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Abstract

We show that all discounted stochastic games  satisfying the usual assumptions

have Nash payoff selection correspondences having fixed points. Our fixed point result is

surprising because it is well known that Nash payoff selection correspondences are badly

behaved, being in general neither convex valued nor closed valued in the appropriate

topologies (in this case the weak star topologies). Here we show that because all 

satisfying the usual assumptions have upper Caratheodory () Nash (equilibrium) cor-

respondences containing  Nash sub-correspondences having the 3 property (defined

here), these  Nash sub-correspondences are continuum valued and therefore induce

interval-valued  player payoff sub-correspondences - and therefore, Caratheodory ap-

proximable  player payoff sub-correspondences. Finally, because these  player payoff

sub-correspondences are Caratheodory approximable, their induced Nash payoff selection

sub-correspondences have fixed points - implying that the  to which they belong

have stationary Markov perfect equilibria.

Key Words: -tuples of Caratheodory functions, upper Caratheodory correspondences, the

3 property, continuum valued upper Caratheodory sub-correspondences, weak star upper semi-

continuous measurable selection valued correspondences, approximate Caratheodory selections,

discounted stochastic games, stationary Markov perfect equilibria.
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1 Introduction

One-shot games are the key to determining whether or not a discounted stochastic game

(DSG) has stationary Markov perfect equilibria (). Under the usual assumptions,

we know that a DSG has  if and only if the collection of one-shot games (OSG)
belonging to the DSG has a Nash payoff selection correspondence having fixed points.1
But to date, no such fixed point result has been established. This is not surprising be-

cause Nash payoff selection correspondences are, in general, neither convex valued nor

closed valued in the appropriate topology - nor are they upper semicontinuous. To make

matters worse, Levy and McLennan (2015) have constructed examples of DSG having no
, and therefore, examples of DSG having Nash payoff selection correspondences
having no fixed points. Our contribution is to establish a general  existence re-

sult for uncountable-compact DSG satisfying the usual assumptions, with players having
convex, compact action sets, by proving that all such DSG0 have Nash payoff selection
correspondences having fixed points.2

Our approach has two parts: First, we show that the measurable selection valued

Nash payoff selection correspondence induced by the composition of players’ -tuple of

real-valued Caratheodory payoff functions with the upper Caratheodory () Nash corre-

spondence has fixed points if the underlying  Nash correspondence in the composition

contains a continuum valued  Nash sub-correspondence. Second, we show that under

the usual assumptions specifying a discounted stochastic game, this is always the case.

In particular, we show that a DSG always has a  Nash correspondence containing a

continuum valued  Nash sub-correspondence - implying that all such DSG have Nash
payoff selection correspondences with fixed points - and therefore implying that all DSG
satisfying the usual assumptions have .

There are two reasons why a DSG has a  Nash correspondence containing a contin-
uum valued  Nash sub-correspondence. First, under the usual assumptions, all DSG,
with players having convex, compact action sets, have  Nash correspondences given by

the composition of a Ky Fan correspondence (the ) and the OSG0 collective security
mapping (the ).3 The  is an upper semicontinuous correspondence defined on

the compact metric hyperspace of Ky Fan sets taking nonempty compact values in the

OSG0 set of Nash equilibria. The  is a  correspondence, jointly measurable in

states and value functions and upper semicontinuous in value functions, taking set values

given by Ky Fan sets - with the Ky Fan values taken by the  being determined by

the OSG0 Nikaido-Isoda function. Second, as we show here, under the usual assump-

tions, the OSG0 Ky Fan correspondence, as well as all of its sub-correspondences have
the 3 property (the 3 misses property, defined below). As a consequence, the 

has minimal USCOs (i.e., minimal ) taking connected, minimally essential Nash

equilibrium values (essential in the sense of Fort, 1950). Thus, each of these 3 minimal

 when composed with the OSG0 collective security mapping delivers a contin-
uum valued  Nash sub-correspondence. Composing any one of these continuum-valued

minimal  with the players’ -tuple of Caratheodory payoff functions, gives us an

-tuple of interval-valued players’  Nash payoff sub-correspondences, and therefore,

an -tuple of Caratheodory approximable players’  Nash payoff sub-correspondences

1We will refer to the parameterized collection of -player, state-contingent, strategic form games as

an OSG. Thus, the collection of one-shot games underlying a DSG is an example of an OSG
2We will often times refer to discounted stochastic games (DSG) with uncountable state space and

compact metrizable and convex player action sets, satisfying the usual assumptions as an uncountable-

compact DSG (and as an uncountable-finite DSG if players’ action sets are finite - and thus a sub-class
of uncountable-compact DSGs).

3For example if players’ action sets consist of all probability measures over a finite set of pure actions,

then players’ action sets are convex and compact.
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(see Kucia and Nowak, 2000). As a consequence of Caratheodory approximability, we are

able to give a very direct proof that the induced Nash payoff selection sub-correspondence

has fixed points - and therefore, that the DSG to which the Nash payoff selection sub-
correspondence belongs has .

Some observations before we present our results. First, regarding Levy and McLennan

(2015). To understand how our results here are related to those of Levy and McLennan,

it is useful to divide all DSG into two disjoint classes: those that are approximable and
those that are not. We say that a DSG is approximable if it has a Nash payoff selection
sub-correspondence that is approximable.4 If a DSG is approximable, then because it’s
Nash payoff selection correspondence has fixed points, it follows that the DSG has station-
ary Markov perfect equilibria (SMPE) - and conversely, if the DSG has no SMPE, then
because it’s Nash payoff selection correspondence has no fixed points, the DSG’s Nash
payoff selection correspondence is not approximable (i.e., the DSG is not approximable).
Page (2015, 2016) has shown that all approximable DSG have stationary Markov perfect
equilibria. Here we show that all DSG satisfying the usual assumptions are approximable.
In the Levy-McLennan counterexamples (2015) the cause of the nonexistence problem is

Nash equilibria homeomorphic to the unit circle (i.e., circular Nash equilibria) causing

the DSGs in the Levy-McLennan examples to have Nash payoff selection correspondences
without fixed points. In fact, Levy-McLennan (2015) start with a static strategic form

base game with circular Nash equilibria and via a sequence of delicate modifications and

additions to the base game construct a DSG that is not approximable and is without
 - thus showing that in the class of non-approximable DSG, there exists DSGs
having no stationary Markov perfect equilibria. Thus, while not all non-approximable

DSG have , as shown by Levy and McLennan (2015), all approximable DSG do,
as shown by Page (2015, 2016). Moreover, because all DSG satisfying the usual assump-
tions have 3 Nash sub-correspondences, and therefore, have Caratheodory approximable

Nash payoff correspondences, all such DSG escape the Levy-McLennan counterexamples,
and as we show here, possess stationary Markov perfect equilibria.

Thinking about the SMPE existence problem for discounted stochastic games from

the perspective of approximability provides a useful way of viewing some of the recent

literature on existence. We can think of this literature as a record of the search for

conditions on the primitives of a DSG, over and above the usual assumptions which
guarantee that the DSG’s underlying one-shot game has as an approximable Nash payoff
selection sub-correspondence. Most significant in this regard is the work of He and Sun

(2017). Using results on the conditional expectations of correspondences due to Dynkin

and Evstigneev (1976, Section 4, 4.1-4.4, pp.334-336), He and Sun (2017) show that if

the DSG has a (decomposable) coarser transition kernel, then the game’s Nash payoff se-
lection correspondence contains a convex valued sub-correspondence - implying that this

sub-correspondence is approximable, and therefore, has fixed points.5 He and Sun (2017)

also show that if a DSG is noisy in the sense of Duggan (2012), then it has a coarser
transition kernel - again implying that it has a Nash payoff selection sub-correspondence

4A correspondence is approximable if it has a graph about which, for any   0, an open -ball can be

placed containing the graph of a continuous function. If the DSG’s has a Nash payoff sub-correspondence
that is Caratheodory approximable, then the induced Nash payoff selection sub-correspondence will be

approximable (Kucia and Nowak, 2000).
5This sub-correspondence consists of payoff selections that are conditional expectations functions. Let

G be a sub--field of Ω and denote by G(·) a regular G-conditional probability given sub--field G.
Following Dynkin and Evstigneev,  ∈ Ω is G-atom if ()  0 and for any  ∈ Ω such that  ⊂ 



 ∈ Ω : 0  G()()  G()()


= 0.

