)

innovativity predicts the evolution of average TFP growth; ii) idea processing

capability is the binding constraint on innovativity; and iii) average TFP growth

declined after 1970 due to a constraints on idea processing capability, not idea supply.

Keywords: Innovation, Financial Market E↵ectiveness, Endogenous Growth, Total

Factor Productivity



The innovations that drive economic growth require both an inventor who creates

an idea and an entrepreneur who processes that idea into a new product and/or technique

(Schumpeter 1947). Yet, the extensive literature on endogenous growth theory sparked by

Romer (1986, 1990), Lucas (1988), Aghion and Howitt (1992 ), and Jones (1995) focuses

overwhelmingly upon idea supply and essentially ignores idea processing all together. The

exception to this consensus is Weitzman (1998), who conjectures that “the ultimate limits

to growth lie not so much in our ability to generate new ideas as in our ability to process an

abundance of potentially new ideas into usable form”. In this paper we advance this debate

by developing a theory of innovativity—where by innovativity we mean an economy’s

ability to produce the innovations that drive TFP growth—in which both idea supply and

idea processing capability play a central role. We then use this theory to identify the

binding constraint on the TFP growth process in the US over the 1899/2019 period.

We posit that: i) innovativity is equal to the minimum of exogenous idea supply and

endogenous idea processing capability; and ii) the TFP growth process is a function of

innovativity. We solve for equilibrium innovativity and derive the empirical measure of

innovativity the theory implies (this measure is independent of the TFP data itself).

Exploiting exogenous shocks to idea supply and idea processing capability together with

restrictions imposed by our theory, we establish that: i) measured innovativity predicts the

evolution of average US TFP growth over the last 120 years;1 and ii) idea processing

capability (rather than idea supply) is the binding constraint on innovativity. While our

analysis here is exploratory, our results suggest that Weitzman’s conjecture is plausibly

correct and hence that the role of idea processing in economic growth deserves further

1We also show that high TFP growth does not reverse cause high measured innovativity.
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examination.2

One implication of our analysis is that the post-1970 decline in US TFP growth did

not happen because ideas are getting harder to find—contrary to Gordon’s (2012, 2014)

highly influential conjecture that the growth slowdown arose because “the main ideas of

[the Second Industrial Revolution] had by and large been implemented by then”.3

Consequently, an e↵ective policy response to the critical problem of low TFP growth

should incorporate measures aimed at enhancing the economy’s idea processing capability

in addition to the current set of measures which aim almost exclusively at shifting up the

(in our view) non-binding idea supply constraint (see, for example, Bloom, Van Reenan,

and Williams 2019). In particular, our analysis finds that financial market e↵ectiveness

plays a critical role in determining idea processing capability. Hence, policies aimed at

improving financial market e↵ectiveness may o↵er a promising (and inexpensive) path to

improve US TFP growth.

In our analysis of innovativity, we treat idea supply as a simple exogenous (but

possibly time-varying) constraint that is either binding or not binding. We believe that this

approach captures the key operational di↵erence between the endogenous growth theory

(EGT) consensus and Weitzman (1998) in a tractable reduced form fashion.

We contribute to EGT by endogenizing idea processing capability. We begin with

the premise that the economy’s idea processing capability is determined by the strategies

2For example, Weitzman (1998) is not cited in either Acemoglu (2009) or Jones and Vollrath (2013), the

leading graduate and undergraduate textbooks on economic growth.

3See also Cowen (2011) and Bloom, Jones, Van Reenan, and Webb (2020). The FT article “Productivity

and innovation stagnation, past and future: an epic compendium of recent views” by Cardi↵ Garcia (11

March 2016) provides an extensive set of links to the wide-ranging debate inspired by Gordon’s analysis.
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that profit-maximizing entrepreneurs (or firms) choose to develop their projects (Arora,

Belenzon, Patacconi, and Suh 2019).

A project produces a payo↵ if it is a commercial success and a project is a

commercial success if its type is Good (rather than Bad) and if the firm attracts a specific

investment by an outside party. The probability that a firm attracts that specific

investment increases with the market’s estimate of the probability that it has a Good

project, and the accuracy of that market estimate is a function of the firm’s choice of

strategy and financial market e↵ectiveness.4

An entrepreneur can influence the expected value of their project by pursuing

either: i) a short horizon Quick Win (Q) strategy that increases the probability of

commercial success by producing a stronger intermediate signal of project quality; or ii) a

longer horizon Innovation (I) strategy that increases project payo↵ given success by taking

an idea and processing that idea into a value increasing innovation. The economy’s idea

processing capability is then equal to the proportion of firms that would choose an I

strategy assuming that there is an idea available, and innovativity (�) is equal to the

proportion that do choose an I strategy given the idea supply constraint.

As market e↵ectiveness increases, the relative advantage of the signaling focused Q

strategy falls. Consequently, the proportion of firms that prefer the I strategy—and so idea

processing capability—increases with market e↵ectiveness.

4Simon (1989) and Pirrong (1995) show that financial regulation can improve market e↵ectiveness (in

the sense that we are using that term here) by improving the credibility of firm financial reporting and

by reducing market manipulation. Choi, Choi, and Malik (2020) find that job seekers use firm financial

information in their job searches, and Brogaard, Ringgenberg, and Sovich (2019) find that more accurate

prices enable market participants to improve their productive decisions.
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Since Q firms produce more precise signals of project type than I firms and since

those signals a↵ect firm price by influencing the probability of commercial success, the

return distribution of Q firms has a higher standard deviation than the return distribution

of I firms. As the proportion of I firms (and so innovativity) increases, then, the standard

deviation of the return distribution of all firms falls. Our empirical measure of innovativity

(�̃) is therefore based upon one minus the fundamental component of the standard

deviation of idiosyncratic firm returns.5

We use �̃ to identify innovativity regimes, that is, continuous periods of time in

which �̃ is constant. Identifying innovativity regimes is important for three reasons.

First, we show that true innovativity � is also constant within an innovativity

regime. So, given a regime, we can then measure � itself on the basis of the TFP growth

process within that regime. One cannot identify an innovativity regime on the basis of the

TFP data directly because one must first identify a period in which � is constant before

estimating the TFP process that is a function of �. For example, it is impossible to tell on

an ex ante basis if a period of high TFP growth such as the DotCom boom of 1995/2004 is

a transitory period of high TFP growth within a low innovativity regime or a separate high

innovativity regime of its own.

One implication of this framework is that the TFP growth process is a function of

innovativity rather than of idea supply directly. Consequently, factors a↵ecting idea supply

such as R&D spending and education (etc.) a↵ect the TFP growth process only through

their impact upon equilibrium innovativity. It follows that analyses that do attempt to

5This measure of innovativity is inspired by Simon (1989), who finds that the market e↵ectiveness

improving 1933 Securities Act lowered the standard deviation of IPO returns.
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measure the direct impact of idea supply factors upon the TFP growth process may be

misspecified (especially given our finding that idea supply is not the binding constraint on

innovativity in the US over the 1899/2019 period).6

Second, given an innovativity regime, we can identify the binding constraint on

innovativity in that regime on the basis of exogenous shocks to idea supply or idea

processing capability.

And third, we show that � and �̃ can respond di↵erently to shocks to idea supply

and idea processing capability depending upon which constraint is binding. So, comparing

the evolution of � and �̃ will enable us to identify the binding constraint on innovativity in

certain cases even in the absence of a clear exogenous shock. In particular, we show that if

� and �̃ are each in the same state in two innovativity regimes, then the binding constraint

upon innovativity is also the same in those two regimes.

Using a sample of NYSE listed firms from 1850 to 2019, we identify three

innovativity regimes: i) a PreWar regime of 1850/1941; ii) a Peak regime of 1946/1969;

and iii) a Post80 regime of 1980/2019.7 We find that �̃ is in a Low state in the PreWar

and Post80 regimes and in a High state in the Peak regime.

Using a combination of exogenous shocks and restrictions imposed by our theory, we

predict that true innovativity (and so average TFP growth) will track measured

innovativity. Examining � on the basis of these regimes, we find that this is so. While this

6Bakker, Crafts, and Woltjer (2019) make a related observation in their discussion of Bloom et al. (2020).

7While our measure of innovativity is related to idiosyncratic volatility, we show that the trading behavior

of retail investors in low-priced stocks that drives the time-series variation in idiosyncratic volatility (Brandt,

Brav, Graham, and Kumar 2009) is not driving the time series variation in innovativity.
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rise and fall pattern of average TFP growth is of course well known in an empirical sense,

our innovativity approach is the first (to the best of our knowledge) to predict this

pattern—including the regime transition dates—without reference to the TFP data itself.

The principal contribution of our innovativity framework is that it enables us to

examine the causes of innovativity’s rise and fall by identifying the binding constraint on

innovativity over time. To begin with the PreWar regime, we find that innovativity is

constant between 1850 and 1939 despite the material exogenous shock to idea supply

between 1870 and 1900 that is the Second Industrial Revolution (Gordon 2012). Obviously,

if a constraint shifts up and the equilibrium does not change as a result, then that

constraint is not binding. It follows that idea processing capability is the binding

constraint on innovativity in the PreWar regime.

If idea processing capability is the binding constraint on innovativity, then an

upward shift in idea processing capability will lead to an increase in innovativity. The

financial market reform e↵ort of the 1930s/1940s did lead to an increase in financial market

e↵ectiveness and so to such an upward shift. And, as we predict, both �̃ and � do increase

to the High state in the Peak regime of 1946/1969.8

The High innovativity Peak regime ends in 1969 and the US then transitions into

the Low innovativity Post80 regime. The cause of this shift is one of the central puzzles of

PostWar US economic performance as there is no sharp exogenous event that explains it.

