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Abstract

An important aspect of network dynamics that has been missing from our under-

standing of network dynamics in various applied settings is the influence of strategic

behavior in determining equilibrium network dynamics. Our main objective hear to

say what we can regarding the emergence of stable club networks - and therefore,

stable coalition structures - based on the stability properties of strategically deter-

mined equilibrium network formation dynamics. Because club networks are layered

networks, our work here can be thought of as a first work on the dynamics of lay-

ered networks. In addition to constructing a discounted stochastic game model (i.e.,

a  model) of club network formation, we show that (1) our  of network

formation possesses a stationary Markov perfect equilibrium in players’ membership-

action strategies and (2) we identify the assumptions on primitives which ensure that

the induced equilibrium Markov process of layered club network formation satisfies

the Tweedie Stability Conditions (2001) and that (3) as a consequence, the equilib-

rium Markov network formation processes generates a unique decomposition of the

set of state-network pairs into a transient set together with finitely many basins of

attraction. Moreover, we show that if there is a basin containing a vio set (a visited

infinitely often set) of club networks sufficiently close together, then the coalition

structures across club networks in the vio set will be the same (i.e., closeness across

networks in a vio set leads to invariance in coalition structure across networks in a

vio set).

Key words and phrases. club networks, stable coalition structures, networks as partial

functions, Harris recurrent sets, basins of attraction, discounted stochastic games, stationary

Markov perfect equilibria. equilibrium,

JEL Classification: C7



1 Introduction

A coalition is a group of players who, through their own actions, can realize some set

of outcomes for its own members (Wooders and Page, 2008). Here we will be inter-

ested in the equilibrium dynamics governing the formation and evolution of coalitions

as well as the strategic forces which give rise to these dynamics. We will think of a

coalition as a group of players belonging to the same club, and we will represent the

prevailing club membership structure as a labeled, directed bipartite network. Be-

cause we will allow each player to be a member of multiple clubs, each player can be

a member of multiple coalitions (see Page and Wooders, 2010).1 Each club network

consists of three primitives: a set of players, a set of clubs, and a set of arc labels. In

our network model, a player’s club membership is represented by a labeled directed

arc from the node representing the player to the node representing the club. The

arc label, which must be feasible for that player in that club, indicates the action

chosen by the player to be taken in the chosen club. Thus, a player establishes a

directed connection by choosing a club and a feasible club action. The set of all such

player-specific directed club connections is the player’s club network and together

the union of these player club networks constitute the club network. At each of infi-

nitely many time points players, in light of the prevailing state and club network, are

free to noncooperatively alter their club memberships as well as their corresponding

club action profiles in accordance with the rules of network formation. We will as-

sume that after players have altered their own club networks, each player receives a

stage payoff, a function of the prevailing state-network pair, then given the prevailing

state and the new club network chosen by the players, a new state is generated in

accordance with the law of motion. We will assume that players, in making their

membership-action choices through discrete time, seek to maximize the discounted

sum of their expected future payoffs. In particular, we will assume that players in

forming their club networks, play a discounted stochastic game of club network for-

mation in which they seek to choose stationary Markov perfect membership-action

strategies that maximize the discounted sum of their expected payoffs. Taken to-

gether, the players noncooperative network formation strategies (i.e., membership

and club specific action strategies) determine a network formation process. We say

that this process is an equilibrium network formation process if in the underlying

discounted stochastic game () of network formation players noncooperatively

choose stationary Markov perfect membership and club action strategies forming a

Nash equilibrium.

As an example, we consider the emergence of equilibrium market structure dynam-

ics (i.e., coalition structure dynamics).2 In our example,  firms (players) compete

via the nonlinear prices and product lines (i.e., the catalogs - here arcs) each firm

1The paper by Arnold and Wooders (2015), “Dynamic Club Formation with Coordination,” is

closely related our paper - but differs in two important respects: (i) in Arnold and Wooders players

are allowed to join only one club, whereas here we allow players to have multiple club memberships.

and (ii) in Arnold and Wooders players are myopic. whereas here players are farsighted in the sense

of discounted stochastic games.
2Here a coalition is a set of firms active in the same market (club). More on this below.
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offers (or abstains from offering) in each of  markets (clubs). Each firms knows the

consumer types populating a particular market only up to a conditional probability

measure.

Our main contributions, in addition to constructing a  model of layered club

network formation, are (1) to show that our  of network formation is approx-

imable, and that as a consequence, it possesses a stationary Markov perfect equi-

librium in players’ membership-action strategies; (2) to identify the assumptions on

primitives which ensure that the induced equilibrium Markov state and club network

formation process satisfies the Tweedie Conditions (2001) and; (3) to show that as

a consequence of satisfying the Tweedie Conditions, the equilibrium Markov perfect

network formation processes generates a unique decomposition of the set of state-

network pairs into a transient set together with finitely many basins of attraction.

We then show that each basin, upon which resides a unique ergodic probability mea-

sure, has the property that if the Markov state-network process enters the basin,

then the process will remain there for all future periods, visiting some unique, further

subset of state-network pairs infinitely often. From a macroscopic perspective, it is

these basin-specific club networks, visited infinitely often by the process (i.e., vio

sets), that form the set of viable candidates for stable equilibrium club network. We

show that if there is a basin having a vio set of states generating club networks each

of whose induced coalition structure is invariant across the networks generated by the

vio states, then this vio set of states generates club networks having a stable coalition

structure.3 This is what we mean by coalitional stability: persistent club network

structures in which the underlying coalition structure is invariant across club net-

works generated by the set of vio states. We show that whether or not the vio states

contained in a basin of attraction generate an invariant coalition structure depends on

the distance between the club networks generated by the vio states (i.e., depends on

the distance between the vio networks). In particular, we show that closeness (across

networks) leads to invariance in coalition structure across club networks. Thus, if

each of finitely many basins has network vio sets containing club networks that are

sufficiently close together (i.e., are densely packed), then the equilibrium Markov

process of club network formation will, in finite time with probability one, generate a

stable coalition structure. While the coalition structures generated by the vio states

in each basin are the same across the basin’s densely packed club networks, these

signature coalition structures can differ across basins. In the long run, whether or

not the equilibrium Markov process of network formation generates a stable coalition

structure depends on whether or not each basins network vio set is densely packed.

If all basin-specific network vio sets are sufficiently dense, then with probability 1 in

finite time, the equilibrium network formation process will arrive at a basin specific

stable coalition structure. However, if some basins have network vio sets in which

the club networks are not sufficiently close, while other basins possess densely packed

network vio sets, then in equilibrium, there is a positive probability that a stable

coalition structure will never be reached. What we conclude here is that, under mild

conditions on primitives, the conditions which guarantee the emergence of basins of

3vio stands for "visited infinitely often."
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attraction (i.e., the Tweedie conditions, 2001), also guarantee that each basin will

contain a densely packed club network vio set. Thus, in finite time with probability

1, there will emerge from the equilibrium process of club network formation, a basin

specific stable coalition structure.

Part I

Layered Club Networks

We begin with a formal definition of club networks and a discussion of their properties.

The discussion here is based, in part, on prior work by the second author with M.

Wooders (see Page and Wooders 2010, 2009, 2007, Wooders and Page 2008, and Page,

Wooders, and Kamat 2005). Multiple membership club networks, as defined in Page

and Wooders (2010), are examples of layered networks in which connections between

layers is brought about by overlapping club memberships. In a club network where

each player is the member of one and only one club, the induced club membership

structure partitions the set of active players, making each club layer isolated - having

no connections, via overlapping memberships, to other layers in the network.