If a DSG is without G-atoms (if it is G-nonatomic) then it is a DSG with a courser transition kernel (see
Page, 2016, and He and Sun, 2017).
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that is approximable.6 Moreover, He and Sun (2017) show that the nonatomic part of

the Levy-McLennan (2015) DSG does not have a decomposable coarser transition kernel.
Our analysis here supports the slightly stronger conclusion that the Levy-McLennan DSG
is not approximable - and this in turn implies that the Levy-McLennan DSG does not
have a decomposable coarser transition kernel. Nowak (2003, 2007) identifies smooth-

ness, concavity, and transition kernel decomposability conditions which together with the

usual assumptions imply that the Nash payoff selection correspondence is single-valued.

Variations on Nowak’s (2003, 2007) work enabled Jaskiewicz and Nowak (2016, 2018)

to show, under some transition kernel decomposability conditions (see assumption (v)

in Jaskiewicz and Nowak, 2016), that if the DSG satisfies the usual assumptions and
each player’s strategy set consists of behavioral action-valued measurable functions of the

current and last period’s state, then the DSG possesses stationary almost Markov per-
fect equilibria (SAMPE) - i.e., a stationary Nash equilibrium in behavioral action-valued

measurable strategies (functions) of the current and last period’s state. Under stronger

assumptions about players’ strategy sets, Barelli and Duggan (2014) show that if each

player’s strategy set consists of behavioral action-valued measurable functions of the cur-

rent state, last period’s state, and players’ last period’s action profile, then any DSG
satisfying the usual assumptions has stationary semi-Markov perfect equilibria - i.e., a

stationary Nash equilibrium in behavioral action-valued measurable functions of the cur-

rent state, last period’s state, and players’ last period action profile. Here, we show that all

DSG satisfying the usual assumptions - with no additional assumptions - automatically
have 3 minimal  Nash sub-correspondences which induce Caratheodory approximable

player  Nash payoff sub-correspondences - which in turn induce Nash payoff selection

sub-correspondences having fixed points.

Now to the details.

Part I

One-Shot Games and Their Nash

Correspondences

Our focus here will be the one-shot games,©
(Φ() (  ·))∈

ª
()

(OSG) underlying discounted stochastic games.
6A DSG is noisy in the sense of Duggan if the state space is given by Ω :=  × with typical element

 := ( ), where both  and  are complete separable metric spaces with metrics  and  , equipped

with the Borel -fields  and  . The law of motion is given by

(( )  


 ) −→ (·|( )  


 )

where

((0 0)|( ) ) := (0|0)(0|( ) )
or

((0 0)| ) := (0|0)(0| )
where  = ( ) denotes the current state and 0 = (0 0) denotes the coming state - and depending on
the regular state 0 chosen by the probability measure, (0| ), in current state  = ( ) given action
profile  ∈ Φ(), the noisy state 0 will be chosen according to the probability measure, (0|0).
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2 Primitives and Assumptions

To begin, an -player, non-zero sum, discounted stochastic game, DSG, is given by the
following primitives:

DSG :=

⎧⎪⎪⎨⎪⎪⎩ (Ω Ω )| {z }
probability space


©
(Φ()  (  ·))∈

ª
()| {z }

the one-shot game

 (·| ·)| {z }
law of motion

⎫⎪⎪⎬⎪⎪⎭ 

(1)

where Ω is the state space, Ω is the -field of events, and  is a probability measure.

For each player ,  is the set of all possible actions available to player , while Φ() is

the feasible set of actions available to player  in state . Finally,  ∈ (0 1) is player 0
discount rate and (  ·) is player 0 payoff function in state  given valuations (or
prices) , and (·| ·) is the law of motion in state . If players holding value function
profile  = (1     ) choose feasible action profile,

 = (1     ) ∈ Φ1()× · · · ×Φ() = Φ()

in state  then the next state 0 is chosen in accordance with probability measure
(·| ) ∈ ∆(Ω) and player 0 expected payoff is given by

(  ) := (1− )( ) + 

Z
Ω

(
0)(0| ). (2)

We will denote by, G(), the -player one-shot game in state  underlying the DSG
when players hold valuations  := (1     ).

Formally, the DSGs we will consider here satisfy the following list of assumptions (a
list we think of as the usual assumptions), labeled [OSG](1)-(11):

(1)  = the set of players, consisting of  players indexed by  = 1 2     and each

having discount rate given by  ∈ (0 1).
(2) (Ω Ω ), the state space where Ω is a complete separable metric spaces with metric

Ω, equipped with the Borel -field, Ω, upon which is defined a probability measure, .

(3)  := 1 × · · · × , the space of players’ payoff profiles,  := (1     ), such

that for each player ,  := [− ],   0, and is equipped with the absolute value

metric, ( 
0
) := | −  0| and  is equipped with the sum metric,  :=

P
  .

(4)  := 1 × · · · × :=
Y


 ⊂  :=
Y


, the space of player action profiles,

 := (1     ), such that for each player ,  is a convex, compact metrizable

subset of a locally convex Hausdorff topological vector space  and is equipped with a

metric, 
 compatible with the locally convex topology inherited from , and  is

equipped with the sum metric,  :=
P

 


(5)  −→ Φ(), is player 0 measurable action constraint correspondence, defined on
Ω taking nonempty, convex, 

-closed (and hence compact) values in .

(6)  −→ Φ() := Φ1()× · · · ×Φ(), players’ measurable action profile constraint
correspondence, defined on Ω taking nonempty, convex, and -closed (hence compact)

values in 

(7) L∞ , the Banach space of all -equivalence classes of measurable (value) functions,
(·) defined on Ω with values in  a.e. [], equipped with metric ∗


compatible with

the weak star topology inherited from L∞ .
(8) L∞ := L∞1 × · · · × L∞ ⊂ L∞, the Banach space of all -equivalence classes of
measurable (value) function profiles, (·) := (1(·)     (·)), defined on Ω with values
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in  a.e. [], equipped with the sum metric ∗ :=
P

 ∗
compatible with the weak

star product topology inherited from L∞ .
(9) S∞(Φ(·)), the set of all -equivalence classes of measurable functions (selections),
(·) ∈ L∞

 defined on Ω such that in () ∈ Φ() a.e. [], and

S∞(Φ(·)) = S∞(Φ1(·))× · · · × S∞(Φ(·)) (3)

the set of all -equivalence classes of measurable profiles (selection profiles),

(·) = (1(·)     (·)) ∈ L∞ , defined on Ω such that

() ∈ Φ() := Φ1()× · · · ×Φ() a.e. []

(10) (· ·) : Ω× −→  is player 0 affine, Caratheodory stage payoff function (i.e.,
for each , ( ·) is -continuous on , for each  (· ) is (Ω )-measurable

on Ω, and for each ( −) and each 0 and 1 in ,

( 
0
 + (1− )1 −) = ( 

0
 −) + (1− )( 

1
 −) (4)

for all  ∈ [0 1].
(11) (·|· ·) : Ω× −→ ∆(Ω) is the law of motion defined on Ω× taking values in

the space of probability measures on Ω, having the following properties: (i) each

probability measure, (·| ), in the collection

(Ω×) := {(·| ) : ( ) ∈ Ω×} (5)

is absolutely continuous with respect to  (denoted (Ω×)  ), (ii) for each

 ∈ Ω, (|· ·) is measurable on Ω×, and (iii) the collection of probability density

functions,

 := {(·| ) : ( ) ∈ Ω×} , (6)

of (·| ) with respect to  is such that for each state , the function

( −) −→ (0|  −) (7)

is continuous in  and affine in  a.e. [] in 0.