Consequently, this decline could be due to either a gradual deterioration in financial

market e↵ectiveness that decreases idea processing capability or to a gradual downward

shift in the idea supply constraint due to, for example, ideas getting harder to find.

8See Seligman (2003) for a history of securities market regulation.
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To resolve this puzzle, we note that both �̃ and � are in the same Low state in the

PreWar and Post80 regimes. In this case, our analysis shows that the binding constraint

on innovativity must be the same in each regime as well. Since we find that the binding

constraint on innovativity in the PreWar regime is idea processing capability, it follows

that idea processing capability is also the binding constraint on innovativity in the Post80

regime.

Our analysis therefore suggests that the US is now in a Low innovativity regime

because ine↵ective financial markets are adversely a↵ecting the economy’s idea processing

capability rather than because ideas are inevitably getting harder to find. Since policy

reforms in the past have produced significant improvements in financial market

e↵ectiveness, policy initiatives aimed at increasing the economy’s idea processing capability

o↵er a promising avenue of attack on the critical problem of low innovativity.9

Strategies and Idea Processing

Our analysis rests upon two building blocks: i) firms pursue either a Q or an I

strategy; and ii) an I strategy creates the capability to process an idea and produce an

innovation. While both of these building blocks are of course abstractions, we believe that

they capture key aspects of the innovative process.

Bhattacharya and Packalen (2020) provide a particularly clear illustration of the

Q/I distinction in the context of innovation in science. As do the firms in our model,

scientists wish to innovate but also need to attract a specific investment by an outside

party in order to succeed (a faculty position, grants, etc.). To attract this investment, they

9As in Acemoglu, Moscona, and Robinson (2016), then, we too find that “the institutional environment

has a key impact on technological progress”.
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must signal their quality. Bhattacharya and Packalen (2020) find that (to use our

terminology) scientists choose between a Q strategy that focuses upon signaling by

pursuing less innovative/incremental science with more immediate and certain results and

a higher risk/longer horizon I strategy that aims at producing scientific innovations. They

show that the Q strategy has recently come to predominate, and that this change has

created an equilibrium in which “science stagnated”. Similarly, we find that as firms switch

from an I to a Q strategy, innovativity stagnates.

Arora, Belenzon, and Patacconi (2015) and Arora, Belenzon, Patacconi, and Suh

(2019) examine scientific idea processing. Arora et al. (2019) argue that while university

research does increase idea supply, “university research [requires] additional integration and

transformation to become economically useful”. Creating a fundamental innovation entails

putting into place the capability to take an idea and “access significant resources...integrate

multiple knowledge streams...and direct their research toward solving specific practical

problems”. Or, as we would put it, idea processing requires an I strategy.

Thus, we think that the strategic choices that firms make and the impact of those

choices on the economy’s idea processing capability do matter for innovativity and TFP

growth.

Innovativity and Endogenous Growth Theory

As Bloom et al. (2020) observe, the unifying thread of the various strands of EGT

developed by Romer (1986, 1990), Lucas (1988), Aghion and Howitt (1992), and Jones

(1995) is that “economic growth arises from people creating ideas”. Our analysis suggests

that innovativity rather than idea supply alone drives TFP growth, and innovativity is
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determined by idea processing capability as well as idea supply. We owe the idea of idea

processing to Weitzman (1998), and our modeling strategy for innovativity (with the Q

and I sectors) is inspired by Lucas’s (1988) two-sector growth model. In this initial e↵ort

to explore the role of idea processing capability in productivity growth building upon the

ideas of Schumpeter and Weitzman, we are aware that we abstract away from important

features of the growth process that EGT has illuminated. We plan to incorporate more of

the insights of EGT in future work.

While financial markets do not play a central role in many strands of EGT, the

Schumpeterian strand developed by Aghion and Howitt (2006, 2008) on the theoretical side

and King and Levine (1993) on the empirical side is an exception.10 This literature focuses

upon the role of financial markets in ameliorating credit constraints, which is not the

aspect of the financial system that we think drives idea processing capability. Following

from this credit constraint focus, empirical research related to this strand of the literature

examines the relationship between measures of financial system capacity such as Private

Sector Credit/GDP (King and Levine 1990) or financial market development (Kim and

Loayza 2019) and growth. These financial market capacity measures have generally been

increasing in the US over our sample period and so cannot explain either the

Low/High/Low pattern of US innovativity or the timing of the regime switches.11 So, we

think that our innovativity framework o↵ers a more fruitful method of integrating financial

markets into a growth model (at least for an economy on the innovation frontier).

10See Aghion, Howitt and Levine (2018) and Popov (2018) for recent surveys.

11We note that this literature focuses upon explaining cross-country patterns in TFP growth (which we

do not explore) rather than on the time-series variation of TFP growth within countries.
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In the remainder of this paper, we first derive the equilibrium level of innovativity

(�) and the empirical measure of innovativity that this analysis implies (�̃). We next use

these measures to: i) identify innovativity regimes on the basis of �̃; ii) identify � for each

regime; and iii) predict the evolution of � across regimes and identify the binding

constraint on � in each regime. Conclusions follow.

I. Innovativity: Theory and Measurement

We posit that the long run average rate of TFP growth �̄ is function of innovativity

�, with

(1)
@�̄

@�
> 0.

We define innovativity as the proportion of firms that produce innovations. We

assume that: i) a firm produces an innovation by taking an available idea and processing it;

and ii) only firms that choose an I strategy can process ideas. We denote the proportion of

firms that can choose an idea if they wish by ⌘S (the idea supply constraint) and the

proportion of firms that would choose an I strategy assuming that there is an idea to

choose by ⌘⇢ (the idea processing capability constraint). In each period T , then,

(2) �T = Min
⇥
⌘S,T , ⌘⇢,T [MT ]

⇤
.

We treat idea supply as exogenous and idea processing capability as a function of financial

market e↵ectiveness M .
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After setting out the assumptions of our model, we derive ⌘⇢ and �. We then derive

�̃, the empirical measure of � that this analysis implies. We conclude this section by

establishing that a combination of �̃ and restrictions imposed by our theory enable us to

both measure � itself and to identify the binding constraint on � empirically.

A. Set-Up and Assumptions

We analyze innovativity in the context of a model consisting of entrepreneurs,

investors, and workers. In each period T , T = {1, . . . ,1}, a continuum of mass one of ex

ante identical risk-neutral and profit-maximizing entrepreneurs enter the market. Each

entrepreneur Z creates a single share firm consisting of a base project �Z and chooses a

strategy  ,  2 {Q, I}, to develop their project in the way that maximizes its IPO price

PIPO, ,Z (this will be equivalent to maximizing the project’s expected value.) Entrepreneurs

then sell their one share to investors in an IPO, and shares later trade in the secondary

market. In order for the project to produce revenue the firm must be a commercial success,

and to be a commercial success the firm must attract a specific investment by a worker.12

Since each entrepreneur is ex ante identical, all random variable realizations are iid,

and each period is independent, we will generally drop the T and Z subscripts unless

needed for clarity.

Each period T consists of 6 phases t1 to t6, as follows:

• t1 – Project Creation: Each entrepreneur chooses a base project of an unobservable

type ⌧ ⇤, with ⌧ 2
�
Good (G),Bad (B)

 
, each with probability 1/2 (an “*” indicates a

12Investors and workers enter the model in a very reduced form fashion: investors buy IPO shares and

trade shares in the secondary market at the market price, and workers do or do not make a specific investment.
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specific value of a parameter or a realization of a random variable). Each project

comes endowed with one signal of project quality �,IPO, with  2 {g, b}, and

entrepreneurs select projects with a g signal;

• t2 – Strategy Choice: Each entrepreneur learns the observable value that an

innovation will create for their project (�) and chooses an observable strategy  ,

 2 {Q, I} to develop it (with the proportion that can pursue I subject to the idea

supply constraint);

• t3 – Due Diligence and IPO: The market verifies �,IPO and � (if the firm chooses I),

and firms sell their one share at PIPO, ;

• t4 – Secondary Market (SM ): Both Q and I projects produce a signal of project type

SM, , with the precision of the signal depending upon the firm’s strategy. An I

project also produces an innovation. The firm’s price adjusts from PIPO, to PSM, ,;

• t5 – Specific Investment: The firm hires a worker. The worker is in state W , with

W = Y (N) if that worker makes (does not make) an unobservable and

non-contractable specific investment in the firm;

• t6 – Revenue: The firm produces revenue of ⇡ ,Z if it is a commercial success; a firm

is a commercial success if it has a G project and if its worker makes the specific

investment. If the firm is not a commercial success, it produces a revenue of 0. The

firm then winds up.
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An entrepreneur chooses  to maximize the IPO price of their firm. Consequently,

(3)  ⇤ =  : PIPO, = Max
�
PIPO,Q, PIPO,I

 
.

The investors to whom entrepreneurs sell IPO shares and whom trade shares in the

secondary market are risk neutral and do not discount future revenue. It follows that

(4) Pj,◆ = ⇧@j:◆,

where Pj,◆ is the firm’s price in phase j given market information ◆ and ⇧@j:◆ is the firm’s

expected revenue evaluated in j conditional upon ◆ (we use the “@j”notation to indicate

the value of a parameter in phase j). Hence, entrepreneurs choose  to maximize expected

project revenue.

When choosing  , all entrepreneurs begin with a base project of unobservable type

⌧ ⇤. A base project is endowed with a signal �,IPO of its type in the project creation phase

(t1) which is verified at the IPO phase. A base project also produces a signal �,SM of its

type in the secondary market (t4) and revenue ⇡� of 1 in t6 if the project is commercially

successful. An entrepreneur selects a project with a g signal, and so the output of the �

project is then �Out, with �Out =
n
g�,�,SM,

�
⇡�, 0

 o
.