In the club network model we construct here, the feasible action sets available to

the players who are active in a particular club layer are subsets of a compact metric

space of actions specific to that club layer - and these club specific action spaces

can differ across layers. In Page and Wooders (2010), the underlying metric space

of player actions - whose subsets form the various player feasible sets - is the same

across club layers. Here the heterogeneity of player action sets across club layers

makes defining a metric to measure the distance between club networks a much more

delicate task - but we do accomplish this, thereby providing us with a compact metric

hyperspace of club networks in which to carry out our game theoretic analysis of the

emergence of equilibrium layered club network dynamics.

We begin by defining connection, layers and networks.

2 Connections, Club Layers, and Partial Function Spaces

2.1 Connections

Assume the following:

(1)  is a finite set of players, consisting of  players, equipped with the discrete

metric , having typical element .
4

(2)  is a finite set of clubs, consisting of  clubs, equipped with discrete metric

 having typical element .

4Under the discrete metric the distance between two nodes  and 0 in  is given by

( 
0) :=


1 if  6= 0

0 if  = 0
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(3)  is the feasible set of arcs representing actions player d can take in club ,

where  is a weak star compact, metrizable, convex subset of the separable norm

dual, (∗  k·k∗), of a separable Banach space, ( k·k), equipped with a metric ∗
compatible with the weak star topology inherited from ∗ .

Two examples of weak star compact, metrizable, convex arc sets are (1)  :=

∆() the set of all probability measures defined on  a compact metric space of

pure actions that can be taken in club , and (2)  := L∞ the set of all -equivalence
classes of state-contingent contracts,  : Ω −→ , defined on a probability space of

states, (Ω Ω ), with contract payoffs in a convex, closed bounded set  ⊂ .

Here Ω is a Polish space of states, Ω is its Borel -field, and  is a probability

measure.

In a club network a connection is represented by an ordered pair, ( ( )), con-

sisting of an arc label  representing the player’s action choice and another ordered

pair ( ) - a player-club pair - indicating the club  player  has chosen to join.

Thus, in a club network a connection is given by

( ( )) ∈ × ( × ) (1)

We will often call ( ) a pre-connection, and we will often call the connection,

( ( )), a -connection. Finally, we will call the connection, ( ( )), a feasi-

ble connection provided the action, , chosen by player  is feasible for the club 

player  has chosen join. This will be the case if  ∈ , where the correspondence,

( ) −→ , is the feasible arc correspondence. We will assume that the feasible arc

correspondence, (··) takes nonempty values for all pre-connections ( ) ∈  × 

and that for each club , the correspondence  −→  takes nonempty, 
∗
-closed

(and hence ∗-compact) values in .

2.2 Club Layers (-Layers)

Club networks are networks layered by clubs. To understand precisely what this

means consider the set of -connections given by

 :=  × ( × {}). (2)

A -layer, , is a closed subset of -connections, . A club network is given by an

-tuple of -layers,

 := (1          ) ∈ 21×(×{1}) × · · · × 2×(×{}) × · · · × 2×(×{}).

Here, 2×(×{}) is the collection (or hyperspace) of all ∗-closed subsets of  ×
(×{}) - including the empty set (allowing for club  to have no members). Thus,

in a club network, layer  is either empty or is a nonempty, 
∗
-closed subset of

 :=  × ( × {}) such that ( ( )) ∈  if and only if  ∈  ⊂ .
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2.3 Player Layers (-Layers)

Letting  := × ({}× {}), we can further decompose a club network’s -layer
into the pieces of the -layer belonging to specific players. In particular, we have for

each  that the -layer,  ⊂ 2×(×{}), is given by an -tuple

 := (1          )

where  ⊂ ×({}×{}) is the piece of the -layer belonging to player . Letting
|| denote the cardinality of the set  (with the convention that || = 0 if

and only if  = ∅), we will assume that || ≤ 1 with || = 1 for some

 = 1 2    . Thus, if || = 1 then player  has one and only one connection

to club  - so that, player 0 piece of club layer  is given by  = {( ( ))} for
some  ∈ .

Formally, we have the following definition of a feasible club network,  ∈ K, as
an × array of feasible player-club connections.

Definition 1 (Feasible Club Networks, -Layers, -Layers, and Connection Arrays)

A feasible club network  ∈ K is an × array  of feasible player-club

connections given by

 :=

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 1 · · · 1
...

...
...

1 · · ·  · · · 

...
...

...

1 · · ·  · · · 

⎞⎟⎟⎟⎟⎟⎟⎠
×

where for each player-club pair, ( ),  ∈ K ⊂ 2×({}×{} is player 0 part
of -layer, , in club network , and where the hyperspace K of all such

( )-connections is such that  ∈ K if and only if

 =

⎧⎨⎩
{( ( ))} if  is a member of club  i.e., if ||= 1

∅ if  is not a member of club . i.e., if ||= 0

We will denote by K = (K) the hyperspace of feasible club network arrays
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where K = (K) is an array of feasible sets given by

K := (K)

:=

⎛⎜⎜⎜⎜⎜⎜⎝
K11 · · · K1 · · · K1
...

...
...

K1 · · · K · · · K

...
...

...

K1 · · · K · · · K

⎞⎟⎟⎟⎟⎟⎟⎠
×

:=

⎛⎜⎜⎜⎜⎜⎜⎝
· · · K1 · · ·

...

· · · K · · ·
...

· · · K · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
| {z }

rows represent feasible d-layers

:=

⎛⎜⎜⎝
...

...
...

K1 K K

...
...

...

⎞⎟⎟⎠
| {z }

columns represent feasible c-layers



⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Note that in addition to the full array representation of  ∈ K, there are two other
representations: the row representation where each row represents a -layer and the

column representations where each column represents a -layer. For  ∈ K, we have

 :=

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 1 · · · 1
...

...
...

1 · · ·  · · · 

...
...

...

1 · · ·  · · · 

⎞⎟⎟⎟⎟⎟⎟⎠
×

:=

⎛⎜⎜⎜⎜⎜⎜⎝
· · · 1 · · ·

...

· · ·  · · ·
...

· · ·  · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
| {z }
rows represent d-layers

:=

⎛⎜⎜⎝
...

...
...

1  

...
...

...

⎞⎟⎟⎠
| {z }
columns represent c-layers



⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

If we agree to the notational convention that  :=  so that now,

 =

⎧⎨⎩
{( ( ))} if  is a member of club 

∅ if  is not a member of club .

then club networks in K = (K) can be given a reduced form array representation
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- as an array of arc labels (without loss of information) - as follows:

 :=

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 1 · · · 1
...

...
...

1 · · ·  · · · 
...

...
...

1 · · ·  · · · 

⎞⎟⎟⎟⎟⎟⎟⎠
×

=

⎛⎜⎜⎜⎜⎜⎜⎝
· · · 1 · · ·

...

· · ·  · · ·
...

· · ·  · · ·

⎞⎟⎟⎟⎟⎟⎟⎠
| {z }

reduced form rows represent d-layers

=

⎛⎜⎜⎝
...

...
...

1  
...

...
...