A one-shot game then is a collection of strategic form games,

G(Ω×L∞ ) :=
©G() : ( ) ∈ Ω×L∞ ª  (8)

where each ( )-game in the collection is given by

G() :=

⎧⎪⎨⎪⎩ Φ()| {z }
feasible actions

 (  (· ·))| {z }
payoff function

⎫⎪⎬⎪⎭
∈

, (9)

Under assumptions [OSG], in a ( )-game player 0 payoff function, given by

 −→ (  ) := (1− )( ) + 

Z
Ω

(
0)(0| ) (10)

is jointly continuous in action profiles,  = (1     ), and for any sequence of value

function-action profiles pairs, {( )}, if  −→
∗

∗ and  −→


∗ then for each ,
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(  ) −→


( ∗ ∗) (i.e., ( · ·) is jointly continuous in ( )). Thus, the  -
valued players’ payoff function, (· · ·), is a Caratheodory function: ∗×-continuous
in ( ) for each , and (Ω  )-measurable in  on Ω for each ( ). Moreover, for

each , ( · ·) is uniformly continuous on the compact product space, L∞ ×. As a

consequence, for each , the -parameterized collection of -tuples of integrands given

by {(  ·) :  ∈ L∞ } is uniformly equicontinuous.7 Likewise, for the -parameterized
collection of -tuples of integrands given by {( · ) :  ∈ }.

3 One-Shot Nash Correspondences

Any OSG satisfying assumptions [OSG] above, has a Nash correspondence given by an
upper Caratheodory () correspondence,

N (· ·) : Ω×L∞ −→  (), (11)

jointly measurable in ( ) and upper semicontinuous in  for each  (see 7.3.1 on 

correspondences in the Appendices). We call the collection of upper semicontinuous

Nash correspondences, {N ( ·) :  ∈ Ω}, the USCO part (Hola and Holy, 2015), and

{N (· ) :  ∈ L∞ } the measurable part of the  Nash correspondence N (· ·). Denote
by UCΩ×L∞


- () the collection of all such  correspondences.

Next consider the  -valued Caratheodory players’ payoff function,

(  ) −→ (  ) := (1(  )     (  )) ∈  , (12)

measurable in  and jointly continuous in ( ), and let

P(· ·) : Ω×L∞ −→  ( ) (13)

denote the composition of  Nash correspondenceN (· ·) with the-tuple of Caratheodory
players’ payoff functions, (1(· · ·)     (· · ·)). For each ( ) ∈ Ω×L∞ let

P( ) := ( N ( )) (14)

The correspondence, P(· ·), is the OSG0  Nash payoff correspondence - a  compo-

sition correspondence.

The  Nash payoff correspondence, P(· ·) ∈ UCΩ×L∞

- ( ), induces a measurable

selection valued Nash payoff selection correspondence,

 −→ S∞(P(· )) := S∞(P), (15)

where for each  ∈ L∞ , S∞(P) is the collection of -equivalence classes of functions  in
L∞ such that () ∈ P( ) a.e. []. We will show that for all such Nash payoff selection

7The collection,

{(  ·) :  ∈ L∞ } 
is uniformly equicontinuous if for any   0 there is a   0 such that for any  and 0 in Φ() with

( 
0)  ,

 ((  ) (  
0))  ,

for all  ∈ L∞ . By the uniform continuity of ( · ·) on the compact metric space, L∞ ×, for each ,

the collection of functions {( · ) :  ∈ } is also uniformly equicontinuous - so that for each   0,

there is a   0 such that for ∗( 
0)  ,

 ((  ) ( 
0 )  

for all  ∈ .
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correspondences,

 −→ S∞(P(· )) = S∞((· N (· )))

= (S∞(1(· N (· ))    S∞((· N (· )))

⎫⎬⎭ (16)

if the underlying  Nash correspondence, N (· ·) ∈ UCΩ×L∞

- (), contains a continuum

valued Nash sub-correspondence, (· ·) ∈ UCΩ×L∞

- () (i.e., a  Nash correspondence

(· ·) taking continuum values such that ( ·) ⊂ N ( ·) for all ) then its induced
 Nash payoff sub-correspondence, ( ) −→ (  ( )), induces a selection sub-

correspondence,

 −→ S∞((· )) := S∞((·  (· ))), (17)

that is weak star upper semicontinuous and has fixed points. Thus while the original

Nash selection correspondence,  −→ S∞(P), may fail to be weak star upper semi-
continuous, the selection sub-correspondence induced by a continuum valued  Nash

sub-correspondence will be weak star upper semicontinuous, and more importantly, will

have fixed points.

Part II

All One-Shot Games Have Continuum

Valued Nash Sub-Correspondences

Our objective is to show that all OSG satisfying assumptions [OSG] have Nash corre-
spondences containing continuum valued Nash sub-correspondences. A key ingredient in

our approach is a novel decomposition of the Nash correspondence. In particular, we show

that all OSG have Nash correspondences that can be written as the composition of two
correspondences,

( ) −→ N ( ) =  ◦( )
a Ky Fan correspondence (a KFC),

(·) :    −→    ,

and the game’s collective security mapping (the CSM),

(· ·) : -  −→   .

In Part II, our objective is to show that the Nash correspondence, N (· ·), belonging to
any OSG satisfying assumptions [OSG] contains a  Nash sub-correspondence, (· ·),
meaning that ( ·) ⊂ N ( ·) for all . such that ( ) is a continuum for each

( ) ∈ Ω×L∞ . We will show that just such a  Nash sub-correspondence is given by,

( ) −→ (( )), where ( ) −→ ( ) is the OSG0 collective security mapping
and (·) is any minimal  (defined on the compact metric hyperspace of Ky Fan sets

and taking Nash equilibria values) belonging to the , (·). Then in Part III, we will
show that, as a consequence of the fact that the OSG0 Nash correspondence, N (· ·), has
a continuum valued sub-correspondence, ((· ·)), the OSG0 induced  Nash payoff

sub-correspondence, (· ·), given by

( ) −→ ( ) := (1( 1 (( )))     (  (( )))),

7



is such that there exists ∗ ∈ L∞ , such that

∗() ∈ ( ∗) ⊂ P( ∗) a.e. [],

implying that

∗ ∈ S∞(P∗).
Thus, the OSG0 Nash payoff selection correspondence,  −→ S∞(P), has fixed points.

4 Ky Fan Sets

Throughout our discussion of Ky Fan sets, in order to simplify the notation, we will

assume that the state,  ∈ Ω, is fixed and we will let Φ() = . Later, when we discuss

the collective security mapping, we release these assumptions.

Definition 1 (Ky Fan Sets)

Let  be a subset of  × satisfying the following three properties:

(a) For each  ∈ , ( ) ∈ .

(b) For each  ∈ , { ∈  : ( ) ∈ } is closed.
(c) For each  ∈ , { ∈  : ( ) ∈ } is convex or empty.

Any such subset  satisfying properties (a), (b), and (c) is called a Ky Fan set.

The collection of all Ky Fan sets in  × is denoted by

S := { ⊂  × :  has properties (a), (b), and (c)} .

Given  ∈ S, let
() := { ∈  : ( ) ∈ }

and

() := { ∈  : ( ) ∈ } 

⎫⎬⎭ (18)

The section of  at , (), is the set of action profiles, , that deter noncooperative

defection , while the section of  at , (), is the set of noncooperative defections,

, deterred by actions . Note that the deterrence mapping,  −→ (), is an USCO

defined on  taking values in the hyperspace,  (), of nonempty, closed subsets of .

We will equip the set of Ky Fan sets with the Hausdorff metric, × (:= ×
where × :=  + ).

Theorem 1 (The hyperspace of Ky Fan sets is a compact metric space with the

Hausdorff metric)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with Ky Fan sets S.
Then S is a ×-closed subset of  ( ×).