The precision of a base project signal at both the project creation and the
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secondary market phase is a function of market e↵ectiveness M , with

(5) � =

8
>>>><

>>>>:

⌧ ⇤ w.p. M,

¬⌧ ⇤ w.p. 1�M,

with 1/2 < M  1.

In t2 the entrepreneur chooses a strategy  to develop the base project in a way

that maximizes the firm’s expected revenue and so its IPO price. The entrepreneur can

increase project revenue by either: i) choosing an I strategy that increases the revenue the

project produces if it is a commercial success; or ii) choosing a Q strategy that increases

the probability that the project is a commercial success by improving the precision of the

SM signal.

So, if the entrepreneur chooses I, then

(6) ⇡⇤
I = ⇡� +�⇤,

with � ⇠ V on {0,1}. Consequently, the firm’s output becomes IOut, with

IOut =
n
g�,�,SM,

�
⇡� +�⇤, 0

 o
.

If the entrepreneur chooses Q, then the firm produces a secondary market signal

Q,SM instead of �,SM. For simplicity we assume that Q,SM is perfectly precise, implying

16



that

(7) Q,SM =

8
>>>><

>>>>:

⌧ ⇤ w.p. 1,

¬⌧ ⇤ w.p. 0.

The firm’s output if the entrepreneur chooses Q is then QOut, with

QOut =
n
g�,Q,SM,

�
⇡�, 0

 o
.

A firm is a commercial success if it has a G project and if the worker it hires in t4

makes an unobservable and non-contractable specific investment in the firm. We assume

that the probability that the worker makes the specific investment increases with the

market’s estimate of the probability that the firm has a G project. So, denote the

probability that the firm is a commercial success in the at the end of the SM phase by

✓C@SM: , and the probability that it has a good project given its approach and  ,SM (recall

that all selected projects begin with a g� signal) by ✓G: ,. The probability that the worker

makes the specific investment in t4 conditional upon SM information is ✓Y : ,. To build in

a smooth transition from Q to I as a function of market e↵ectiveness, we assume that

✓Y : , = ✓
1
2
G: ,.

It follows that

(8) ✓C@SM: , = ✓G: , ✓Y : , = ✓
3
2
G: ,.
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B. Idea Processing Capability

Idea processing capability (⌘⇢) is equal to the proportion of entrepreneurs that

choose I to develop their firms assuming that there is an available idea, and entrepreneurs

choose I if it maximizes their IPO price. It follows that

(9) ⌘⇢ = Prob@t1
⇥
PIPO,I > PIPO,Q

⇤
.

We therefore begin our analysis of innovativity by examining IPO prices.

A firm’s IPO price is equal to its expected secondary market price. A firm receives

either a g or a b signal in the secondary market, implying that

(10) PIPO, = ✓g: PSM: ,g + ✓b: PSM: ,b,

where ✓: is the probability that the firm produces a secondary market signal of  given

its strategy  , and PSM: , is the share price given  and . A secondary market price in

turn equals the firm’s expected revenue given  and , with (from equation 8)

(11) PSM: , = ⇡ ✓C@SM: , = ⇡ ✓
3/2
G: ,.

Hence (from equation 10),

(12) PIPO, = ⇡ ✓g: ✓
3/2
G: ,g + ⇡ ✓b: ✓

3/2
G: ,b.

Consider PIPO,Q and PIPO,I in turn.
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If the entrepreneur chooses Q, then Q reveals project type perfectly. Since

✓G,IPO = M and ✓B,IPO = 1�M (from equation 5), it follows that ✓g:Q = M , ✓b:Q = 1�M ,

✓G:Q,g = 1, and ✓G:Q,b = 0. Consequently (from equation 12),

(13) PIPO,Q = ⇡� M = M.

If the entrepreneur chooses I, then � equals (does not equal) ⌧ ⇤ with probability

M (1�M). So, given ✓G,IPO and ✓B,IPO, it follows that

(14) ✓g:I = ✓G,IPO MT + ✓B,IPO (1�MT ) = 1 + 2(MT )
2 � 2M,

and that

(15) ✓b:I = ✓G,IPO (1�MT ) + ✓B,IPO MT = 2MT (1�MT ).

✓G:I,g equals the probability that an I entrepreneur with a G project receives a g signal

divided by unconditional probability that an I entrepreneur receives a g signal, and so

equals

(16) ✓G:I,g =
M2

1 + 2(M)2 � 2M
.

Similarly,

(17) ✓G:I,b =
(1�M)M

2 (1�M)M
=

1

2
.

19



Substituting the results of equations 14, 15, 16, and 17 into equation 12 yields

(18) PIPO,I = (1 +�)

 
M3

p
2M2 � 2M + 1

+
(1�M)Mp

2

!
.

Consequently, an entrepreneur chooses  = I if NetI = PIPO,I � PIPO,Q > 0, with

(from equations 13 and 18)

(19) NetI = (1 +�)

 
M3

p
2M2 � 2M + 1

� (M � 1)Mp
2

!
�M.

Obviously, NetI increases with �, implying that there exists a �Crit such that

(20)  =

8
>>>><

>>>>:

I if � > �Crit [M ] , and

Q otherwise.

Solving for �Crit [M ] by setting NetI equal to 0 yields

(21) �Crit =
�2M

q
M2

2M2�2M+1
+
p
2M �

p
2 + 2

2M
q

M2

2M2�2M+1
�
p
2M +

p
2

.

Plotting �Crit (Figure 1) reveals that �Crit decreases as M increases (we confirm this

observation with numerical analysis).

A firm chooses I if � > �Crit [M ], implying that

(22) ⌘⇢ [M ] = Prob@t1
⇥
� > �Crit [M ]

⇤
.
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Since �Crit [M ] decreases with M , it follows that

(23)
@⌘⇢
@M

> 0.

That is, the economy’s idea processing capability increases with market e↵ectiveness.

The intuition for this result is straight forward. Since the signaling advantage that

the Q strategy provides declines as market e↵ectiveness increases, the minimum revenue

boost (�⇤) that a firm needs from an innovation to o↵set the Q signaling advantage also

declines as market e↵ectiveness increases.

C. Innovativity in Equilibrium

Having established the relationship between ⌘⇢ and M , we are now in a position to

analyze the equilibrium level of innovativity �, with (from equation 2)

(24) � = Min
⇥
⌘S, ⌘⇢ [M ]

⇤
.

We assume that if ⌘⇢ [M⇤] > ⌘⇤S, the proportion of firms that can pursue I are selected at

random. We plot equation 24 in Figure 2.

The comparative statics implied by equation 24 are straightforward, with

(25)
@�

@M

8
>>>><

>>>>:

> 0 if ⌘⇢ [M ] < ⌘S,

= 0 if ⌘⇢ [M ] � ⌘S,
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and with

(26)
@�

@⌘S

8
>>>><

>>>>:

> 0 if ⌘S < ⌘⇢ [M ] ,

= 0 if ⌘S [M ] � ⌘⇢ [M ] .

We now turn to deriving a measure of � that we can estimate empirically.

D. An Empirical Measure of Innovativity

Since � equals the proportion of firms that do choose an I strategy given ⌘S, �̃

should track that proportion. To find such a measure, we begin by observing that: i) a Q

strategy provides a stronger signal of project type than an I strategy; and ii) signals a↵ect

secondary market prices and so firm returns (where returns are calculated from a firm’s

IPO price to its secondary market price). This observation suggests that the standard

deviation of (idiosyncratic) returns for Q firms will be higher than that for I firms. In this

case, an increase in the proportion of firms choosing I will lead to a decrease in the

fundamental standard deviation of idiosyncratic firm returns for the market as a whole

(�Fun). We therefore conjecture that �̃, with

(27) �̃ = 1� �Fun,

will provide a good measure of �. In this section we develop this conjecture.

To analyze �̃, we begin by noting that a firm’s IPO to Secondary Market return
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given  and  is R ,, with

(28) R , =
PSM: , � PIPO, 

PIPO, 
.

Recalling that a firm’s expected return equals 0 for both strategic approaches, the standard

deviation of returns for firms choosing  is � , with

(29) � =
q
✓g: R2

 ,g + ✓b: R2

 ,b.

Since the proportion of firms that pursue I equals �, it follows that

(30) �̃ = 1� �Fun = 1�
q

� [M, ⌘S] �2

I [M ] + (1� � [M, ⌘S]) �2

Q [M ].

So, �̃ is a function of �, �2

I , and �
2

Q. We know how � behaves from equation 24.

Turning to �2

I , and �
2

Q, we note that the full expressions for these parameters are too

complex and unintuitive to work with analytically even in our simple model of prices and

signaling. We therefore calculate �2

I [M ] and �2

Q [M ] numerically (from equations 28 and

29) and plot them in Figure 3.13

Inspecting Figure 3, we note that: i) �2

Q > �2

I for a given M (as we conjectured); ii)

@�2
Q/@M < 0; and iii) @�2

I/@M > 0 if M < 0.76 and @�2
I/@M < 0 if M � 0.76. So, the weighted

average of �2

I and �2

Q for a given I/Q split falls with M if either M > 0.76 or if less than

75% of entrepreneurs choose I when M < 0.76 (given the numerical values of �2

Q [M ] and

�2

I [M ] that we compute above). Since our analysis would not be very empirically relevant

13We do the calculations and plotting in Mathematica, details available upon request.
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if a high proportion of entrepreneurs choose I when markets are very ine↵ective, we assume

that less than 75% of entrepreneurs do choose I when M < 0.76 (or that M > 0.76). It

follows that the weighted average of �2

Q and �2

I falls with M (holding the I/Q split

constant).