⎞⎟⎟⎠
| {z }

reduced form columns represent c-layers



⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

The -layer in a club network  immediately above, given in reduced form by

 = (1     ) implicitly defines a coalition,  ⊂ , consisting of the members

of club  in network . Thus, player  is a member of coalition  if and only if

( ( )) ∈  and  ∈ . The coalition structure induced by club network  is

given by

 := (1     ) ∈ 2 × · · · × 2,
where 2 is the collection of all subsets of , including the empty set. For each

feasible club network,  ∈ K, we have  6= ∅ for at least one  = 1 2    .
In a club network, connections between layers are made through overlapping club

memberships. Without this, each club layer is isolated. For example, in layered

club network,  := ()∈ ∈ K, if  ∩ 0 6= ∅, then each player  ∈  ∩
0 is a member of club  as well as a member of club 0. In this way, layers 

and 0 are connected in network  := ()∈ . Note that if in club network,

, players are members of one and only one club then if the network has multiple

nonempty layers, then there are no connections between these layers - each layer is

isolated precisely because there are no overlapping club memberships. In this case,

the coalition structure induced by club network  given by

 := (1     ) ∈ 2 × · · · × 2, (6)

is a partition of the active club members - and players are siloed by their club mem-

berships.

2.4 Partial Function Spaces

2.4.1 The Domain of a -Layer

One way to think about the set of all possible networks making up each layer in a

club network is as a set of functions in which the domains of the functions differ

across the functions in the set. A set of functions with domains that differ across the

7



functions in the set is called a partial function space - unlike a regular function space,

where the domain of each function in the set is the same across functions in the set.5

In particular, it turns out to be very useful to view the layers in a club network as

being the graphs of functions from a partial function space. The usefulness of taking

this point of view becomes clear when we start decomposing networks into sections

(in the Cartesian product sense). Consider a nonempty -layer,

 ∈ K ⊂ 2 = 2×(×{})

in a feasible club network  ∈ K. Because  is a subset of the Cartesian product,

 × ( × {}), we can think of  as being the graph of a correspondence,

( ) −→ (),

where for ( ) ∈ D(), () is a nonempty ∗-closed subset of , given by,

() := { ∈  : ( ( )) ∈ }

But more importantly, under the assumptions we have made here, for ( ) ∈ D(),

() = {}, for some  ∈ . The set () is called the section of layer 

at pre-connection ( ) ∈  × {}. If ( ) is in the domain of the correspondence
(i.e., if ( ) ∈ D()), then () is a nonempty ∗-closed singleton subset of ,

otherwise, () is empty - indicating that in any network in which  ∈ 2 is

a layer, player  is not a member of club . We will call the correspondence (set-

valued function) induced by the layer, , the arc correspondence - and in this case,

a correspondence taking singleton values. Formally the domain, D(), and the

range, R(), of the arc correspondence, (· ·), induced by the nonempty -layer,

 ∈ 2 , are given by

D() := {( ) ∈  ×  : () 6= ∅} ⊂  × {}
and

R() := { ∈ ∗ () : () =  for some ( ) ∈  × {} 

⎫⎬⎭ (7)

Conversely, any set-valued mapping, ( ) −→ (), defined on a nonempty

subset of pre-connections,  ⊆  × {}, taking values in ∗ (), the hyperspace

of nonempty ∗-closed subsets of  uniquely identifies a nonempty -layer via the

graph of the (· ·) given by

 := {( ( )) ∈  :  ∈ ()} (8)

Denote by

U( ∗ ()) (9)

the collection of all arc correspondences, (·), with domain  ⊆  × {} (a pre-
network) and range contained in ∗ (). Thus, we have

5Because a collection of matrices of the same dimension can be used to represent the networks

from a space of networks having the same domain (i.e., the same set of pre—connections) this is not

the case for a partial function space of networks.
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(i) for nonempty club layer  ∈ 2 , the induced arc correspondence,

( )−→(), is contained in U( ∗ ()), where  := D(), and

(ii) for arc correspondence, ( ) −→ (), contained in U( ∗ ()),  is

nonempty and contained in 2 .

2.4.2 Domain Equivalences Classes

We say that another club network 0 ∈ K is in the same domain equivalence class

with  if the layers in  and 0 have the same domains - i.e., D(0) = D() for all

 ∈  and we write D(0) = D() Formally, the equivalence class of club networks
determined by feasible network  ∈ K is given by

KD() := {0 ∈ K : D(0) = D()} . (10)

We note that ( ) ∈ D() if and only if ( ) ∈ D().

2.5 Club Memberships and Coalition Structure

Recall from the discussion above that each feasible club network  ∈ K induces a

particular membership or coalition structure in the set of players. In particular, given

club network , the club membership of club  in network  is given by

 := { ∈  : ( ) ∈ D()}

and the coalition structure induced by club network  ∈ K is given by a profile,

 := (1     ) ∈ 2 × · · · × 2

Formally, we have the following definition.

Definition 2: (Coalition Structure Implied by a Club Network)

Given feasible club network  := (1     ) ∈ K, with induced arc
correspondence, ( ) −→ () ∈ 2 , the implied coalition structure is

 := (1     ) ∈ 2 × · · · × 2

where for  = 1 2    ,  is nonempty (i.e., club  has members in network

) if and only if ( ) ∈ D().

3 Measuring the Distance Between Club Networks

In order to analyze the co-evolution of strategic behavior, club network structure

and equilibrium dynamics, we require a topology for the space of club networks that

is simultaneously coarse enough to guarantee compactness of the set of networks

and fine enough to discriminate between differences across networks that are due to

differences in the ways nodes are connected (via differing arc types) versus differences

across networks that are due to the complete absence of connections. We resolve this
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topological dilemma by equipping the space club networks, K with the Hausdorff
metric  - making the space of feasible club network connection arrays, a compact

metric space.

It is easy to show that if the Hausdorff distance between any pair club networks

 and 0 is less than  ∈ (0 1), then the networks can differ only in the ways a given
set of player-club pairs are connected - and not in the set of player-club pairs that

are connected. In particular, if for networks  and 0 , (0)    1, then

( ( )) ∈  if and only if (0 ( )) ∈ 0

for arcs  and 0 with ∗( 
0)  . Thus, if two club networks are at -distance

   1, then both club networks  and 0 have the same coalition structures, i.e.,

 := (1     ) = (10      0) := 0 . (11)

Club networks which are close together - as measured by the Hausdorff metric - have

identical coalition structures. Such closeness will often occur and can only persist

in network vio sets belonging to basins of attraction generated by the equilibrium

dynamics governing the movements of club networks.

To begin, equip the set of -connections,  :=  × ( × {}), with the sum
metric,


:= ∗ +  +  . (12)

Thus, the distance between -connections, ( ( )) and (0 (0 )), is


(( ( )) (0 (0 ))) := ∗( 

0) + ( 
0) + ( ) = ∗( 

0) + ( 
0).

We will equip each hyperspace of -layers, 2 := 2×(×{}), with the Hausdorff
metric induced by the metric, 

, on the set of -connections. In defining the

Hausdorff metric  on 2
 , we must allow for empty -layers. For nonempty -

layer  ∈ 2 and connection ( ( )) ∈ , we define the distance from ( ( ))

to nonempty -layer 0 to be

(( ( )) 0) := min
(0(0))∈0


(( ( )) (0 (0 ))); (13)

and for -layers  6= ∅ 0 6= ∅, we define the excess of  over 
0
 to be

( 
0
) := max

(())∈

(( ( ))0) (14)

The Hausdorff distance between nonempty -layers,  and 0 is given by

( 
0
) = max

©
(

0
) (

0
 )

ª
(15)

while
(∅) := (∅ 

0
) = ()

and

(∅∅) = 0

⎫⎬⎭ (16)

10



The diameter, (), of the set of -connection is given by

()

:= max(0(0)) and (00(00)) in 


((0 (0 )) (00 (00 )))

⎫⎬⎭ (17)

Thus, the Hausdorff metric on the hyperspace of -layers, 2 , is given by

( 
0
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

©
( 

0
) (

0
)

ª
if  6= ∅ 0 6= ∅.