Proof : Let {} ⊂ S be a sequence of Ky Fan sets such that ×( 0) −→
0. We must show that 0 ∈ S. We have for each  ∈  that ( ) ∈  for all

. Thus, ×( 0) −→ 0 implies that ( ) ∈ 0 (i.e., (a) holds). Because

×( 0) −→ 0, implies that all converging sequences {( )} with ( ) ∈ 

for all  must have limit ( 0) in 0, we must conclude that (b) holds. To see that (c)

holds - i.e., that for all  ∈ , { ∈  : ( ) ∈ 0} is convex and possibly empty -
suppose not. Then for some 0 in , there exists 1 and 2 in  such that for some

0 = 01 + (1 − 0)2 ∈ , 0 ∈ (0 1), 0 deters 0 but does not deter 1 or 2

Therefore, we have 0 ∈ 0(1) =⇒ (1 0) ∈ 0, 0 ∈ 0(2) =⇒ (2 0) ∈ 0, but
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0 ∈ 0(0) =⇒ (0 0) ∈ 0. But now because ×( 0) −→ 0, and because

( 0) ∈ 0, for   0 sufficiently small, we have for some  sufficiently large that

for any 0 on the line segment between 1 and 2 contained in each of the convex sets,

{ ∈  : ( 0) ∈ },

[
( 0)× {0}] ∩ = ∅ for all  ≥ ,

contradicting the assumption that for 0 = 0, (0 0) ∈ 0. Q.E.D.

5 Ky Fan Correspondences

For Ky Fan sets,  ∈ S, the Ky Fan correspondence is given by,
 −→ () := ∩∈ { ∈  : ( ) ∈ } , (19)

It follows from Lemma 4 in Ky Fan (1961) that for any  ∈ S, () is nonempty.

Theorem 2 (The KFC is an USCO)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with KFC, (·).
Then (·) is an USCO, that is,

(·) ∈ US- () := U(S  ()) (20)

Proof: By Ky Fan (1961) () is nonempty for all  ∈ S and it is easy to see that
() is compact for all  ∈ S. To see that (·) is upper semicontinuous consider a
sequence {( )} ⊂ (·) where {} ⊂ S and WLOG assume that  −→

×
0,

and  −→


0. By (19) we have for each , ( ) ∈  for all  ∈ . If we can

show that ( 0) ∈ 0 for all  ∈ , the proof will be complete. Suppose there is some

0 ∈  such that (0 0) ∈ 0. Let {} be any sequence in  converging to 0. We

have ( ) ∈  for all  with ( ) −→ (0 0). Because  −→
×

0, we must

conclude that (0 0) ∈ 0 - a contradiction. Thus, (0 0) ∈ (·). By compactness,
the fact that (·) is closed implies that (·) is upper semicontinuous - with nonempty,
compact values. Q.E.D.

5.1 Essential Sets and the 3M Property in the Hyperspace of Ky

Fan Sets

We begin by considering the notions of essential and minimally essential sets for KFCs.

Definition 2 (Essential Sets and Minimal Essential Sets)

Let (·) be a KFC and let 0 ∈ S be a given Ky Fan set.
(1) A nonempty, closed subset (0) of (0) is said to be essential for (·) at
0 ∈ S if for any   0 there exists   0 such that for all  ∈ × (

 0) ⊂ S,
() ∩

( (0)) 6= ∅ (21)

We will denote by E[(0)] the collection of all nonempty, closed subsets of (0)
essential for (·) at 0 ∈ S
(2) A nonempty closed subset (0) of (0) is said to be minimally essential for

(·) at 0 ∈ S if (i) (0) ∈ E [(0)] and if (ii) (0) is a minimal element of
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E[(0)] ordered by set inclusion (i.e., if (0) ∈ E[(0)] and (0) ⊆ (0) then

(0) = (0)). We will denote by E∗[(0)] the collection of all nonempty, closed
subsets of (0) minimally essential for (·) at 0 ∈ S

Note that for any  ∈ S, if  is a proper subset of (), then  ∈ E[()]. The 3
property for KFCs is defined as follows:

Definition 3 (The 3M Property)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG], and let,
(·) ∈ US- (), be the KFC.
We say that (·) is 3 at 0 ∈ S if, given any   0 and given any pair of nonempty,

disjoint, closed sets,  1 and  2 in , there exists Ky Fan sets 1 and 2 in

× ( 
0) such that

(1) ∩  1 = ∅ and (2) ∩  2 = ∅

then there exists a third Ky Fan set, 3 in the larger open ball,× (3 
0), such

that

(3) ∩ [ 1 ∪  2] = ∅,
We say that the KFC, (·), is 3 if (·) is 3 at  for all  ∈ S. We will denote
by U3S- () the collection of all 3 KFCs.

5.2 All  are 3

Our next Theorem, the 3 Theorem, establishes a surprising fact: under assumptions

[OSG], all USCOs defined on the hyperspace of Ky Fan sets (i.e., all KFCs) are 3 - i.e.,

US- () = U3S- ().

Theorem 3 (The 3 Theorem)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG]. Then
US- () = U3S- ().

Proof: We have U3S- () ⊂ US- (). Suppose (·) ∈ US- () does not have the 3
property at 0 ∈ S. Then for some 0  0 and some pair of closed disjoint sets  1 and

 2 in , the open ball, × (
0 0) ⊂ S contains two Ky Fan sets, 1 and 2, such

that

(1) ∩  1 = ∅ and (2) ∩  2 = ∅ (22)

but such that for all  ∈ × (3
0 0), () ∩ [ 1 ∪  2] 6= ∅. We will show that this

leads to a contradiction by exhibiting a Ky Fan set, ∗ ∈ × (3
0 0) such that if

(∗) ∩ [ 1 ∪  2] 6= ∅ , then () ∩   6= ∅ for  = 1 or 2 violating (22).
First, given that the KFC (·) is an USCO, under [OSG] there are disjoint open sets

  such that   ⊂   and () ∩   = ∅,  = 1 2, and moreover, such that

(∗) ∩ [ 1 ∪  2] 6= ∅ for all ∗ ∈ × (3
0 0) ∩ S,

implies that

(∗) ∩ [1 ∪ 2] 6= ∅ for all ∗ ∈ × (3
0 0) ∩ S

⎫⎬⎭ (23)

We will show that (23) leads to a contradiction by constructing a Ky Fan set, ∗ ∈ S
with ∗ ∈ × (3

0 0) such that

(∗) ∩ [1 ∪ 2] 6= ∅ (*),
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implying that () ∩   6= ∅ for some  = 1 and/or 2. Our candidate for such a set is
given by

∗ := [1 ∩ ( × 2)] ∪ [2 ∩ ( × 1)] (24)

where

( ×  ) :=
©
( ) ∈  × :  ∈  

ª


We must show that,

(a) ∗ ∈ S
(b) ∗ ∈ × (3

0 0),

and

(c) (∗) ∩ £1 ∪ 2¤ 6= ∅ ⇒ () ∩   6= ∅ for some  = 1 2.

(a) ∗ ∈ S: It is easy to see that ∗ ∈  (×). Moreover, because  ∈ S  = 1 2,
it is easy to see that Definition 1(a) holds for ∗. Also, it is easy to see that Definition
1(b) holds for ∗. Thus, ( ) ∈ ∗ for all  ∈ , and ∗() is closed for all  ∈ .

It remains to show that for all  ∈ , { ∈  : ( ) ∈ ∗} is convex or empty. Let
 ∈ 1, then because 1 and 2 are disjoint,

{ ∈  : ( ) ∈ ∗} = © ∈  : ( ) ∈ 1
ª


a convex or empty set because 1 ∈ S.
Let  ∈ 2, then because 1 and 2 are disjoint,

{ ∈  : ( ) ∈ ∗} = © ∈  : ( ) ∈ 2
ª


a convex or empty set because 2 ∈ S.
Let  ∈ \1 ∪ 2. Then

{ ∈  : ( ) ∈ ∗}

=
©
 ∈  : ( ) ∈ 1

ª ∩ © ∈  : ( ) ∈ 2
ª


the latter being the intersection of convex or empty sets. Thus, { ∈  : ( ) ∈ ∗} is
convex or empty.

(b) ∗ ∈ × (3
0 0): We have

∗ = [1 ∩ ( × 2)] ∪ [2 ∩ ( × 1)] (25)

and by the triangle inequality,

×(1 2) ≤ ×(1 0) + ×(0 2)  2
0

and

×(∗ 0) ≤ ×(∗ 1) + ×(1 0).