Given equation 30 and these assumptions, we can examine the comparative statics

of �̃. To begin with an increase in M , we find that:

(31)
@�̃

@M

8
>>>><

>>>>:

> 0 if ⌘⇢ [M ] < ⌘S,

> 0 if ⌘⇢ [M ] � ⌘S.

An increase in M when ⌘S is not binding leads to: i) a decrease in the � weighted average

of �2

Q and �2

I holding � constant; and ii) a shift in firms from Q to I. Since both e↵ects

push in the same direction, it follows that an increase in M in this case leads to an increase

in �̃. If ⌘S is binding, then an increase in M does not increase � as firms cannot shift from

Q to I. However, the � weighted average of �2

Q and �2

I decreases, implying that �̃ increases

in this case as well.

Turning to an increase in ⌘S, we find that

(32)
@�̃

@⌘S

8
>>>><

>>>>:

> 0 if ⌘S < ⌘⇢ [M ] ,

= 0 if ⌘S � ⌘⇢ [M ] .

The intuition for equation 32 is straightforward: i) an increase in ⌘S when ⌘S is binding

shifts firms from Q to I and so leads to an increase �̃; and ii) an increase in ⌘S when ⌘S is
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not binding does not a↵ect either �, �2

I , or �
2

Q, and so does not a↵ect �̃.

Examining the comparative statics of � (equations 25 and 26) with those of �̃

(equations 32 and 31), we find that � does not necessarily vary monotonically with �̃. For

example, consider the case in which ⌘S is the binding constraint on � in periods J and K

while ⌘S,J < ⌘S,K and ⌘⇢
⇥
Mj

⇤
> ⌘⇢ [MK ]. We know that �J < �K , but since �̃ increases

with M whether or not ⌘⇢ [M ] is binding, it could also be the case that �̃J > �̃K .

Consequently, we cannot infer the state of � from �̃ alone.

We now show how we can use �̃ and restrictions imposed by our theory to identify

the state of � and the binding constraint on � empirically given this quirk in �̃.

E. Identifying � and the Binding Constraint on �

We denote a period of time over which � is constant as an innovativity regime ⇤,

and assume that

(33)
�̄J > �̄K =) �J > �K , and

�̄J = �̄K =) �J = �K

for two innovativity regimes J and K. However, we cannot estimate � directly from the

TFP data itself because we do not know the period (regime) over which to estimate �̄ ex

ante.14 Fortunately, we can identify an innovativity regime on the basis of �̃. Given a

regime ⇤, we can then estimate �⇤ from �̄⇤.

Proposition 1: If �̃j = �̃j+1 = · · · = �̃j+N , then �j = �j+1 = �j+N . The period from j to

14For example, a period of high TFP growth such as the DotCom boom could be either a transient phase

of high TFP growth in a low innovativity regime or a separate regime of high innovativity.
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j +N is an innovativity regime ⇤.

Proof : From equations 31 and 32, �̃j = �̃j+1 if: i) ⌘⇢
⇥
Mj

⇤
= ⌘⇢

⇥
Mj+1

⇤
,

⌘S,j > ⌘⇢
⇥
Mj

⇤
, and ⌘S,j+1 > ⌘⇢

⇥
Mj+1

⇤
when ⌘⇢ is the binding constraint in j; and ii)

⌘S,j = ⌘S,j+1 and ⌘⇢
⇥
Mj

⇤
= ⌘⇢

⇥
Mj+1

⇤
when ⌘S is the binding constraint in j.15 That is, �̃

remains constant only if the binding constraint on � remains constant. If the the binding

constraint on � remains constant then � is also constant.⇤

Given an innovativity regime ⇤, we can identify the binding constraint on �⇤ by

using a combination of two methods. The first is to examine the impact of an exogenous

shock to either ⌘S or ⌘⇢ on � and �̃. The second is to exploit restrictions that our theory

places on the identify of the binding constraint. Consider each in turn.

Identifying the impact of a shock to ⌘S or ⌘⇢ on � and �̃ is straightforward given

the comparative statics analysis above. We therefore list these impacts in Table 1 without

further discussion.

Our theory places two important restrictions upon the identity of the binding

constraint, as we show in the following propositions.

Proposition 2: Consider two innovativity regimes J and K. If �̃J = �̃K and if �J = �K ,

then the binding constraint on �J is also the binding constraint on �K .

Proof : The binding constraint on �J is either ⌘S,J or ⌘⇢,J . Suppose that it is ⌘S,J .

The binding constraint in K is either ⌘S,K or ⌘⇢,K . Suppose that it is ⌘⇢,K . In this case,

⌘⇢,K = ⌘S,J , ⌘⇢,K = ⌘⇢,J �X, and ⌘S,K = ⌘S,J + Z,

15We assume here that ⌘S and ⌘⇢ do not both change in exactly o↵setting directions in a single period.
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with X > 0 and Z > 0. Since: i) neither � or �̃ increase with ⌘S when it is not binding;

and ii) ⌘S,K is not binding, we can set Z ⇡ 0. It follows that

(34) �̃J

⇥
⌘⇢,J , ⌘S,K

⇤
> �̃K

⇥
⌘⇢,J �X, ⌘S,K

⇤
,

because �̃ does increase with ⌘⇢ whether or not it is the binding constraint. This

contradicts our premise that �̃J = �̃K . Hence, if ⌘S is the binding constraint in J , then ⌘S

is also the binding constraint in K (and ⌘⇢,J = ⌘⇢,K).

Now suppose that ⌘⇢,J is the binding constraint on �J . If ⌘S,K is the binding

constraint on �K , then

⌘⇢,J = ⌘S,K , ⌘⇢,K = ⌘⇢,J +X, and ⌘S,K = ⌘S,J � Z,

with X > 0 and Z > 0. As above, we can set Z ⇡ 0, implying that

(35) �̃J

⇥
⌘⇢,J , ⌘S,K

⇤
< �̃K

⇥
⌘⇢,J +X, ⌘S,K

⇤
.

This contradicts our premise that �̃J = �̃K . Hence, if ⌘⇢ is the binding constraint in J ,

then ⌘⇢ is also the binding constraint in K. In this situation, the only inference we can

draw about ⌘S is that it is not binding in either J or K.⇤

While � and �̃ do not necessarily vary monotonically, our analysis does imply that

a decline in �̃ predicts a decline in � in the following case:

Proposition 3: Consider three innovativity regimes X, Y , and Z. If: i) ⌘⇢,X [MX ] is the

binding constraint on � in X; ii) �̃X < �̃Y ; iii) �X < �Y ; and iv) �̃X = �̃Z , then �Z < �Y .
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Proof : If ⌘⇢,X [MX ] is the binding constraint on �X and if �Y > �X , then

Min
⇥
⌘S,Y , ⌘⇢,Y

⇤
= ⇣⇤Y > ⌘⇢,X . In this case, it follows from equations 31 and 32 that

(36) Min
h
�̃Y

i
= �̃Y : ⌘S,Y � ⇣⇤Y and ⌘⇢,Y = ⇣⇤Y .

Consequently, �̃Z < �̃Y if and only if ⌘S,Z < ⇣⇤Y and/or ⌘⇢,Z < ⇣⇤Y . In either case,

�Z < �Y .⇤

So, given an innovativity regime, we can identify the state of innovativity in that

regime from �̄ and we have tools to identify a regime’s binding constraint. Our analysis

also yields predictions for how � will evolve across regimes. We therefore begin our

empirical analysis by identifying innovativity regimes.

II. Innovativity Regimes: 1850 to 2019

Since an innovativity regime ⇤ is a continuous period of time in which �̃ is constant,

we identify innovativity regimes by estimating �̃. We assume that �̃T = 1� �Fun,T , where

�Fun,T is the fundamental component of the standard deviation of idiosyncratic firm returns

in T . We observe O�,T , with O�,T = 1� �T and where �T is the observed value of the

standard deviation of idiosyncratic firm returns in T . To estimate �̃, then, we assume that

(37) O�,T = Constant+ �̃Start/End + �Bull BullT + �Bear BearT + ShocksT + ✏T ,

where �̃Start/End is a set of time specific indicator variables that span our sample period,

Bull (Bear) is a dummy variable which equals 1 when the equal weighted average return in
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T is in its upper (lower) decile, Shocks captures the impact of transitory shocks, and ✏T is

the error term. We then track the evolution of �̃ with the �̃Start/End indicator variables.

We first discuss the sample and variables we use in our analysis, and we then

present our results.

A. Sample and Variables

Our sample consists of NYSE listed common shares from 1850 to 2019. We construct

this sample by combining data from the Yale School of Management’s Old New York Stock

Exchange Project (1850 to 1925) and CRSP (1926 to 2019).16 The Old NYSE (ONY) data

is available at a monthly frequency, so we also use monthly data for the CRSP period.17

We include an ONY firm/month observation in the sample if we have a return for

that firm in that month, and we include a CRSP firm/month observation in the sample if

we have a return, a price, a trading volume, and a 2 digit SIC Code for that month. We

sort firms into industries on the basis of their 2-digit SIC code (Johnson, Moorman, and

Sorescu 2007). Due to limited observations, we assume that all ONY observations are in a

single industry.

The ONY dataset consists of end of month prices but does not include dividend

adjusted holding period returns. We therefore calculate the return R of firm J in month T

on the basis of end of month price changes, with RJ,T = Ln
⇥
PJ,T/PJ,T�1

⇤
. We winsorize ONY

16The Old NYSE data is available on the Yale School of Management’s website. See Goetzmann, Ibbotson,

and Peng (2001) for a description of the data.