() if  6= ∅0= ∅ or = ∅ 0 6= ∅.

0 if = ∅ 0= ∅.
(18)

Given that the basic building block of a club network array is the hyperspace K

of feasible -connections belonging to player , with an underlying set of connections

given by  :=  × ({} × {}), and given that each player can take, at most one
action in each club, we see that the Hausdorff metric 

on K reduces to


( 

0
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∗( 

0
) if  6= ∅ and 0 6= ∅.

() if  6= ∅0= ∅ or = ∅ 0 6= ∅.

0 if = ∅ 0= ∅.
(19)

Recall that  ∈ K if and only if

 =

⎧⎨⎩
{( ( ))} if  is a member of club  i.e., if ||= 1

∅ if  is not a member of club . i.e., if ||= 0
(20)

The Hausdorff metric on the hyperspace of feasible club networks, K = (K),

is given by

(
0) :=

X
=1

X
=1


(

0
). (21)

For  := ()∈ and 0 := (0)∈ in
Y
∈

2 . Because ( 
) is a compact met-

ric space, we have by Proposition C.2 in Bertsekas and Shreve (1976) that (2  )

is a compact metric space of -layers, and because K is an 
-closed subset of the


-compact subset of 2 , K is 

-compact - implying that (K ), given by

(K ) = ((K)

X
=1

X
=1


) (22)

is a compact metric space.
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4 An Example of a Club Network - Marketing Networks

and Strategic Competition in Product Lines and Non-

linear Prices

Consider  firms engaged in strategic competition in  markets. Each firm, , at

various points in time, makes two decisions: (i) which markets,  , to enter, stay in,

or exit, and (ii) what catalog of products and prices,  , to offer in each new market

the firm decides to enter, as well as what changes, if any, to make in the catalogs

already being offered by the firm in the markets the firm has entered. Each firm

is characterized by a technology and hence a cost function associated with bringing

various catalog profiles to market and each market is characterized by a probability

measure over the preferences and income types of the consumers who populate each

market. Given the profile of market probability measures and the profile of cost

functions, profiles known to all firms, each firm can compute its expected payoff

generated by each profile of catalogs offered by firms. Referring to Figure 1, the

connections array for the marketing network depicted in Figure 1 is given by⎛⎜⎜⎜⎜⎝
(11 (11)) (12 (12))

(21 (21)) ∅
(31 (31)) ∅
(41 (41)) (42 (42))

∅ (52 (52))

⎞⎟⎟⎟⎟⎠
5×2



The 4-layer is given by the fourth row, ((41 (41)) (42 (42))), of the mar-

keting connections matrix, while the 2-layer is given by by the second column,

((12 (12))∅∅ (42 (42)) (52 (52)) of the marketing connections ma-

trix.

Is there a profile of firm-specific catalog strategies that will emerge and persist

under strategic catalog competition? This problem is a great example of a network

formation game over club networks (with -layers and -layers) - and in particular,

over a type of club network called a marketing network. In a marketing network,

each node representing a particular firm can initiate, alter, or eliminate a catalog

arc, labeled by the catalog  , from the node representing the firm, , to any node

representing a market,  , and each firm can initiate several such market-specific

catalog arcs, each running from the firm’s node to a specific market. Figure 1 depicts

12



just such a marketing network populated by 5 firms competing in 2 markets.

m2

a2

a1

a3

a1

a1

a3

a3

C12

m1

f2

f1

f3

f4

f5

C42

C52

C11 C21

C31

C41

Figure 1: Marketing Network 

In marketing network  depicted in Figure 1, firms 1 and 4 are in both markets,

1 and 2. Firm 1 offers catalog 11 in market 1 and catalog 12 in market 2,

while firm 4 offers catalog 41 in market 1 and catalog 42 in market 2. In a

marketing network, firms are players in the game of network formation, while the

market nodes (the club nodes) are passive, each characterized by a conditional prob-

ability measure over the consumer types who populate that market. The questions

posed above concerning which marketing networks and which marketing strategies

will emerge and persist can best be addressed by formulating the problem as a dis-

counted stochastic game of network formation over marketing networks, and then

by analyzing the stability properties of the resulting equilibrium Markov process of

network formation generated by players’ stationary Markov perfect equilibrium cat-

alog strategies in forming marketing networks. In this dynamic game of marketing

network formation, the  nodes representing firms are the players and the  nodes

representing the markets are passive. Marketing networks are examples of club net-

works. The coalition structure implied by marketing network  in Figure 1 is given

by {1  2} where

1 := {1 2 3 4}| {z }
D(1) = domain of 1-layer

and 2 := {1 4 5}| {z } .
D(2 ) = domain of 2-layer

Thus, the firms in 1 compete in market 1 while the firms in 2 compete in

market 2. The -layer decomposition of marketing network , allows us to see the

form this strategic competition takes by detailing for us the catalogs (product lines

and prices) the competing firms in 1 and 2 offer in the markets in which they

13



compete.

The 1-Layer

{(11 (11)) (21 (21) (31 (31)) (41 (41))}

The 2-Layer

{(12 (12)) (42 (42)) (52 (52))}
-Layer Decomposition of Marketing Network 

The -decomposition of marketing network  is more granular and allows us to see

what catalog strategies individual firms use to compete in each of the markets where

they are present.

The 1-Layer: {(11 (11)) (12 (12))}.
The 2-Layer: {(21 (21))}.
The 3-Layer: {(31 (31))}.

The 4-Layer: {(41 (41)) (42 (42))}.
The 5-Layer: {(52 (52))}.

-Decomposition of Marketing Network 

Is there a stable profile catalog strategies which firms can implement in their strategic

competition in these two markets? This question will be answered if we can show

that equilibrium marketing network dynamics which emerge from the strategic com-

petition of these firms, modeled here as a discounted stochastic game of marketing

network formation, generate a marketing network or set of marketing networks which

emerge and persist through time.

Part II

Discounted Stochastic Games of Club

Network Formation

In order to address the questions of whether or not and under what conditions the

strategic formation of club networks will lead to the emergence of dynamically stable

coalition structures, we must show that our discounted stochastic game () of

club network formation possesses Nash equilibria in stationary Markov perfect be-

havioral club network formation strategies. It is the players’ equilibrium behavioral

network formation strategies which determine the equilibrium dynamics of club net-

work formation. By identifying conditions under which stationary Markov perfect

equilibria (SMPE) exist in such behavioral strategies and by showing that the re-

sulting equilibrium club network dynamics are stable, we will be able to establish

the conditions under which stable coalition structures will emerge and persist in the

form of stable club networks. In this section we will construct a  model of club

network formation and show that our model possess SMPE in behavioral club net-

work formation strategies. The SMPE existence problem in the setting considered
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here (with uncountable states and compact metric action spaces) is quite difficult

and its solution - and counterexamples - are of independent interest (for details see

Levy 2013, Levy and McLennan 2015, Fu and Page 2022, and Page 2015, 2016).