(26)

We know already that ×(1 0)  0. Consider ×(∗ 1). We have

×(∗ 1) := max
©
×(∗ 1) ×(1 ∗)

ª


It is easy to check that,

×(∗ 1) = sup()∈∗ ×(( ) 
1)

= sup()∈[2∩(×1)] ×(( ) 
1)

≤ sup()∈2 ×(( ) 1) = ×(2 1)
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To show that ×(1 ∗) ≤ ×(1 2) observe that

×(1 ∗) = sup()∈1 ×(( ) ∗)

= sup()∈1 ×(( ) [1\( × 2)] ∪ [2\( × 1)])

Letting 1 = [1\( × 2)] ∪ £1 ∩ ( × 2)
¤
, we have for all ( ) ∈ 1\( × 2)

×(( ) ∗)

= ×(( ) [1\( × 2)] ∪ [2\ × 1)])

≤ ×(( ) [2\( × 1)] ∪ [2 ∩ ( × 1)])

= ×(( ) 2).

Moreover, we have for all ( ) ∈ 1 ∩ ( × 2)

×(( ) ∗)

= ×(( ) [1\( × 2)] ∪ [2\( × 1)])

= ×(( ) [2\( × 1)])

and
×(( ) 2)

= ×(( ) [2\( × 1)] ∪ [2 ∩ ( × 1)])

= ×(( ) [2\( × 1)]).

Thus, for all ( ) ∈ 1,

×(( ) 
∗) ≤ ×(( ) 

2)

implying that ×(1 ∗) ≤ ×(1 2). Together,

×(1 ∗) ≤ ×(1 2)

and

×(∗ 1) ≤ ×(2 1)

imply that ×(∗ 1) ≤ ×(2 1)  20. Thus, we have

×(∗ 0) ≤ ×(∗ 1) + ×(1 0)

≤ ×(2 1) + ×(1 0)

 20 + 0 = 30.

(c) (∗) ∩ £1 ∪ 2¤ 6= ∅ ⇒ () ∩   6= ∅ for some  = 1 and/or 2:
Suppose that  ∈ (∗) ∩ 1. Given the definition of the KFC, (·), We have for

each  ∈ (∗) and  ∈ ,

( ) ∈ ¡1 ∩ ¡ × 2
¢¢ ∪ ¡2 ∩ ¡ × 1

¢¢
,
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and because  ∈ 1, this implies that for each  ∈ , ( ) ∈ 1 ∩ ¡ × 2
¢
, and

specifically, that for each  ∈ ,

( ) ∈ 1 ∩ ¡ × 1
¢
. (*)

Thus, given that  ∈ (∗) and  ∈ , (*) implies that  ∈ (1) ∩ 1, contradicting
the fact that (1) ∩ 1 = ∅. Thus we must conclude that (·) has the 3M property.

Q.E.D.

5.3 All Minimal  Take Minimally Essential and Connected

Values

Our next result establishes a second surprising fact about : all minimal USCOs

defined on the hyperspace of Ky Fan sets (i.e., all minimal ), as a consequence of

being 3 , take minimally essential values.

Theorem 4 (Minimal KFCs Belonging to Quasi-Minimal KFCs Are Minimally

Essential Valued)8

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with KFC, (·). The
following statements are true:

(1) If (·) is quasi-minimal with [(·)] = {(·)} for some minimal USCO, (·), then
() ∈ E∗[()] for all  ∈ S.
(2) If (·) is a minimal USCO, then {()} = E∗[()] for all  ∈ S.

Proof: Suppose that for some 0 there is some nonempty, closed and proper sub-

set (0) of (0) with (0) ∈ E[(0)]. Fix some 0 ∈ (0)Â(0) and let


(0 (0)) ⊂  be an open enlargement of (0) such that 0 ∈ 

(0 (0)).

Since (0) ∈ E[(0)] there is a 0  0 such that for all  ∈ × (
0 0), () ∩


(0 (0)) 6= ∅. Define the mapping (·) as follows:

() :=

½
() ∩

(0 (0))  ∈ × (
0 0)

()  ∈ SÂ× (
0 0).

By Lemma 2(ii) in Anguelov and Kalenda (2009), (·) is an USCO with  ⊂  and

hence  ⊂ . In particular, 0 ∈ (0), a contradiction. Q.E.D.

As the following example makes clear, the quasi-minimality of the USCO is critical to

the above result.

Example 1 (Quasi-Minimality is Critical)

Let  =  = [−1 1] and define  ∈ U - as follows:

() :=

⎧⎨⎩ {−1}  ∈ [−1−1
2
)

{−1 1}  ∈ [−1
2
 1
2
]

{1}  ∈ (1
2
 1].

While the mapping  is an USCO is not quasi-minimal. Next consider the following

USCO:

() :=

⎧⎨⎩ {−1}  ∈ [−1 0)
{−1 1}  = 0

{1}  ∈ (0 1].
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We have  ∈ [ ] but (0) is not minimally essential for  at  = 0 because

(0) = {−1 1} but the smaller sets {−1} and {1} are each minimally essential for  at

 = 0.

The following Theorem establishes a third fundamental fact about minimal USCOs de-

fined on Ky Fan sets: all minimal  take minimally essentially, and connected values.

Theorem 5 (The Connection Between a KFC’s Minimal USCOs and Connected

Minimally Essential Sets)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with KFC, (·). If
(·) is a minimal USCO belonging to (·), then for each  ∈ S, {()} = E∗[()] and
() is connected.

Proof: Because (·) is a minimal USCO belonging to (·), (·) is quasi-minimal.
Thus by Theorem 4 and the minimality if (·), {()} = E∗[()] for each  ∈ S.

Next, suppose that for some e ∈ S ( e) is not connected. Then there are two non-
empty, compact sets, 1( e) and 2( e), and two nonempty, disjoint open subsets,  1

and 2, in  such that (i) 1( e) ⊂ 1 and 2( e) ⊂ 2, and (ii) ( e) = 1( e)∪2( e).
Therefore, neither 1( e) nor 2( e) are essential implying that there are two nonempty,
open sets 1 and 2 with

1( e) ⊂ 1and 2( e) ⊂ 2

such that for all   0, there exists Ky Fan 1 and 2 in × (
e) such that

(1) ∩1 = ∅ and (2) ∩2 = ∅
Let 1 =  1 ∩1 and 2 =  2 ∩2. We have 1and 2 disjoint open sets such that

1( e) ⊂ 1 and 2( e) ⊂ 2 and for all   0, there exist

1 ∈ × (
e) ∩ S and 2 ∈ × (

e) ∩ S
such that

(1) ∩ 1 = ∅ and (2) ∩ 2 = ∅ (27)

Given that the sets () are compact, under [OSG], there exist open sets  1 and  2

such that for  = 1 2,

( e) ⊂   ⊂ 
 ⊂  .

Thus, we have for all   0,  ∈ × (
e) ∩ S such that

(1) ∩  1
= ∅ and (2) ∩  2

= ∅ (28)

Now we have a contradiction: First, because ( e) is a minimal essential set of ( e) and
because ( e) ⊂ £ 1 ∪  2

¤
, there exists a positive number ∗  0 such that for all Ky

Fan sets  ∈ × (
∗ e) ∩ S,

() ∩ £ 1 ∪  2
¤ 6= ∅. (29)
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But because   0 can be chosen arbitrarily, choosing  = ∗
3
, we have by (28) and the

3M property, the existence of a

 ∈ × (3
∗
3
 e) ∩ S = × (

∗ e) ∩ S
such that () ∩

h

1 ∪  2

i
= ∅. Q.E.D.

6 The Collective Security Mapping - the 

In this section we will no longer assume that  is fixed or that Φ() = .