17To restrict the sample to common shares, we drop: i) Preferred and Scrip shares for the ONY period;

and ii) all non-Common shares, Asset Backed Securities (SIC 6189), and REITS (SIC 6798) for the CRSP

period.
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returns at the 0.01 and 0.99 quantiles (-38.30% and 37.20%). For the CRSP period,

RJ,T = Ln
h
1 + Holding Period ReturnJ,T

i
. We winsorize these returns at -38.30% and

37.20% as well to be consistent with the ONY data (the 0.003 and 0.992 quantiles of the

return distribution).

We set a firm’s idiosyncratic return NetRJ,T equal to its net of industry return,

where we set industry return equal to the median return in J ’s industry.18 Hence,

(38) O�,T = 1� Standard Deviation
h���!
NetRT

i

where
���!
NetRT is the set of idiosyncratic firm returns for T .

We assume that equilibrium innovativity evolves slowly. We therefore capture the

evolution of innovativity with a series of indictor variables of the form �̃⇤
Start/End

, with

�̃Start/End = 1 if Start  T  End and 0 otherwise. For our analysis of the CRSP period, we

begin with indicator variables for: i) 1926/1929; ii) the Great Depression (1930/1941); iii)

WW2 (1942/1945); iv) 1946/1949; and v) one for every 5 year period for the rest of the

sample period. For the joint ONY/CRSP sample, we divide Pre-1930 data into periods

relative to the Second Industrial Revolution (IR2). Gordon (2012) dates IR2 to the years

1870/1900. We therefore define a PreIR2 period for the years 1850/1869, an IR2 period

for the years 1870/1900, and a PostIR2 period of 1901/1929.

We summarize variable and period definitions in Table 2 and we present summary

18We use the median rather than the mean industry return to reduce the influence of outliers. Aside

from that change, we compute idiosyncratic returns using the method of Campbell, Lettau, Malkiel, and

Xu (2002). This approach yields essentially identical results to the more elaborate market model method of

Ang, Hodrick, Xing, and Zhang (2006).
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statistics for the ONY and the CRSP samples in Table 3.

B. Analysis

We begin our analysis of �̃’s evolution by estimating equation 37 for the CRSP

period alone as the CRSP data is of higher quality than the ONY data. In each regression,

we control for market conditions with Bull and Bear dummies, which are statistically

significant and have the expected sign. We control for transitory shocks by using a

Garch(1,1)/AR(24) model.19 This model yields white-noise residuals (using the Q-test) in

each regression. We report our initial results in Table 4.

In Specification 1 we estimate equation 37 will the full set of �̃ dummies, excluding

�̃2010/2014 and �̃2015/2019 to provide the constant term. We find that �̃ is: i) insignificant

between 1926 and 1939; ii) positive, statistically significant, and essentially constant

between 1946 to 1969; iii) positive but statistically insignificant between 1970 and 1979;

and iv) statistically insignificant from 1980 to 2019 (we will generally ignore the WW2

period in our discussion due to the extensive government control of the economy during

that time).

We extend our analysis to the full 1850/2019 sample period in Specification 2 (again

dropping �̃2010/2014 and �̃2015/2019 for the intercept). We find that �̃ is insignificant for the

entire 1850/1941 period, and that the results of this specification are consistent with those

of the CRSP only specification for the CRSP period (with the exception of �̃1975/1979,

which now becomes significant at the 5% level). We plot the evolution of innovativity on

19The unreported transitory shock e↵ects are highly significant.
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the basis of this specification in Figure 4.

In Table 5, Specification 1, we combine adjacent periods of constant innovativity

into innovativity regimes, namely: i) a PreWar regime of 1850/1941; ii) a Peak regime of

1946/1969; and iii) a Post80 regime of 1980/2019 (which we omit for the intercept). We

include two transition periods, namely a WW2 period of 1942/1945 and a 1970s period.

The results of this specification are consistent with the results of the previous

specifications, with: i) �̃PreWar = 0; ii) �̃Peak > 0 at the 1% level; iii) �̃Peak > �̃1970s at the

1% level; and iv) �̃1970s > 0 at the 5% level.

Innovativity and Idiosyncratic Volatility

Our measure of innovativity is related to idiosyncratic volatility. So, it could be the

case that factors that drive idiosyncratic volatility also drive our estimates or �̃. We

explore this possibility now.

Examining the path of idiosyncratic volatility, Campbell, Lettau, Malkiel, and Xu

(2000) find a general upward trend between 1962 and 1997 and Brandt, Brav, Graham, and

Kumar (2010) find that this trend reverses itself in the early 2000s (we note that this is not

the pattern we find for innovativity). Brandt et al. (2010) observe that the long run trend

variables that seem to explain the 1962/1997 increase in idiosyncratic volatility cannot also

explain its post-1997 fall.20 They argue instead that the rise and fall pattern of

idiosyncratic volatility is driven by the behavior of retail investors investing in low price

stocks.

20Among these explanations are: a rise in institutional ownership (Bennett, Sias, and Starks 2003), more

volatile or opaque firm fundamentals (Wei and Zhang 2006, Rajgopal and Venkatachalam 2006), and product

markets becoming more competitive (Irvine and Ponti↵ 2009).
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To see if this retail investor e↵ect also drives the evolution of innovativity, we

estimate equation 37 for the CRSP sample while dropping low price stocks, where a low

price stock is one in the bottom 3 deciles of stocks each month sorted by start of month

price (Table 5, Specification 2). We find the same pattern as above: �̃ equals 0 between

1926 and 1939 and �̃Peak > 0 at the 1% level (we exclude �̃Post80 for the intercept). We

conclude that the evolution of innovativity that we observe is not due to retail investor

trading in low priced stocks.

The Evolution of �̃

This analysis of innovativity yields a striking result: over the entire 1850 to 2019

period, �̃ in the US has been in one of two persistent states (with brief transition periods).

In light of these results, we divide our sample period into three innovativity regimes ⇤,

with ⇤ 2 {PreWar,Peak,Post80}. We denote the state of �̃ in ⇤ by �̃⇤, with

�̃ 2
�
High (H),Low (L)

 
. Our results then imply that i) �̃PreWar = L; ii) �̃Peak = H; and

iii) �̃Post80 = L.

Having identified innovativity regimes, we now turn to estimating equilibrium �.

III. Innovativity: 1899 to 2019

We assume that average TFP growth in a given regime ⇤, �̄⇤, is a random variable

that is a function of the state of innovativity in that regime, with

(39) �̄⇤ ⇠ �
⇥
⌦ [�⇤] , Y⇤

⇤
,
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where �⇤ is the state of � in ⇤, ⌦ [�⇤] is the TFP generating process given the state of �,

and Y⇤ is the length of ⇤ (in years).

We can observe the realization of �̄ (�̄⇤) for all regimes, and we have su�cient data

to estimate ⌦Post80. However, we lack the data to estimate ⌦ for the PreWar regime and

the observations to estimate ⌦ for the Peak regime. We therefore test to see if � is

constant across regimes by: i) using the Post80 regime as our Control case and the

PreWar and Peak regimes as Test cases; and ii) taking as our Null hypothesis the

proposition that the state of innovativity is constant across regimes. Our Null is then that

(40) �̄Test,Null ⇠ �Test [⌦Post80, YTest] .

We accept the Null if

(41) �Test,2.5 < �̄⇤
Test

< �Test,97.5

and reject it otherwise, where �Test,Z is the Z th quantile of �Test [⌦Post80, YTest].

A. Data

We obtain our TFP growth data from two sources. For the 1951/2019 period we use

TFP data from the San Francisco Federal Reserve (Fernald (2014) describes this data

series), setting TFP growth in year T equal to the natural log of the utilization adjusted

annual rate of total factor productivity growth (dftp util). In the absence of an annual

TFP growth series for the PreWar period, we use the long run average TFP growth
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estimates from Bakker, Crafts, and Woltjer (2019). This data covers the period 1899/1941.

We summarize our variable definitions in Table 6 and we report summary statistics

in Table 7. We plot TFP growth by innovativity regime in Figure 5.

B. Analysis

To carry out the test in equation 41, we first estimate �Test. And to do that, we

must estimate ⌦Post80.

We model ⌦Post80 as a two state Markov process (French 2001) as the evolution of

TFP growth in the Post80 period suggests that � alternates between periods in which it is

generally low and periods in which it is generally high (e.g., the DotCom Boom). We

assume that

(42) ⌦Post80 =
n
{�U , �D} , ✏Dis,⌅

o
,

where �U and �D are the states, ✏Dis is the error distribution, and ⌅ is the transition

matrix, with ⌅ = {✓DD, ✓DU , ✓UD, ✓UU}. We assume that �U > �D � 0, and that observed

TFP growth in T given the state of ⌫, ⌫ 2 {U,D}, is �T [⌫], with

(43) �T [⌫] = �⌫ + ✏T ,

where ✏T is an iid draw from ✏Dis.

Factors that a↵ect either the supply of ideas (such as R&D spending and the cost of

finding ideas) or idea processing capability do not a↵ect the TFP growth process
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directly—they only a↵ect that process through their impact upon the state of innovativity.

Within a regime ⇤, however, the state of innovativity is constant. It follows that the TFP

growth process is constant as well. Consequently, we do not include any controls for any

such factors when estimating ⌦Post80. One implication of this approach is that there will

not be any trend in ⌦Post80, and we test this implication below.