An -player, non-zero sum, discounted stochastic game, , over the convex,

weak star compact, metric product space of probability measures over player club

networks (i.e., the convex, compact metric space of behavioral actions),

(∆(K) ∗) := (
Y


∆(K)
X


∗ ), (23)

is given by the following primitives:

 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(Ω Ω )| {z }
state space


n³
∆(K)∆(Φ())  (  ·)

´
∈

o
()| {z }

collection of one-shot games

 (·| ·)| {z }
law of motion

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 

(24)

where Ω is the state space, Ω is the Borel -field of events, and  is a probability

measure. For each player , K is the set of all possible player club networks available

to player , while ∆(Φ()) is the convex, compact feasible set of behavioral action

available to player  in state . A feasible behavioral action available to player 

in state  is a probability measure  ∈ ∆(K) with support contained in Φ()

(i.e.,  ∈ ∆(Φ()) if and only if (Φ()) = 1). Finally,  ∈ (0 1) is player 0
discount rate and (  ·) is player 0 payoff function in state  given valuations
(or prices) , and (·| ·) is the law of motion in state . If players holding value
function profile  = (1     ) choose feasible profile of behavioral actions,

 = (1     ) ∈ ∆(Φ1())× · · · ×∆(Φ()) = ∆(Φ()) (25)

in state , then the next state 0 is chosen in accordance with probability measure
(·|) ∈ ∆(Ω) and player 0 stage payoff is given by

(  ) :=
R
K

£
(1− )() + 

R
Ω
(

0)(0|)¤(())
:=
R
K (  )().

⎫⎬⎭ (26)

Here () := (1(
1)     (

)) := ⊗=1() is the product probability

measure representing the random club network determined by the -tuple of random

player club networks, (1(
)     (

)), chosen by the players.

We will denote by, G() := (∆(Φ()) (  ·))∈, the -player ( )-game
in state  underlying the  when players hold valuations (or state-contingent

prices),  := (1     ).

5 Primitives and Assumptions

We will maintain the following assumptions throughout. Label these (i.e., assump-

tions (1)-(18) below) as [A-1]:
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(1)  = the set of players, consisting of  players indexed by  = 1 2     and

each having discount rate given by  ∈ (0 1).
(2) (Ω Ω ), the state space where Ω is a complete separable metric spaces with

metric Ω, equipped with the Borel -field, Ω, upon which is defined a nonatomic

probability measure, .6

(3)  := 1× · · · × , the space of players’ payoff profiles,  := (1     ), such

that for each player ,  := [− ] and is equipped with the absolute value

metric, ( 
0
) := | −  0| and  is equipped with the sum metric,

 :=
P

 .

(4) K := K1 × · · · ×K the set of player pure action profiles,  := (1     ),

where for each player ,  is player 0 club network and where K is a compact

metric space player club networks with typical element, , equipped with metric,

∗K , and K is equipped with the sum metric, ∗K :=
P

 
∗
K 

(5) ∆(K) is the space of all probability measures, , with supports contained in

player 0 set of club networks, K, equipped with the compact metrizable weak star

topology (a topology denoted by ∗) inherited from (K), the Banach space of

finite signed Borel measures on K with the total variation norm.7 We will equip

∆(K) with a metric, ∗ , compatible with the relative ∗-topology on ∆(K)

inherited from (K) and we will refer to  as player 0 random player club

network.

(6) ∆(K) := ∆(K1)× · · · ×∆(K), the space of player behavioral action profiles,

 := (1     ), equipped with the sum metric, ∗ :=
P

 ∗ , a metric

compatible with the relative ∗- product topology on ∆(K) inherited from (K).
(7)  −→ Φ(), is player 0 measurable action constraint correspondence, defined
on Ω taking nonempty ∗K-closed (and hence ∗K-compact) network values in K

.

(8)  −→ Φ() := Φ1()× · · · ×Φ(), players’ measurable action profile
constraint correspondence, defined on Ω taking nonempty ∗K-closed (and hence
compact) network values in K
(9)  −→ ∆(Φ()), is player 0 measurable behavioral action constraint
correspondence, defined on Ω taking nonempty ∗-closed (and hence ∗-compact),
convex random network values in ∆(K), containing all probability measures, (),

with supports contained in player 0 feasible set of actions, Φ() ⊂ G, in state .

(10)  −→ ∆(Φ()) := ∆(Φ1())× · · · ×∆(Φ()), players’ measurable behavioral
6Note that the -field, Ω is countably generated. All the results we present here remain valid if

instead we assume that Ω is an abstract set, but one equipped with a countably generated -field.

We say that ⊂Ω is an atom of Ω relative to (·) if the following implication holds: if ()  0,

then  ⊂  implies that () = 0 or (−) = 0. If Ω contains no atoms relative to (·), Ω is

said to be atomless or nonatomic. Because Ω is a complete, separable metric space (·) is atomless
(or nonatomic) if and only if ({}) = 0 for all  ∈ Ω (see Hildenbrand, 1974, pp 44-45).

7Recall that the support of (a regular Borel) probability measure, ∈ ∆(K), is the unique

closed subset, , of K such that (K
\) = 0, with the property that for any open set

E ⊂ K such that

E ∩  6= ∅
(E

 ∩ )  0. Also, note that (K) is a locally convex Hausdorff topological vector space

with ∆(K) a convex, ∗
-compact subset of (K).
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action profile constraint correspondence, defined on Ω taking nonempty ∗-closed
(and hence ∗-compact), convex values in ∆(K)
(11) L∞, the Banach space of all -equivalence classes of measurable (value)
functions, (·) defined on Ω with values in  a.e. [], equipped with metric ∗



compatible with the weak star topology inherited from L∞ .8
(12) L∞ := L∞1 × · · · × L∞ ⊂ L∞, the Banach space of all -equivalence classes

of measurable (value) function profiles, (·) := (1(·)     (·)), defined on Ω with
values in  a.e. [], equipped with the sum metric ∗ :=

P
 ∗

compatible with

the weak star product topology inherited from L∞ .

(13) S∞(∆(Φ(·))), the set of all -equivalence classes of measurable functions
(selections), (·) ∈ L∞

∆(K) defined on Ω such that in () ∈ ∆(Φ()) a.e. [],
and

S∞(∆(Φ(·))) = S∞(∆(Φ1(·)))× · · · × S∞(∆(Φ(·))) (27)

the set of all -equivalence classes of measurable profiles (selection profiles),

(·) = (1(·)     (·)) ∈ L∞
∆(K), defined on Ω such that in

() ∈ ∆(Φ()) := ∆(Φ1())× · · · ×∆(Φ()) a.e. [].
(14) (· ·) : Ω×K −→  is player 0 Caratheodory stage payoff function (i.e., for
all () ∈ Ω×K, ( ·) is ∗K-continuous on K and (· ) is
(Ω )-measurable on Ω).

(15) (·|· ·) : Ω×K −→ ∆(Ω) is the law of motion defined on Ω×K taking values

in the space of probability measures on Ω, having the following properties: (i) each

probability measure, (·|), in the collection
(Ω×K) := {(·|) : () ∈ Ω×K}

is absolutely continuous with respect to  (denoted (Ω×K)  ), (ii) for each

 ∈ Ω, (|· ·) is measurable on Ω×K, (iii) the collection of probability density
functions,

 := {(·|) : () ∈ Ω×K} , (28)

of (·| ) with respect to  is such that for each state , the function

 −→ (0|) (29)

is ∗K-continuous in  a.e. [] in 0
(16) L∞

(K) is the Banach space of -equivalence classes of (K
)-valued, Bochner

integrable functions equipped with the weak star topology, denoted  ∗
 topology.