With each ( )-game,

G() := {Φ() (  (· ·))}∈ , (30)

we can associate a Nikaido-Isoda function (Nikaido and Isoda, 1955) given by

(  ( )) := (  ( ))− (  ( ))

:=
P

∈ (  ( −))−
P

∈ (  ( −)),

⎫⎬⎭ (31)

for each ( ) ∈ Φ() × Φ(). We say that 0 ∈ Φ() is collectively secure against a
feasible defection profile, 0 ∈ Φ(), with player specific noncooperative player defections
given by, (0 

0
−), for players  = 1 2    , if and only if

(0 0) ∈ ( ) := {( ) ∈ Φ()×Φ() : (  ( )) ≤ 0}
Thus, for each one-shot game, G(Ω×L∞ ), satisfying assumptions [OSG], there is collective
security mapping - a  - given by

( ) −→ ( ) := {( ) ∈ Φ()×Φ() : (  ( )) ≤ 0} (32)

The collectively secure action mapping (i.e., the  action mapping) is given by,

 −→ ( )() := { ∈ Φ() : (  ( )) ≤ 0}  (33)

For each defection profile  ∈ Φ() with player specific defections of the form  =

( −), ( )() is the (closed) set of action profiles,  = ( −), in Φ() that
are collectively secure against potential noncooperative defections represented by profile,

. Note that if, given state-value function profile pair ( ),  is contained in ( )()

for all possible defection profiles  ∈ Φ(), that is, if
 ∈ ∩∈Φ()( )() (34)

then for each player ,  = ( −) is secure against any defection of the form  =

( −). Thus,  ∈ ∩∈Φ()( )() implies that
(  ( −)) ≤ (  ( −))

for all players, , and all pairs  = ( −) and  = ( −) - and conversely. Thus,
the set of Nash equilibria given state-value function profile pair ( ) can be fully char-

acterized as follows:

 ∈ N ( ) if and only if  ∈ ∩∈Φ()( )(), (35)

and therefore, the Nash correspondence is given by,

( ) −→ N ( ) = ∩∈Φ()( )() (36)

Under assumptions [OSG], the function, (· · (· ·)) which specifies for each ( ) ∈
Ω×L∞ a particular Nikaido-Isoda function has the following properties:
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(F1) for each , ( · (· ·)) is continuous on the compact metric space, L∞ × ( ×);

(F2) for each ( ( )), (·  ( )) is (Ω  )-measurable; and

(F3)  −→ (  (· )) is affine in  on .

For each state-value function profile pair ( ), the graph of the  action mapping,

( )(·), is given by

( )(·) := {( ) ∈ Φ()×Φ() : (  ( )) ≤ 0}. (37)

Thus, for any (0 0) ∈ ( )(·), strategy profile 0 ∈ Φ() is secure against defection
profile 0 ∈ Φ() and we have (  (0 0)) ≤ 0 Thus, for each ( ) ∈ Ω × L∞ , the
value of the  , ( ), is given by the graph of the  action mapping ( )(·) -
and we will show that ( ) = ( )(·) is a Ky Fan set. Thus, the  is given

by the Ky Fan set-valued mapping,

( ) −→ ( ) := ( )(·) ∈ S for all ( ) ∈ Ω×L∞ . (38)

Moreover, we will show that for each minimal, (·), the composition correspondence,
( ) −→ (( )), is upper Caratheodory and takes connected values.

Our main results regarding the collective security mapping are the following:

Theorem 6 (The collective security function, (· ·), is Ky Fan valued and
Caratheodory)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with , (·), and
CSF, (· ·). Then the following statements about the  , (· ·), and the collection
of minimal , [ ] are true:

(1) For each ( ) ∈ Ω×L∞ , ( ) is a Ky Fan set.
(2) For each minimal ,  ∈ [ ], ((· ·)), is upper Caratheodory (i.e., ((· ·))
is
¡
Ω ×L∞


-

¢
-measurable and for each , (( ·)) is ∗--upper

semicontinuous (i.e., for each ,  −→
∗

 and  −→


 with  ∈ (( )) for all 

implies that  ∈ (( ))).

Proof of (1): It is easy to see that for each  ∈ Φ() and  ∈ L∞ , ( ) ∈ ( ).

Thus Definition 1(a) holds. It is also easy to see that for all  ∈ L∞ and  ∈ Φ(),
( )() is closed, so that Definition 1(b) holds. To see that Definition 1(c) holds

observe that because (  (· )) is affine in ,  ∈ Φ() such that ( ) ∈ ( ) is

given by the set, { ∈ Φ() : (  ( ))  0}, and this set is convex (or empty).
Proof of (2): Let  be fixed and suppose that the sequence, {( )}, is such

that,  −→
∗

 and  −→


 with  ∈ (( )) for all . First, we have for each 

and any  ∈ Φ() that (  ( )) ≤ 0. Thus, in the limit, we have for any  ∈ Φ()
that ( 0 ( 0)) ≤ 0, implying that 0 ∈ (( 0)).

That ((· ·)) is ¡Ω ×L∞

-

¢
-measurable follows from Lemma 3.1 in Kucia and

Nowak (2000). Q.E.D.

Because all minimal USCOs, (·), belonging to a KFC, (·), are such that for each
Ky Fan set , () is a continuum of minimally essential Nash equilibria and because the

 , (· ·), is such that for each ( ), ( ) is a Ky Fan set, the upper Caratheodory
Nash sub-correspondence

( ) −→ (( ))
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is a continuum-valued. Thus, we have for any one-shot game, G(Ω×L∞ ), satisfying [OSG]
with Nash correspondence, N (· ·),  , (· ·), and , (·), that

((· ·)) ∈ UCΩ×L∞

- (),

with (( )) ⊆ N ( ) for all ( ) ∈ Ω × L∞ . It only remains to show that be-

cause the  Nash correspondence, N (· ·), contains a continuum-valued  Nash sub-

correspondence, ((· ·)), the Nash payoff selection correspondence,  −→ S∞ (P(· )) :=
S∞ ((· N (· ))), has fixed points.

Part III

A Fixed Point Theorem for Nash

Payoff Selection Correspondences

We are now ready to prove that all OSG satisfying the usual assumptions (i.e., as-
sumptions [OSG]) - and therefore all DSG satisfying the usual assumptions - have Nash
payoff selection correspondences having fixed points - implying that all such DSG have
stationary Markov perfect equilibria. We have shown that while all Nash payoff selec-

tion correspondences belonging to DSG satisfying the usual assumptions fail to be weak
star upper semicontinuous, nonetheless, all such correspondences contain selection sub-

correspondences which are approximable and have fixed points. The reason for this, as

we have shown here, is that all Nash payoff correspondences belonging to DSG satisfying
the usual assumptions have upper Caratheodory () players’ Nash payoff correspon-

dences that are made up of interval-valued  players’ Nash payoff sub-correspondences.

And this in turn is a consequence of the 3 property of minimal  - implying

that all DSG satisfying the usual assumptions have upper Caratheodory () Nash cor-
respondences that are made up of continuum-valued  Nash sub-correspondences. In

particular, for all such DSG the Nash payoff correspondence,

( ) −→ P( ) := (1( 1N ( ))     ( N ( )))

is made up of Nash payoff sub-correspondences,

( ) −→ ( ) := (1( 1 (( )))     (  (( ))))

where (·) is a continuum-valued minimal  and (· ·) is the game’s Ky Fan valued
 . Because ((· ·)) is continuum-valued and upper Caratheodory each player’s
induced  Nash payoff sub-correspondence, ( ) −→ (  (( ))), is closed

interval-valued - and therefore, is Caratheodory approximable.

In our last result, we prove that as a consequence of Caratheodory approximability

there exists ∗ ∈ L∞ such that ∗() ∈ ( ∗) a.e. [], or equivalently, that there exists
∗ ∈ L∞ such that ∗ ∈ S∞((· ∗)).