We estimate ⌦Post80 and report the results in Table 8. All specifications yield

white-noise residuals. In Specification 1 we estimate equation 42 using a Dynamic model

and find that the point estimate of �U is 1.84 (significant at the 1% level) and that the

point estimate of �D is negative and insignificant. In Specification 2 we estimate equation

42 including an AR(1) term, and find that the AR(1) term in insignificant. In Specification

3 we revert to the Dynamic model and impose the constraint that �D = 0 and find

(unsurprisingly) that the point estimate and significance level of �U do not change

materially. In Specification 4 we include a time trend and find that it too is insignificant.

So, as our analysis predicts, there is no trend in the TFP growth process within the Post80

regime.21

Specification 3 therefore provides out best estimate of ⌦Post80. Consequently, we

assume that ⌦Post80 has the following form:

• �D = 0;

• �U ⇠ Normal Distribution [1.86, 0.23];

• ✓DD ⇠ Normal Distribution [0.94, 0.62];

21In unreported analysis we also reject a three state model and a model with lagged GDP growth (as in

Gordon 2010).
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• ✓DU = 1� ✓DD;

• ✓UD ⇠ Normal Distribution [�0.64, 0.58];

• ✓UU = 1� ✓UD; and

• ✏Dis = the residuals from Specification 2,

with the ✓DD and ✓UD distributions in logit form.22

Given ⌦Post80, we next estimate the distribution of �Test with a bootstrap consisting

of 100,000 trials.

In each trial J we first specify ⌅J by making iid draws for the values of �U,J , ✓DD,J ,

and ✓UD,J . Given ⌅J , we simulate the evolution of the state of � for YTest periods, with the

initial state determined by a random draw from the stationary state distribution implied

by ⌅J . The simulation yields the number of years that the economy is in �U (NU,J) and in

�D (QD,J) in each trial. The average rate of TFP growth in J is then �̄Test,Null,J , where

(44) �̄Test,Null,J = (ND,J ⇥ 0) + (NU,J ⇥ �U,J) + ✏̄J ,

with ✏̄J equal to the mean of YTest iid draws from ✏Dis. It follows that

(45) �Test =
�
�̄Test,Null,1, . . . , �̄Test,Null,100 000

 
.

Equipped with �Test, we can test our predictions. We report these tests in Table 9.

To begin with the Peak case, we note that the Peak regime begins with the boom that

22The 95% confidence interval for ✓DD (✓UD) expressed in probabilities is: {0.43, 0.90} ({0.14, 0.63}).
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immediately follows the end of WW2. To eliminate the possibility that the early post-war

years create an upward bias in �̄, we drop the first 5 observations from the Peak regime

and so start the analysis in 1951 (Peak51 ). We find that

�̄⇤
Peak51

> �Peak51,97.5

and therefore reject the Null that �Peak = �Post80.

Turning to the PreWar case, we find that

�PreWar,2.5 < �̄⇤
PreWar

< �PreWar,97.5.

In this case, then, we accept the Null that �PreWar = �Post80.23

Reverse Causality?

Thus far we have been assuming that innovativity determines the TFP growth

process, but of course it is possible that � determines our measure of innovativity instead.

We note that � is highly volatile and that the economy can experience transitory TFP

booms in the midst of what we classify as a Low innovativity regime. So, if � determines

innovativity, then we would expect to observe that innovativity is in the High state during

such transitory TFP booms. We therefore test the reverse causality hypothesis by seeing if

23We note that the plausible range of �̄ is wide for each regime. This result arises from the Markov nature

of the growth process. Absent a theory that enables one to predict ex ante when TFP booms will occur and

how long they will last, it is not possible to make precise estimates for average TFP growth. One inference

that we draw from this analysis is that there may be a tendency in the growth literature to over-interpret

small di↵erences in TFP growth rates.
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this is so (focusing upon the CRSP period due to superior data).

We identify two TFP booms in Low innovativity periods: i) the DotCom Boom of

1995/2004; and ii) the 1930s (see Table 7).24 Average TFP growth in these two periods

(1.92% and 1.86%) is the same as that during the 1951/1969 Peak period (1.87%). We

combine these two periods into a single Transitory TFP Boom (TTB) period and estimate

innovativity (Table 5, Specification 3) as above, excluding the non-DotCom Boom years of

the Post80 regime to provide the intercept (average TFP growth: 0.37%). We find that

innovativity in the TTB period is not statistically significant and therefore reject the

reverse causality hypothesis.

The Evolution of �

We find that state of innovativity follows the same low/high/low pattern as �̃, with

innovativity in the Low state in both the PreWar and Post80 regimes and in the High

state in the Peak regime. We now examine the causes of this pattern.

IV. Are We Running Out of Ideas?

The fact that average TFP growth in the US has been declining while resources

expended on finding ideas has been increasing (Bloom et al. 2020) naturally creates the

presumption that TFP growth is slowing because the US is running out of ideas. Building

upon this presumption: i) Gordon (2012, 2014) provides a narrative to explain why we are

running out of ideas (the Second Industrial Revolution is over); ii) Bloom et al. (2020)

24Field (2006) and Bakker, Crafts, and Woltjer (2019) examine TFP growth during the Depression. We

use the Bakker, Crafts, and Woltjer TFP figures here.
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calibrate exactly how fast we are running out of ideas (research productivity is declining at

5% per year); and iii) recent developments in EGT provide a logical framework that can be

parameterized such that ideas become harder to find (Jones 2019). This combination of

narrative, empirical findings, and theory create a strong prima facie case for the hypothesis

that idea supply is the binding constraint on TFP growth and that this constraint is

shifting down over time.

Yet neither a narrative nor a calibration is a test of the hypothesis that idea supply

is the binding constraint on TFP growth. The fact that TFP growth is declining while

resources (apparently) expended on finding ideas is increasing is not in itself a test of this

hypothesis as the TFP growth decline we observe could be due to either a decline in idea

supply or a decline in idea processing capability. So, in this section we use our innovativity

framework and the empirical results above to identify: i) the binding constraint on

innovativity within each innovativity regime; and ii) the causes of the innovativity regime

shifts. Consider each regime in turn.

The PreWar Regime

To identify the binding constraint on innovativity in the PreWar regime, we begin

by observing that �̃ is in the Low state for that entire period (Figure 4). Focusing on the

periods before and after the Second Industrial Revolution, it then follows that

(46) �̃⇤
PreIR2

h
⌘⇤S,PreIR2

, ⌘⇤⇢,PreIR2
[M⇤

PreIR2
]
i
= �̃⇤

PostIR2

h
⌘⇤S,PostIR2

, ⌘⇤⇢,PostIR2
[M⇤

PostIR2
]
i

Consider M and ⌘ in turn.

Before the Federal financial market reforms of the mid to late 1930s/early 1940s, the
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NYSE was largely self-regulated and its rules were in practice generally more binding than

the completely ine↵ectual state securities laws (Seligman 1995).25 As Pirrong (1995)

establishes for the case of commodities exchanges, self-regulated exchanges exploit their

control over their rules to benefit their members at the expense of the public. We therefore

assume that market e↵ectiveness in the PreWar period was set by NYSE members at its

privately optimal level M⇤
PO

, and hence that

(47) M⇤
PreIR2

= M⇤
PostIR2

= M⇤
PO

.

Turning now to idea supply, we note that the Second Industrial Revolution happens

between 1870 and 1900, that is, in between the PreIR2 period (1850/1869) and the

PostIR2 period (1901/1929). As Gordon (2014) observes, “within three months in the year

1879 three of the most fundamental ‘general purpose technologies’ were invented that spun

o↵ scores of inventions that changed the world.”We interpret Gordon’s argument to mean

that IR2 shifted ⌘S up by a material amount, implying that

(48) ⌘⇤S,PostIR2
= ⌘⇤S,PreIR2

+K.

Consequently,

(49) �̃⇤
PreIR2

h
⌘⇤S,PreIR2

, ⌘⇤⇢,PreIR2
[M⇤

PO
]
i
= �̃⇤

PostIR2

h
⌘⇤S,PreIR2

+K, ⌘⇤⇢,PostIR2
[M⇤

PO
]
i
.

25Seligman (1995) reports that the Investment Banking Association informed its members that they could

safely ignore state securities laws by making o↵erings across state lines through the mail.
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As we demonstrated above (equation 32), if the idea supply constraint shifts up and �̃ does

not increase, then the idea supply constraint is not binding. Our analysis therefore

suggests that the economy’s idea processing capability is the binding constraint on

innovativity in the PreWar regime.

The Peak Regime

If idea processing capability is the binding constraint on US innovativity in the

PreWar regime, then that regime will end if market e↵ectiveness increases. The stock

market crash of 1929 sparked a deep and wide-ranging reform e↵ort aimed at doing

precisely that (Seligman 1995). Our analysis therefore predicts (from equations 25 and 31)

that

(50) �⇤
PostReform

> �⇤
PreWar

and �̃⇤
PostReform

> �̃⇤
PreWar

.

where the PostReform period indicates the period in which the reforms take e↵ect.26

Consistent with these predictions, we find that both �̃ (Figure 4) and � (Table 9) do shift

from the Low state to the High state after the 1930s financial market reforms.

Strictly speaking, we cannot identify the binding constraint on equilibrium

innovativity in the Peak period because we have no way of independently measuring the

idea supply constraint. So, we don’t know for certain if ⌘S,Peak > ⌘⇢,Peak. That said, we do

know that idea processing capability is the binding constraint on innovativity between �L

26Following Bhattacharya and Daouk (2002), we expect a slight lag between when the reforms are legally

put into place and when they take e↵ect as it takes time to develop the capability to e↵ectively enforce the

new rules.
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and �H , so we will refer to ⌘⇢ as the binding constraint on innovativity in the Peak regime

with this proviso.