(17) L∞
∆(K) is the nonempty, convex, weak star compact and metrizable subset of

-equivalence classes of ∆(K)-valued, Bochner integrable functions (·) with
8L∞ is the Banach space of -equivalence classes of -essentially bounded functions,  : Ω −→ 

with norm

kk∞ := [] := inf { ∈  : { : |()|  } = 0} .
The space of -equivalence classes of functions L∞ is the separable norm dual of the space of -

equivalence classes of -integrable functions, L1. Because the Borel -field Ω is countably gener-

ated, L1, is separable. As a consequence, the subset of value function -equivalence classes, L∞ , is
a compact, convex, and metrizable subset of L∞ for the weak star topology.
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() ∈ ∆(K) a.e. [], We will equip L∞
∆(K) with a metric, ∗


, compatible with

the  ∗
 topology on L∞∆(K) inherited from L∞

(K).
9

(18) L∞
∆(K) := L∞∆(K1) × · · · × L∞∆(K) is the set of all -equivalence classes of

strategy profiles, equipped with the sum metric,

∗

:= ∗1


× · · · × ∗


.

6 Comments on Primitives and Assumptions

6.1 Weak Star Convergence of Random Player Club Networks

Under the metric, ∗ , compatible with the relative 
∗
 -topology on ∆(K

), we have

 −→

∗

∗ if and only if
Z
K

()(
) −→

Z
K

()∗(
) for all (·) ∈ C(K),

(30)

where C(K) is the Banach space of continuous functions defined on the compact

metric space, K, with the sup norm. In fact, there exists a countable subcollection

of continuous functions, C0(G), such that

 −→

∗

∗ if and only if
Z
K

()

() −→

Z
K

(
)∗(

) (31)

for all (·) ∈ C0(K) (e.g., see Aliprantis and Border, 2006, Chapter 15).

By Theorem 3.2 in Billingsley (1968), we know that

 = 1⊗· · ·⊗ −→
∗

∗1⊗· · ·⊗∗ = ∗ if and only if for each player  −→
∗

∗

(32)

Thus a sequence of behavioral action profiles ∗-converges to a particular behavioral
action profile if and only if each player’s sequence of behavioral actions ∗ -converges
to a particular behavioral action such that the ∗-limit of behavioral action profiles
is equal to the product of the ∗ -limits of players’ behavioral action sequences.
Unfortunately, the mapping ((·) −(·)) −→ (((·) −(·))) is not jointly ∗


-

continuous. A good example of the failure of joint ∗

-continuity can be found in

Elliott, Kalton, and Markus, 1973, Example 3.16.

6.2 Weak Star and -Convergence of Value Functions

A sequence, {} ⊂ L∞ , converges weak star to ∗ = (∗1(·)     ∗(·)) ∈ L∞ ,
denoted by  −→

∗
∗, if and only ifZ

Ω

h() ()i () −→
Z
Ω

h∗() ()i ()

9We will denote by ∞
∆(K) the prequotient of L∞∆(K) (i.e., the set of all ∆(K)-valued, Bochner

integrable functions (·) with () ∈ ∆(K) a.e. []).
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for all (·) ∈ L1 .

A sequence, {} ⊂ L∞ , -convergences (i.e., Komlos convergence - Komlos,
1967) to b ∈ L∞ , denoted by  −→


b, if and only if every subsequence, {(·)},

 {(·)} has an arithmetic mean sequence, {b(·)}, where
b(·) := 1



X
=1

(·)

such that b() −→


b() a.e. []
The relationship between ∗-convergence and -convergence is summarized via the

following results from Balder (2000): For every sequence of value functions, {} ⊂
L∞ , and b ∈ L∞ the following are statements are true:

(i) If the sequence {} -converges to b, then {} ∗-converges to b
(ii) The sequence {} ∗-converges to b if and only if

every subsequence {} of {} has a further subsequence, { },
-converging to b.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(33)

For any sequence of value function profiles, {} in L∞ it is automatic that



Z
Ω

k()k ()  +∞

Thus, by the classical Komlos Theorem (1967), any such sequence, {}, has a
subsequence, {} that -converges to some -limit, b ∈ L∞ .
6.3 Strong Stochastic Continuity of the Law of Motion

Under the stochastic continuity assumptions made above, [A-1](14), we have by Schef-

fee’s Theorem (see Billingsley, 1986, Theorem 16.11) that for each  ∈ Ω,

sup∈B(Ω) |(|)− (|∗)|

≤ R
Ω
|(0|)− (0|∗)| (0) −→ 0

⎫⎬⎭ (34)

for any sequence of networks {} in Φ() converging to network ∗ ∈ Φ() (i.e.,
for each  ∈ Ω the conditional density mapping,  −→ (·|), is continuous in
1 norm with respect to ). Thus, by Scheffee’s Theorem the 1 norm continuity

of  −→ (·|) with respect to networks  in each state  is equivalent to the

continuity of  −→ (|) in each state  with respect to networks  uniformly

in  ∈ Ω (i.e., for each  ∈ Ω, (| ·) is continuous in  uniformly with respect

to  ∈ Ω).
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6.4 Convergence and Continuity

Under assumptions [A-1], for each ( ) each player’s payoff function,

 −→ (  ) := (1− )() + 

Z
Ω

(
0)(0|) (35)

is jointly continuous in  = (1    ), and for any sequence of value function-

network pairs, {( )}, if  −→
∗

∗ and  −→


∗ then for each ,

(  ) −→


( ∗ ∗),

(i.e., ( · ·) is jointly continuous in ()). Moreover, for each , the -parameterized
collection of -tuples of integrands given by

{(  ·) :  ∈ L∞ } , (36)

where (see expression 35 above),

 −→ ( ) := (1( 1 )     (  )) (37)

is uniformly equicontinuous (see Solan, 1998, Lemma 3.6).10 Thus, the  -valued

players’ payoff function, (· · ·), is a Caratheodory function: ∗× -continuous in
() for each , and (Ω  )-measurable in  on Ω for each ().

7 StationaryMarkov Perfect Equilibria in Club Network

Formation Strategies

Let  be a discounted stochastic game of club network formation satisfying as-

sumptions [A-1] above, with one-shot game,

GΩ×L∞

:= {

³
∆(K)∆(Φ()) (  ·)

´

}()∈Ω×L∞


 (38)

Definition 3 (Nash Equilibria in Behavioral Strategies):

A feasible profile of probability measures over player club networks,

∗ := (∗1     
∗
) ∈ ∆(Φ()) is said to be a Nash equilibrium of the one-shot

network formation game,(∆(Φ()) (  ·)), provided that for each player ,

(  
∗
 

∗
−) = max

∈∆(Φ())
(   

∗
−) (39)

10The collection,

{(  ·) :  ∈ L∞ } 
is uniformly equicontinuous if for any   0 there is a   0 such that for any  and 0 in Φ() with

(
0)  ,

 (( ) ( 
0
))  ,

for all  ∈ L∞ .
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Denote by N ( ) the set of all Nash equilibria belonging to
(∆(Φ()) (  ·)), and by P( ) the set of all Nash equilibria payoffs
belonging to (∆(Φ()) (  ·)). Thus

P( ) := { ∈  :  = (  ) for some  ∈ N ( )}

:= ( N ( ))

⎫⎬⎭ (40)

Under assumptions, [A-1], we know that N ( ) is nonempty and ∗-compact

and therefore we know that P( ) is nonempty and  -compact. Moreover, ap-

plying optimal measurable selection results (e.g., Himmelberg, Parthasarathy, and

vanVleck, 1976) and Berge’s Maximum Theorem (e.g., see 17.31 in Aliprantis and

Border, 2006), we can show that the Nash correspondences, N (· ·) and P(· ·), are
upper Caratheodory (also, see Proposition 4.2 in Page, 1992). In particular, the

Nash correspondence, N (· ·), is jointly measurable in ( ) and N ( ·), is upper
semicontinuous in  for each , and the Nash payoff correspondence, P(· ·), is jointly
measurable in ( ) and P( ·), is upper semicontinuous in  for each .