Theorem 7 (Nash payoff selection correspondences have fixed points)

Let G(Ω×L∞ ) be a one-shot game satisfying assumptions [OSG] with upper
Caratheodory Nash payoff correspondence, ( ) −→ P( ). Then there exists b ∈ L∞
such that b() ∈ P( b) a.e. [].
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Proof: By Theorem 6 above, we know that there is a continuum-valued, minimal

 Nash sub-correspondence, ( ) −→ (( )). Because ((· ·)) takes closed and
connected values, the induced  composition sub-correspondence,

( ) −→ ( ) := (1( )     ( ))

= (1(  (( ))     (  (( ))) := (  (( )),

⎫⎬⎭ (39)

is such that for each  = 1 2    , ( ) −→ ( ), takes closed interval values in

, implying via Corollary 4.3 in Kucia and Nowak (2000) that (· ·) is Caratheodory
approximable. Thus, there is a sequence of -tuples of Caratheodory functions,

{(· ·)} := {(1 (· ·)     (· ·))}, (40)

such that for each  and for each ( ) ∈ Ω × L∞ there exists for each , (  ) ∈
( ·) such that,

∗( 
) + (


 ( ) 


 ) 

1
· . (41)

Next, consider the mapping from L∞ to L∞ given by

 −→ () := (· ) := (1 (· )     (· )) ∈ L∞ . (42)

Observe that for each , (·) is continuous (i.e.,  −→
∗

∗ implies that () −→
∗

(∗)). This is true because for each   −→
∗

∗ implies that for each  ∈ Ω, as
 −→ ∞, ( ) −→


( ∗) ∈  . Therefore, for  ∈ L1 chosen arbitrarily,

( ) ()
® −→


h( ∗) ()i a.e. [], implying that as  −→∞,Z

Ω


( ) ()

®
() −→

Z
Ω

h( ∗) ()i ()

Since the choice of  ∈ L1 was arbitrary, we can conclude that if  −→
∗

∗, then

(· ) −→
∗

(· ∗) ∈ L∞ . By the Brouwer-Schauder-Tychonoff Fixed Point Theorem
(e.g., see Aliprantis-Border, 17.56, 2006), for each , there exists  ∈ L∞ such that

 = () := (· ). (43)

Thus, we have for each  a set, , of -measure zero such that

() = ( ) for all  ∈ Ω\, () = 0 (44)

Letting ∞ := ∪ - so that, (∞) = 0 - we have for each  = 1 2   and for each

 = 1 2    , that

 () =  ( 
) for all  ∈ Ω\∞, (∞) = 0 (45)

Call the equation (45), one for each , the Caratheodory equation and call the sequence,

{}, in L∞ the Caratheodory fixed point sequence

For each pair of -tuples of Caratheodory approximating functions and fixed points,

((· ·) ), consider the measurable function,

 −→ min()∈(·)[∗(
 ) + (


 ( 

) )], (46)
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By Lemma 3.1 in Kucia and Nowak (2000) the graph correspondence,  −→ ( ·),
is measurable, and therefore, by the continuity of the function

( ) −→ [∗(
 ) + (


 ( 

) )]

on L∞ × , there exists for each , a measurable (everywhere) selection of ( ·),

 −→ (  ) ∈ L∞ ×  (47)

solving the minimization problem (46) state-by-state (see Himmelberg, Parthasarathy,

and VanVleck, 1976). Moreover, we have by the Caratheodory approximability of 

Nash payoff sub-correspondence,

(· ·) := (1(· ·)     (· ·)),

and (41) above that for the sequences of optimal selections, {((·)  (·))},  = 1 2    ,
where for each  and for each ,  ∈ L∞ and  ∈ , we have for each  and for each

,

∗(
  )| {z }


+ (

 ( 

) )| {z }


 1
· . (48)

Given (44) and (48), we have for the sequences,

{(· ·) } and {(·)  (·)}  = 1 2    , (49)

that for all  ∈ Ω\∞, (∞) = 0, and for all ,

∗(
  ) + (


 () 


)| {z }



 1
· , (50)

where for each  and for each ,  −→  is L∞ -valued, while  −→  is -valued,

and

 := (

1     


) ∈ (1( 1 )     (  )) for all  ∈ Ω. (51)

Next, because (L∞  ∗) is a compact metric space we can assume without loss of

generality that the sequence of fixed points in L∞ , {}, -converges to some b ∈ L∞ ,
implying that  −→

∗
b and therefore implying via (48)A that  −→

∗
b uniformly in  and

 (see 7.4 in the Appendices for Komlos or -convergence and weak star convergence).

Moreover, by (50)C, we have that

b = 1


X
=1

 −→


b() a.e. [], (52)

where for each ,  ∈ ( 

 ) for all . By the properties of -convergence, for

each  = 1 2 3   , there is a set, b, of -measure zero such that for all  and for all

 ∈ Ω\ b as  −→∞

b+ = 1


X
=1

+ −→
b(),

and

b+ () = 1


X
=1

+ () −→


b().

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(53)
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Letting b∞ := ∪∞=1 b we have that for any  = 1 2 3   , that for each player the trun-

cated sequences, {+
(·) }∞=1 and {+ (·)}∞=1, have arithmetic mean sequences, {b+(·) }∞=1

and {b+ (·)}∞=1, converging pointwise to b(·) off the set b∞ of -measure zero where

the exceptional set b∞ is independent of .

Because ( ·) is ∗--upper semicontinuous and because for each ,  −→
∗

b
uniformly in  and , we have for each  and  and for any sequence of  = 1 2   ,

increasing to ∞, that there is a sequence {} increasing to ∞, such that for all  ≥
 the -open ball, 

( 1

 ( b)), about ( b) of radius 1


with closure given

by the closed, convex ball, 
( 1

 ( b)), about ( b) of radius 1


, is such that

for all  ≥  and  = 1 2   .

( 
(+)
 ) ⊂ 

(
1



 ( b)) ⊂ 
(
1



 ( b)) (54)

Moreover, for all  ∈ Ω\(∞ ∪ b∞),  ≥  , and  = 1 2   , we have for each 


+
 ∈ ( 

(+)
 ) ⊂ 

(
1



 ( b)). (55)

Because 
( 1

 ( b)) is closed and convex, and because

b+ ∈ 
(
1



 ( b)) for all  ∈ Ω\(∞ ∪ b∞),  ≥  , and  = 1 2    , (56)

the fact that for each , b+ −→


b() for each  ∈ Ω\(∞∪ b∞) and for each  ≥ 

as  = 1 2   , goes to ∞, implies that for each  and for all  ∈ Ω\(∞ ∪ b∞),
b() ∈ 

(
1



 ( b)) for all . (57)

Thus, as  −→∞ we have in the limit for each  and for each  ∈ Ω\(∞ ∪ b∞)
b() ∈ ( b). (58)

Thus, we have b = (b1     b) such that b() ∈ ( b) ⊂ P( b) a.e. []. Q.E.D.
Part IV

Stationary Markov Perfect Equilibria

for Discounted Stochastic Games

Having established that any Nash payoff selection correspondence belonging to a DSG
satisfying the usual assumptions has fixed points, it only remains to show that any such

fixed point, b = (b1     b) ∈ L∞ , incentivizes the emergence and persistence of a Nash
equilibrium in stationary Markov perfect strategies. But for this we need only note that

by implicit measurable selection (e.g., see Theorem 7.1 in Himmelberg, 1975), there exists

a profile, b(·) = (b1(·)     b(·)), of a.e. measurable selections of  −→ (( b)), such
that for each player  = 1 2    ,

b() = ( b b()) ∈ ( b (( b))) := ( b) a.e. [] (59)
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Thus, for each player , the state-contingent prices given by value function, b(·) ∈ L∞ ,
incentivizes the continued choice by each player , of action strategy, b(·), and we have
for the value function-strategy profile pair, (b b(·)) ∈ S∞()× S∞(), that

b() = ( b b()) ∈ ( b) and b() ∈ ( b) a.e. [], (60)

implying that b() ∈ P( b) and b() ∈ N ( b) a.e. []. (61)

Thus, for value function-strategy profile pair, (b b(·)), we have for each player  =
1 2     and for  a.e. [], that (b b(·)) satisfies the Bellman equation (1 below) as
well as satisfies the Nash condition (2 below),

(1) b() = (1− )( b() b−()) + 
R
Ω
b(0)(0| b() b−())

and

(2) (1− )( b() b−()) + 
R
Ω
b(0)(0| b() b−())

= max∈Φ()(1− )(  b−()) + 
R
Ω
b(0)(0|  b−())

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(62)

Thus, b(·) ∈ S∞(N) is a stationary Markov perfect equilibrium of a DSG satisfying
assumptions [OSG], incentivized by state-contingent prices, b ∈ S∞(P).
7 Appendices

7.1 Hausdorff Metric

Suppose ( ) is a compact metric space. Consider the hyperspace of nonempty, -

closed subsets  (). The distance from a point  ∈  to a set  ∈  () is given

by

 ( ) := inf0∈ ( 
0). (63)

Given two sets  and  in 2 , the excess of  over  is given by

 () := sup∈  ( ). (64)

Given two sets  and  in  (), the Hausdorff distance in  () between  and  is

given by

 () = max{ ()  ()} (65)

Often we will write  rather than  - when the underlying metric is clear.