Our prediction that the reform e↵ort of the 1930s leads to an increase in idea

processing capability (and so innovativity) hinges upon the premise that these reforms

increase M . To assess the plausibility of this premise, consider just one strand of this

e↵ort: the evolution the financial reporting regime for NYSE listed firms.27

Prior to the 1933 and 1934 Securities Acts, there was no uniform system of financial

accounting or disclosures for either firms seeking a listing on an exchange through an IPO

or already listed firms (Seligman 1995). The Securities Acts of 1933 and 1934 together with

the creation of the SEC to enforce them marked the beginning of a financial reporting

regime that emphasized “comparability, full disclosure, and transparency (Ze↵ 2005)”. In

response to this new framework, the accounting profession and the SEC developed a

standardized set of generally accepted accounting principles (that is, GAAP), and in 1939

the American Institute of Accounting recommends that auditor reports state that the

accounts are prepared “in conformity with generally accepted accounting principles” (Ze↵

2005). Reviewing the impact of this new financial reporting regime, Simon (1989) finds

that these reforms led to “improvements in the quantity and quality of financial

information” for NYSE listed firms. So, we infer from this evidence that this reform e↵ort

did improve financial market e↵ectiveness.

The Post80 Regime

The state of �̃ declines from H in the Peak regime to L in the Post80 regime.

27This e↵ort also involved, for example, extensive reforms of the Federal Reserve and the banking system

(https://www.federalreservehistory.org/essays/great-depression).
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Given that �̃PreWar = L as well, this L/H/L pattern of �̃ together with the empirical results

above imply from Proposition 3 that �Post80 = L. As predicted, we find the state of

innovativity does decline from H in the Peak regime to L in the Post80 regime. Of course,

the empirical fact that the TFP growth process is in the L state in the Post80 period is

well known. But, this result is a genuine prediction as our measure of �̃ does not depend

upon the TFP data itself.

The question of why the state of innovativity declines in the Post80 period is one of

the central puzzles of PostWar US economic performance. This shift is a puzzle in part

because there is no sharp exogenous event such as IR2 or the financial market reforms of

the 1930s to cause this shift. Consequently, the shift could be due to a gradual decline in

either market e↵ectiveness or idea supply.

In Proposition 2 above we demonstrate that if �⇤
J = �⇤

K and if �̃⇤
J = �̃⇤

K for two

innovativity regimes J and K, then the binding constraint on innovativity in J is also the

binding constraint on innovativity in K. We show in Section III that �̃⇤
PreWar

= �̃⇤
Post80

, and

we show in Section IV that �⇤
PreWar

= �⇤
Post80

. In our discussion of the binding constraint on

innovativity in the PreWar regime in this section we establish that it is idea processing

capability. It follows that idea processing capability and not idea supply is the binding

constraint on innovativity in the Post80 regime.

Innovativity, Idea Processing, and Idea Supply

Our innovativity theory yields an empirical measure of innovativity that enables us

to identify innovativity regimes on an ex ante basis. This theory, in combination with

exogenous shocks to idea supply and financial market e↵ectiveness, also enables us to
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successfully predict how average TFP growth will vary across these regimes. To the best of

our knowledge, no alternative analysis of TFP growth enables one to make ex ante

predictions for how TFP growth in the US evolved over the last 120 years.

Our analysis further implies that the binding constraint on innovativity over our

sample period is idea processing capability rather than idea supply. That is, the US is now

in a Low innovativity regime due to constraints on the economy’s idea processing

capability rather than because ideas are getting harder to find. In short, Weitzman’s

(1998) conjecture that the limits to growth lie not in idea supply but in idea processing

capability is plausibly correct.

V. Conclusion

An innovation requires both an exploitable idea and an entrepreneur who

transforms that exploitable idea into a new product or process. Innovativity—the

economy’s ability to create the innovations that drive TFP growth—is therefore

determined by both idea supply and idea processing capability rather than by idea supply

alone. Examining US innovativity over the last 120 years, we find that it is plausibly the

case that idea processing capability is now and has been the binding constraint on US TFP

growth. This finding therefore suggests that idea processing capability plays a central role

in the growth process and merits further investigation.

Our innovativity framework creates a new perspective on the debate over the future

of economic growth by calling the neo-Malthusian analysis of Gordan (2012, 2014) into

question. Starting from the premise that ideas drive TFP growth and the observation that
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TFP growth has fallen since the Peak regime of 1946/1969, Gordon reaches the seemingly

inescapable conclusion that TFP growth is declining because we are running out of ideas.

And, if we are running out of ideas, it inevitably follows that “future economic growth may

gradually sputter out”(Gordon 2012). Needless to say, the end of growth would have

profound and terrible consequences for all aspects of economic, political, and social life.

Our analysis o↵ers a way out of this dismal conclusion. We find that the poor TFP

growth performance of the US economy since 1980 is not due a lack of ideas but to a lack

of idea processing capability. Our analysis further suggests that the economy’s idea

processing capability can be (and has been) influenced by policy, and in particular by

policies that a↵ect financial market e↵ectiveness. Consequently, the poor TFP growth

performance of the US economy may be due to (cheaply) correctable policy failings rather

than to a brute fact of nature that we must simply accept and deal with as best we can.28

Our analysis here is exploratory. We focus upon endogenizing idea processing

capability in a TFP growth model in which both idea processing capability and idea supply

play a central role. To do that, we abstract away from important features of endogenous

growth theory. We aim to more fully incorporate these features in future work. It may

happen that doing so alters some of the conclusions we reach here. But, given the stakes in

the future of growth debate, we should find out.

28Bloom et al. (2020) argue that the US will need to double R&D spending over the next 12 years just

to keep TFP growth where it is, let alone improve it. Since the US spends $667 billion/year on R&D now

(according to the latest figures from the NSF), increasing TFP growth by increasing idea supply will be

expensive. A major e↵ort to improve financial market e↵ectiveness and other aspects of the economy that

impact idea processing capability (which is, after all, the binding constraint on innovativity) will cost rather

less than that.
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Table 1
Identifying the Binding Constraint on Innovativity from Shocks

Observed Shock �̃ � Binding Constraint

⌘S " (#) No Change No Change ⌘⇢

⌘S " " " ⌘S

⌘S # # # Insu�cient Info

⌘⇢ [M ] " (#) " (#) No Change ⌘S

⌘⇢ [M ] " " " ⌘⇢

⌘⇢ [M ] # # # Insu�cient Info

Notes : The impact of an observed exogenous shock to: i) idea supply
(⌘S) or ii) idea processing capability (⌘⇢) via a shock to market
e↵ectiveness (M) on observed innovativity (�̃) and true innovativity
(�) may indicate the identity of the binding constraint on � in the
pre-shock equilibrium.
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Table 2
Innovativity Regime Analysis: Variable and Period Definitions

O�,T ( 1 - the standard deviation of idiosyncratic share returns
in month T ) ⇥ 100.

Bull (Bear) A dummy variable equal to 1 if the unweighted average
of share returns in month T is in the upper (lower)
decile of sample returns.

�̃Z A dummy variable for period Z, used as an estimate of
innovativity in Z.

Y1/Y2 The period of Y1 to Y2.

PreIR2 1850/1869 (the period before the Second Industrial
Revolution (IR2)).

IR2 1870/1900 (the Second Industrial Revolution (Gordon 2012)).

PostIR2 1901/1929.

GreatD The Great Depression, 1930/1941.

PreWar 1850/1941 for innovativity analysis, 1899/1941 for TFP analysis.

WW2 1942/1945.

Peak (Peak51) 1946/1969 (1951/1969) .

1970s 1970/1979.

Post80 1980/2019.

DotCom The DotCom Boom of 1995/2004.

Post80ExDC The Post80 period excluding the DotCom Boom.

HSB The high TFP growth periods of the Great Depression
and the DotCom Boom.

ONY Old New York Stock Exchange observations, 1850/1925.

CRSP NYSE observations, 1926/2019.

CRSP:HP CRSP observations for a sample consisting of the top 7 deciles
of stocks each month, sorted by price.

Notes : The sample consists of NYSE listed common shares from 1850 to 2019.
The sample is formed by combining monthly data from the Yale School of
Management’s (SOM) Old New York Stock Exchange project (available on the
SOM’s website) for the period of 1850 to 1925 and monthly data from CRSP for
1926 to 2019. We include a firm/month observation from the ONY period if we
have a return for that month, and we include a firm/month observation from the
CRSP period if we have a return, a price, a trading volume, and a 2 digit SIC
code. A firm’s idiosyncratic return equals its observed return minus the median
return of the firms in its 2-digit industry, and we count all ONY firms as being in
a single industry.
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Table 3
The Standard Deviation of Idiosyncratic Firm Returns:

Summary Statistics

Mean StDev

O�: ONY 91.34 2.65
O�: CRSP 91.51 2.19
O�: CRSP:HP 92.92 1.81
Observations/Month: ONY 54.00 22.91
Observations/Month: CRSP 1112.28 319.16

Notes : O�,T equals (1 - the standard deviation of
idiosyncratic share returns in month T) ⇥ 100. See
Table 1 for variable definitions and sample information.
Sources : CRSP and the Yale School of Management’s
(SOM) Old New York Stock Exchange project
(available on the SOM website).
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Table 4
Measured Innovativity: Estimates