Let UCΩ×∗- denote the collection of all upper Caratheodory (uC) correspon-

dences defined on Ω × L∞ taking nonempty closed values in  . Also, let U∗-
denote the collection of all upper semicontinuous correspondences defined on L∞
taking nonempty closed (and hence compact) values in  . Following the literature,

correspondences contained in U∗- are often called USCOs (see Hola and Holy, 2015).
Also, let U∗−∆(K) denote the collection of all USCOs taking nonempty, ∗-

closed (and hence ∗-compact) values in ∆(K). Given any Ψ ∈ U∗-∆(K), denote byU∗-∆(K)[Ψ] the collection of all sub-USCOs belonging to Ψ, that is, all USCOs  ∈
U∗−∆(K) whose graph,

 := {( ) ∈ L∞ ×∆(K) :  ∈ ()} ,
is contained in the graph of Ψ,

Ψ := {( ) ∈ L∞ ×∆(K) :  ∈ Ψ()} .
We will call any sub-USCO,  ∈ U∗-∆(K)[Ψ] a minimal USCO belonging to Ψ, if for
any other sub-USCO,  ∈ U∗-∆(K)[Ψ],  ⊆  implies that  = . We will

use the special notation, [Ψ], to denote the collection of all minimal USCOs belonging

to Ψ. We know that for any USCO Ψ, [Ψ] 6= ∅ (see Drewnowski and Labuda, 1990).
In general, we say that  is a minimal USCO, if for any other USCO  ∈ U∗-∆(K),
 ⊆  implies that  = . Let M∗-∆(K) denote the collection of all

minimal USCOs.

8 Connected-ValuedMinimal uCNash Correspondences

and Equilibrium Value Functions

Let UCΩ×∗-∆(K) denote the collection of all upper Caratheodory mapping defined
on Ω× L∞ taking nonempty ∗-closed (and hence ∗-compact) values in ∆(K).
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For N (· ·) ∈ UCΩ×∗-∆(K), let
UCN := UCΩ×∗-∆(K)[N (· ·)] (41)

denote the collection of all upper Caratheodory mappings, (· ·), belonging to N (· ·).
Thus, (· ·) ∈ UCN if and only if (· ·) ∈ UCΩ×∗-∆(K) and

( ·) ⊂ N ( ·) for all 
We will be interested in sub-uC-mappings, (· ·) ∈ UCN , with the property that for
each , ( ·) is a minimal USCO belonging to N ( ·). Already we know that for
each , [N ( ·)] is nonempty (e.g., see Drewnowski and Labuda, 1990). By Theorem
1 in Fu and Page (2022) we know that the uC mapping, N (· ·), contains a sub-uC-
mapping, (· ·), such that for each , ( ·) is a minimal USCO belonging to N ( ·).
We call any such sub-uC correspondence a minimal uC, and we denote by,

MUCN := ©(· ·) ∈ UCN : ( ·) ∈ [N ( ·)] for all ª , (42)

the collection of minimal uCs belonging to N (· ·) ∈ UCΩ×∗-∆(K).
Let (∆(K)) denote the hyperspace of nonempty, ∗-closed (and hence ∗-

compact) and connected subsets of ∆(), and denote by MUCN(∆(K)) the collec-
tion of all minimal uC Nash correspondences belonging to N (· ·) talking continuum
(i.e., nonempty, ∗-compact and connected) values in ∆(K). For any minimal uC
Nash correspondence, (· ·), taking continuum values in ∆(K) (i.e., for any (· ·) in
MUCN(∆(K))), each player  has an induced Nash payoff subcorrespondence,

( ) −→ ( ) := (  ( )), (43)

taking closed bounded interval values in , and therefore, contractible values, in

 (the image of a connected set under a continuous function is connected - and

connected sets in the interval  = [− ] are intervals and in this case closed

intervals in ). By Theorems 5.6 and 5.12 in Gorniewicz, Granas, and Kryszewski

(1991), for each , the USCO part of each player’s Nash payoff subcorrespondence,

 −→ ( ), is approximable, and therefore, by Theorem 4.2 in Kucia and Nowak

(2000), for each   0 each player’s Nash payoff subcorrespondence, (· ·), has an
-approximate Caratheodory Selection, ( ) −→ ( ). Thus, for each   0 and

for each ( (·)·) ∈ L∞ × L∞ with  = ( ) for all  there exists (
 

(·)) ∈
L∞ ×L∞ with  ∈ ( 

) for all  such that for all 

∗( 
) + ( 


)  . (44)

Thus, for the game’s Nash payoff subcorrespondence there is a sequence of ap-

proximate Caratheodory Selections, {(· ·)} where for each , the Caratheodory

function, ( ) −→ ( ) := (1 ( )     

( )), is such that for each  =

1 2 3    and for each ( (·)) ∈ L∞ × L∞ with  = ( ) for all  there exists

( 
(·)) ∈ L∞ ×L∞ with  ∈ ( ) for all  such that for all 

∗( 
) +  ( 


) 

1


. (45)
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9 Existence of Stationary Markov Perfect Equilibria

The question of whether or not our discounted stochastic game of club network forma-

tion has a Nash equilibrium in stationary Markov perfect network formation strategies

is a very difficult question - but one which we will answer here in the affirmative. We

know from Blackwell’s seminal 1965 paper on dynamic programming that our club

network formation  will have stationary Markov perfect equilibria () if

and only if the Nash payoff selection correspondence,  −→ S∞(P ), belonging to

the 0 underlying one-short game,

G(Ω×L∞ ) :=
n³
∆(K)∆(Φ())  (  ·)

´
∈

o
()∈Ω×L∞



,

has fixed points. Because S∞(P (·)) is not convex valued nor closed valued nor upper
semicontinuous in the appropriate topology (in this case the weak star topology in

L∞ ) this fixed point question (or equivalently, the SMPE existence question) has

been an open question since the 1976 paper by Himmelberg, Parthasarathy, Ragha-

van, and VanVleck on -equilibria in uncountable-compact .11 Our approach

to resolving this  existence question is new. Fu and Page (2022) have show,

under the usual assumptions specifying a  (see for example, Nowak and Ragha-

van, 1992) that because the upper semicontinuous (USCO) part, N ( ·), of the
uC Nash correspondence, N (· ·), is made up of strands of minimally essential Nash
equilibria given by a minimal upper semicontinuous correspondence, ( ·), taking
continuum values, the 0  Nash payoff correspondence, P( ·), is made up of
Nash payoff strands given by upper semicontinuous sub-correspondences, ( ·), tak-
ing contractible values for each player. As a consequence, the 0  Nash payoff
subcorrespondence, (· ·), is Caratheodory approximable (i.e., for any   0 has an

-approximate Caratheodory selection). We will show here that if our club network

formation  has a Caratheodory approximable Nash payoff subcorrespondence (a

fact established in Fu and Page, 2022), then our  has a Nash payoff selection

correspondence with fixed points - further implying that our club network forma-

tion  has a Nash equilibrium in stationary Markov perfect network formation

strategies. Thus here we will confirm that, under the usual assumptions specifying a

discounted stochastic game (in this case a club network formation ), while the

0 Nash payoff selection may be badly behaved, nonetheless, it naturally pos-
sesses (without additional assumptions) subcorrespondences which are sufficiently

well behaved (i.e., approximable) so as to have fixed points. He and Sun (2017), by

making an additional assumption (that the  is G-nonatomic or has a coarser
transition kernel) guarantee that that 0 Nash payoff selection correspondence
has a convex valued subcorrespondence - and therefore an approximable subcorre-

spondence.12 Moreover, He and Sun (2017) show that Duggan (2012) accomplishes

11An uncountable-compact  is a game in which the state space is uncountable and the players’

action choice sets are compact metric spaces. An uncountable-finite  is a game in which the state

space is uncountable and the players’ action choice sets are finite - a special case of an uncountable-

compact .
12 In our club network formation model, we have assumed that the state space is a Polish space, Ω

equipped with the Borel -field, Ω, and a probability measure, , defined on Ω. Also, recall that
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the same thing by assuming that the has a noisy state. In the negative direction,

Levy (2013) and Levy and McLennan (2015) construct counterexamples showing that

not all uncountable-finite  have stationary Markov perfect equilibria. They ac-

complish this by constructing counterexamples in which the Nash correspondences

are not approximable - which follows from the fact that in their counterexamples,

there is an absence of fixed points. Because the club network formation  we

analyze here is approximable, we avoid the Levy-McLennan counterexamples.