7.2 Connectedness

A metric space  is said to be connected if and only if there does not exist disjoint open

subsets, 0 and 1 of  such that  = 0 ∪ 1. If  is a connected compact metric

space, it is a continuum. A product space  ×  is connected if and only if  and  are

connected. The importance of connectedness derives from the fact that the continuous

image of a connected space is connected - and the continuous image of a continuum is a

continuum. All continua in  are closed bounded intervals. We will denote by  () the

hyperspace of nonempty -closed and connected subsets of .
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7.3 Correspondences

7.3.1 Upper Caratheodory () Correspondences

Consider an upper Caratheodory (uC) correspondence,

N (· ·) : Ω×L∞ −→  (), (66)

jointly measurable in ( ) and upper semicontinuous in , taking nonempty  -closed

(and hence, -compact) values in . The uC correspondence, N (· ·), has graph

N (· ·) := N := {(  ) ∈ Ω×L∞ × :  ∈ N ( )}  (67)

Given  or , for  ⊂  define,

N− () := { ∈ L∞ : N() ∩  6= ∅}
and

N− () := { ∈ Ω : N() ∩  6= ∅}

⎫⎬⎭ (68)

where for fixed , N(·) := N ( ·), and for fixed , N(·) := N (· ). Finally, let

N−() := {( ) ∈ Ω×L∞ : N ( ) ∩  6= ∅} (69)

We have the following definitions (see Wagner, 1977). Given correspondence, N (· ·),
we say that,

(a) N(·) is weakly measurable (or measurable) if for all  open in , N− () ∈ Ω;

(b) N(·) is upper semicontinuous if for all  closed , N− () is closed in L∞ ;
(c) N (· ·) is product measurable (i.e., jointly measurable in  and ) if for all  open

in , N−() ∈ Ω ×L∞

.

(d) N (· ·) is upper Caratheodory if N (· ·) is product measurable and for each , N(·)
is upper semicontinuous.

Because  is a compact metric space and N(·) is closed valued, weak measurability
of N(·) implies that for each  N− () ∈ Ω for  closed in .

We will denote by,

N := {N ( ·) :  ∈ Ω}  (70)

the nonempty, -compact valued, upper semicontinuous part of N (· ·). Following the
terminology of Hola and Holy (2015), we will refer to N as the USCO part of N .
We will denote the measurable part of N (· ·), by

NΩ := {N (· ) :  ∈ L∞ }  (71)

For each state-parameter pair, ( ), the graphs of the USCO part and the measurable

part are given by,

N ( ·) := N := {( ) ∈ L∞ × :  ∈ N ( )} 
and

N (· ) := N := {( ) ∈ Ω× :  ∈ N ( )} .

⎫⎬⎭ (72)

Moreover, by Lemma 3.1(ii) in Kucia and Nowak (2000), the correspondence,  −→
N, is measurable.

We will denote the collection of all upper Caratheodory correspondences defined on

Ω×L∞ with nonempty, compact values in  by UCΩ×L∞

- ().
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7.3.2 USCOs

For compact metric spaces (L∞  ∗) and (), let UL∞ - () := U(L
∞
   ()) denote

the collection of all upper semicontinuous correspondences taking nonempty,  -closed

(and hence -compact) values in . Following the literature, we will call such mappings,

USCOs (see Crannell, Franz, and LeMasurier, 2005, Anguelov and Kalenda, 2009, and

Hola and Holy, 2009). A correspondence Ψ ∈ UL∞

- () is an USCO if and only if Ψ

is compact, where

Ψ := {( ) ∈ L∞ × :  ∈ Ψ()} 
Given any Ψ ∈ UL∞


- (), denote by UL∞ - ()[Ψ] the collection of all sub-USCOs be-

longing to Ψ, that is, all USCOs  ∈ UL∞

- () whose graph,

 := {( ) ∈ L∞ × :  ∈ ()} ,

is contained in the graph of Ψ. We will call any sub-USCO,  ∈ UL∞

- ()[Ψ] a minimal

USCO belonging to Ψ, if for any other sub-USCO,  ∈ UL∞

- ()[Ψ],  ⊆ 

implies that  = . We will use the special notation, [Ψ], to denote the collection

of all minimal USCOs belonging to Ψ. We know that for any USCO Ψ, [Ψ] 6= ∅ (see

Drewnowski and Labuda, 1990). In general, we say that  is a minimal USCO, if for

any other USCO  ∈ UL∞

- (),  ⊆  implies that  = . LetML∞


- ()

denote the collection of all minimal USCOs. The following characterizations of minimal

USCOs (gathered from Anguelov and Kalenda, 2009, and Hola and Holy, 2009) will be

useful later.

Characterizations of Minimal USCOs (Anguelov and Kalenda, 2009, and Hola and

Holy, 2009)

Suppose assumptions [OSG] hold. The following statements are equivalent:
(1) (·) ∈ UL∞


- () is a minimal USCO.

(2) If  ⊂ L∞ and  ⊂  are open sets such that () ∩  6= ∅, then there is a
nonempty open subset  of  such that ( ) ⊂  .

(3) If  ⊂ L∞ is an open set and  ⊂  is a closed set such that ()∩ 6= ∅ for each
 ∈  , then () ⊂  .

(4) There exists a quasi-continuous selection  of (·) such that  = .8

(5) Every selection  of (·) is quasi-continuous and  = .9

Finally, we say that an USCO, Ψ ∈ UL∞

- (), is quasi-minimal if for some  ∈

UL∞

- (), [Ψ] = {} (i.e., Ψ has one and only one minimal USCO). Let QL∞


- ()

denote the collection of all quasi-minimal USCOs. We will denote by

Ψ := { ∈ L∞ : Ψ() is a singleton}  (73)

the subset where Ψ takes singleton values. Under our primitives and assumptions, if

Ψ ∈ QL∞

- (), then by Lemma 7 in Anguelov and Kalenda (2009), Ψ is a residual set

- and in particular, a  set ∗-dense in L∞ .
8A function ∗ :  →  is quasicontinuous at 0 if for any   0 there exists a   0 such that inside

the open ball,  ( 
0), there is contained an open set,  , such that for all  ∈ 

∗() ∈  ( 
∗(0)).

9Note that if a function is continuous, it is automatically quasi-continuous.
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7.4 ∗-Convergence and -Convergence in L∞
A sequence, {} ⊂ L∞ , converges weak star to ∗ = (∗1(·)     ∗(·)) ∈ L∞ , denoted
by  −→

∗
∗, if and only if

Z
Ω

h() ()i () −→
Z
Ω

h∗() ()i () (74)

for all (·) ∈ L1 .
A sequence, {} ⊂ L∞ ,-convergences (i.e., Komlos convergence - Komlos, 1967) tob ∈ L∞ , denoted by  −→


b, if and only if every subsequence, {(·)},  {(·)} has

an arithmetic mean sequence, {b(·)}, where
b(·) := 1



X
=1

(·) (75)

such that b() −→


b() a.e. [] (76)

The relationship between ∗-convergence and -convergence is summarized via the fol-

lowing results which follow from Balder (2000): For every sequence of value functions,

{} ⊂ L∞ , and b ∈ L∞ the following statements are true:

(i) If the sequence {} -converges to b, then {} ∗-converges to b
(ii) The sequence {} ∗-converges to b if and only if

every subsequence {} of {} has a further subsequence, { },
-converging to b.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (77)

For any sequence of value function profiles, {} in L∞ it is automatic that



Z
Ω

k()k ()  +∞ (78)

Thus, by the classical Komlos Theorem (1967), any such sequence, {}, has a subse-
quence, {} that -converges to some -limit, b ∈ L∞ .
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