Specification (1) (2)
Sample CRSP ONY/CRSP
Dependent Variable O� O�

Intercept 91.12* 0.73 91.28* 0.53
Bull �0.34 * 0.07 �0.56 * 0.08
Bear 0.52* 0.12 �0.68 * 0.11
�̃PreIR2 0.69 0.95
�̃IR2 0.10 0.93
�̃1901/1929 �0.21 0.76
�̃1926/1929 �0.13 0.92
�̃GreatD 0.99 1.42 0.47 0.98
�̃WW2 2.84** 1.28 2.42** 1.00
�̃1946/1949 2.69* 0.93 2.75* 0.71
�̃1950/1954 2.37* 0.87 2.55* 0.65
�̃1955/1959 2.47* 0.80 2.46* 0.62
�̃1960/1964 2.87* 0.85 2.58* 0.67
�̃1965/1969 2.49* 0.94 2.14* 0.70
�̃1970/1974 1.70 1.05 1.29 0.74
�̃1975/1979 1.86 1.07 1.56** 0.80
�̃1980/1984 0.45 0.96 0.19 0.68
�̃1985/1989 0.87 0.92 0.61 0.64
�̃1990/1994 0.16 0.89 �0.21 0.62
�̃1995/1999 0.26 0.84 �0.17 0.62
�̃2000/2004 �0.84 0.62 �1.11 0.61
�̃2005/2009 �0.53 0.60 �0.83 0.55
�̃2010/2019 Omitted Omitted

Time Series E↵ects Garch(1,1)/AR24

Notes : Each specification is estimated with a Garch(1,1)/AR24
model that yields white-noise residuals (using the Q test).
Measured innovativity (�̃) in each period is measured relative
to the Intercept (the omitted period). A “*” (“**”) indicates
statistical significance at the 1% (5%) level. See Table 2 for
variable definitions and sample information.
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Table 5
Innovativity Regimes and Robustness Tests

Specification (1) (2) (3)
Sample ONY/CRSP CRSP:HP CRSP
Dependent Variable O� O� O�

Point StDev Point StDev Point StDev

Intercept 91.41* 0.29 93.13* 0.27 91.48* 0.34
Bull �0.55 * 0.08 �0.31 * 0.07 �0.33 * 0.07
Bear �0.68 * 0.12 �0.59 * 0.11 �0.52 * 0.12
�̃1926/1929 �0.72 0.45
�̃PreWar �0.19 0.46 �0.43 0.78
�̃WW2 2.04** 0.86 1.15 0.67 2.21** 1.09
�̃Peak 2.33* 0.41 1.36* 0.41 2.23* 0.49
�̃1970s 1.38* 0.48 0.60 0.57 1.36* 0.50
�̃Post80 Omitted Omitted
�̃HSB �0.16 0.18
�̃Post80ExDC Omitted

Time Series E↵ects Garch(1,1)/AR24

Notes : Each specification is estimated with a Garch(1,1)/AR24 model that yields
white-noise residuals (using the Q test). Innovativity (�̃) in each period is measured
relative to the Intercept (the omitted period). A “*” (“**”) indicates statistical
significance at the 1% (5%) level. See Table 2 for variable definitions and sample
information.
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Table 6
TFP Analysis: Variable Definitions

� The natural log of TFP growth.

�̄⇤
⇤

Observed value of average TFP growth in regime ⇤.

⌦Post80 The TFP growth process in the Post80 regime.

�⇤

⇥
⌦Post80,Y⇤

⇤
The distribution of �̄⇤ under the Null hypothesis that the TFP growth
process in ⇤ is equal to the TFP growth process in the Post80 regime.

�⇤,Z The Z th percentile of �⇤.

gD (gU) TFP growth in state D (U) in our two-state Markov model of TFP growth.

✓ij The transition probability from State i to j in our two-state Markov
model of TFP growth.
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Table 7
TFP Growth: Summary Statistics

Period Mean StDev

1899/1929 1.07 —
GreatD 1.86 —
PreWar 1.29 —
Peak51 1.87 1.43
1970s 1.29 1.44
Post80 0.79 1.30
DotCom 1.92 0.58
Post80ExDC 0.38 1.26

Notes : See Table 2 for period definitions.
Sources : Bakker, Crafts, and Woltjer (2019)
for the PreWar period; San Francisco Federal
Reserve data for the PostWar period.
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Table 8
The TFP Growth Process in the Post80 Regime

Specification (1) (2) (3) (4)
Dependent Variable � � � �

gD �0.13 �0.21 0 0
0.24 0.25 Constrained

gU 1.84* 1.88* 1.86* 1.84*
0.28 0.31 0.28 0.35

AR(1) 0.11
0.21

Trend 0.00
0.01

✓DD 0.70 0.67 0.72 0.72
{0.39, 0.89} {0.36, 0.88} {0.43, 0.90} {0.42, 0.90}

✓DU 0.30 0.33 0.28 0.28
{0.11, 0.61} {0.12, 0.64} {0.10, 0.57} {0.10, 0.58}

✓UD 0.34 0.35 0.35 0.35
{0.14. 0.61} {0.15, 0.61} {0.14, 0.63} {0.14, 0.63}

✓UU 0.66 0.65 0.65 0.65
{0.39, 0.86} {0.39, 0.85} {0.37, 0.86} {0.37, 0.86}

Notes : We use a two-state Markov model to estimate ⌦Post80 using the
annual capacity-adjusted TFP growth series described in Fernald (2014).
See Table 6 for variable definitions and Table 7 for summary statistics on
�. This model yields white-noise residuals (using the Q test). Our theory
implies that the TFP growth process is determined by state of innovativity.
It follows that factors such as R&D spending or the supply of STEM labor
do not a↵ect the TFP growth process directly but only through their impact
upon innovativity. In the Post80 regime, innovativity is constant (Table 4).
Consequently, we do not include any controls for such factors in this model.

Source: The TFP data is from the San Francisco Federal Reserve.
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Table 9
Innovativity and TFP Growth

Null Hypothesis �̄⇤ Test Critical Value Reject Null?

�̄⇤
Peak51

2
�
�Peak51,2.5,�Peak51,97.5

 
1.87 {�0.14, 1.84} Yes

�̄⇤
PreWar

2
�
�PreWar,2.5,�PreWar,97.5

 
1.29 {0.07, 1.64} No

Notes : We test the hypothesis that � in a Test regime equals that in the
Post80 regime by comparing observed TFP growth in the Test regime (�̄⇤

Test
)

to the distribution of �̄Test under the Null hypothesis that the TFP growth
process in the Test regime equals that of the Post80 regime (�Test). We accept
the Null if �̄⇤

Test
2
�
�Test,2.5,�Test,97.5

 
, where �Test,Z is the Z th percentile of

�Test. We compute �Test with a bootstrap consisting of 100,000 trials. In each
trial j we: i) draw a set of parameters for the Post80 TFP growth process
from Table 8, Specification 3; ii) set the initial state equal to a random draw
from the stationary state distribution implied by that draw; iii) simulate TFP
growth in the Test period; and iv) calculate �̄⇤

Null,j. We then set �Test equal

to
n
�̄⇤
Null,1, . . . , �̄

⇤
Null,100,000

o
.
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ΔCrit

Choose I

Choose Q

Figure 1: Strategic Approach and Market E↵ectiveness

Notes : We plot the value of �Crit as a function of market e↵ectiveness M . If the value of the

innovation that an I approach creates for a commercially successful project (�) exceeds

�Crit, then the entrepreneur chooses an I strategic approach rather than an Q strategic

approach. This plot shows that the proportion of entrepreneurs who prefer I increases with

M .
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M

Φ*

Φ

ηρ
*

ηS
*

M*

Φ*= Min[ηS
* ,ηρ

*] ηρ[M]

Figure 2: Equilibrium Innovativity

Notes : Equilibrium innovativity �⇤ (on the vertical axis) equals the minimum of exogenous

idea supply ⌘⇤S and endogenous idea processing capability ⌘⇤⇢ [M ]. Idea processing capability

equals the proportion of entrepreneurs who prefer an I strategic approach, with ⌘⇢

determined by the intersection of market e↵ectiveness (the orange line M⇤) with the ⌘⇢ [M ]

curve.
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Figure 3: Variance of Returns by Strategic Approach

Notes : We plot the variance of returns for firms pursuing an I (�2

S) and a Q (�2

F ) strategic

approach as a function of market e↵ectiveness M . We note that: i) @�2
Q/@M < 0 8 M ; ii)

@�2
I/@M > 0 if �2

I < �2

I,Max
; and iii) and @�2

I/@M < 0 if �2

I > �2

I,Max
, with �2

I,Max
occurring at

M ⇡ 0.76 (indicated by the black dashed line).
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ϕ
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Figure 4: Innovativity Regimes

Notes : We plot measured innovativity (�̃) and the state of measured innovativity (�̃) over

our 1850 to 2019 sample period from the estimates in Table 4 (Specification 2) and Table

5 (Specification 1). We identify three innovativity regimes, where a regime is a continuous

period in which �̃ is constant: i) a PreWar regime of 1850/1941; ii) a Peak regime of

1946/1969; and iii) a Post80 regime of 1980/2019. A solid line indicates estimated �̃ for

each regime, while a dashed line indicates estimated �̃ for shorter periods of time (see Table

2). An orange (blue) line indicates that �̃ is High (Low), where �̃ = High (Low) if �̃ > (=) 0.

The 1970s period is a transition between the Peak and Post80 regimes, with �̃Peak > �̃1970s >

�̃Post80.
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Figure 5: Innovativity and TFP Growth

Notes : We plot the evolution of average TFP growth over the 1899/2019 period by

innovativity regime (Figure 4), with the state of measured innovativity (�̃) and true

innovativity (�) indicated for each regime. The blue lines show average TFP growth in

a period, and the yellow line shows the three year moving average of TFP growth for the

PostWar period (for which annual data exists).

Sources : PreWar: Bakker, Crafts, and Woltjer (2019) ; PostWar: San Francisco Federal

Reserve, Annual Capacity Adjusted TFP Growth Series
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