We state our main existence result here and refer the reader to Fu and Page (2022)

for details and proofs.

Theorem 1 (All nonatomic  satisfying [A-1] have SMPE in behavioral

strategies):

Let

 :=

½
(Ω Ω ) 

n³
∆(K)∆(Φ())  (  ·)

´
∈

o
()∈Ω×L∞



 (·| ·)
¾

be a discounted stochastic game of club network formation satisfying assumptions

[A-1], with uC Nash correspondences, N (· ·) and P(· ·).
If  is nonatomic, then there exists a pair, (∗ ∗(·)) ∈ L∞ × S∞(∆(Φ(·))) such
that ∗(·) ∈ S∞(N∗) is a stationary Markov Perfect Equilibrium (SMPE) in

behavioral club network formation strategies supported by Bellman prices

∗ ∈ S∞(P∗) - i.e., there exists a pair, (∗ ∗(·)) ∈ L∞ × S∞(∆(Φ(·))) such that
a.e. []

∗() ∈ N ( ∗) and ∗() = ( ∗ ∗()) ∈ P( ∗).

Part III

Equilibrium Dynamics of Club

Network Formation and Stable

Coalitions

Under the profile of stationary Markov perfect equilibrium strategies,

∗(·) := (∗1(·)     ∗(·)) (46)

the equilibrium state and network formation process is given by,

{( ∗
  

∗( ∗
 ))}∞=0  (47)

when Ω is Polish,  is nonatomic if and only if ({}) = 0 for all  ∈ Ω (see Hildenbrand, 1974).

Suppose that G is a sub--field of Ω. Denote by G(·) a regular G-conditional probability given
sub--field G. Following Dynkin and Evstigneev (1976),  ∈ Ω is G-atom if ()  0 and for any

 ∈ Ω such that  ⊂ 



 ∈ Ω : 0  

G
()()  

G
()()


= 0.
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where the the discrete-time state process, { ∗
 :  = 0 1 2   } consists of random

objects,  −→ ∗
 (), having dynamics governed by the equilibrium Markov transi-

tion,
∗(|) = (| ∗())

=
R
G (|0)∗(0|)

⎫⎬⎭ (48)

Thus, if the prevailing state at  is  ∗
 = , then, given equilibrium strategy profile

∗(·) := (∗1(·)     ∗(·)), the probability that the coming state, 0, is contained in
 ∈ Ω is

∗(|) = (| ∗()) =
Z


(0| ∗()) (49)

Moreover, if the current state-club network is () = (1     ), then the

probability that the coming network lies in the feasible subset, E ∈ K, is

∗(E|) :=
Z
Ω

∗(E|0)(0|) =
Z
E

Z
Ω

∗(0|0)(0|). (50)

Thus, ()) −→ ∗(|), is the state-contingent stationary Ω×-continuous
Markov club network transition

Under stationary Markov perfect strategy, ∗(·), player  maximizes the dis-

counted sum of 0 future payoffs. Moreover, as long as the other players continue
to choose their player club networks in accordance with their behavioral strategies,

∗−(·), player  has no incentive to defect to any other strategy - even a history
dependent strategy (an implication of Blackwell’s Theorem, 1965).

Whether or not a stable club network emerges depends on the stability properties

of equilibrium state-strategy dynamics underlying club network formation. Our main

objective is to say what we can regarding the emergence of stable club structures -

and hence stable coalition structures - based on the stability properties of equilibrium

network formation dynamics. We would argue that this is one of the main aspects

of network dynamics that has been missing from our understanding of network dy-

namics in various applied settings - the influence of strategic behavior on network

dynamics. Here we present a first attempt. We will proceed as follows: First we state

the Tweedie (Stability) Conditions (Tweedie, 2001) and after discussing some of the

elementary properties of Markov transitions, we will summarize some of the main

implications of the Tweedie Conditions for the existence of basins of attraction and

ergodic probabilities. We will then show that our Markov equilibrium (i.e., strate-

gically informed) club network formation process satisfies the Tweedie Conditions.

To begin we will consider an arbitrary (discrete time) Markov process satisfying the

Tweedie conditions.

9.1 The Tweedie Conditions

We will assume that the Markov transition, (·|·), satisfies the Tweedie conditions,
[T]:
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(1) (Drift Condition) There exists (i) a nonnegative-valued measurable function,

 (·) : Ω −→ [0+∞], with  (0)  +∞ for some 0 ∈ Ω; (ii) a subset  ⊂ Ω, and
(iii) a finite real number, −∞    +∞, such that for (i)-(iii) we haveZ

Ω

 (0)(0|) ≤  ()− 1 + () (51)

(2) (Uniform Countable Additivity) For any sequence of measurable sets,

{} ⊂ Ω, with  ↓ ∅,

lim
−→+∞ sup∈

(|) = 0 (52)

10 Elementary Properties of Markov Transitions

Let {} be the Markov process governed by the transition kernel, (0|), where
for each  = 01 2 3   , we have for each  ∈ Ω, () = . Recall that

(|) := {+1(
0) ∈ |() = }. (53)

10.1 Hitting and Return Times

The number of visits of the process, (·), to the set of states  is given by  :=P∞
=1 (()). Let  be a nontrivial, -finite measure on Ω.

We say that the process, (·), is -irreducible if for all  ∈ Ω such that

()  0,

() = () = lim
−→∞

X
=1

(|) =
∞X
=1

(|)  0. (54)

If the process, (·), is -irreducible, then we know that there exists a (maximal)
dominating measure, , such that (·) is also -irreducible and (see Proposition

4.2.2 in Meyn and Tweedie, 2009).

Let
 = min{ ≥ 1 :() ∈ } = first return time,

and

 = min{ ≥ 0 :() ∈ } = first hitting time.

⎫⎬⎭ (55)

Return time probabilities and recurrent time probabilities are given by

() := ( ∞) = ((·) ever enters )
and

() := ( =∞) = ((·) enters  infinitely often)

⎫⎬⎭ (56)

The set  ∈ Ω is Harris recurrent if ( = ∞) = 1 for all  ∈ . The Markov

process, (·), is Harris recurrent if it is -irreducible and every  ∈ Ω such that

()  0 is Harris recurrent. Thus a set  is Harris recurrent if when the Markov

process (·) starts at  ∈ , it returns to  infinitely many times, except when
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the process starts at any state contained in a set of initial states having probability

zero - thus, (·)-almost surely. In fact, for any Markov process (·) that is Harris
recurrent, ( =∞) = 1 for all  ∈ Ω and for all  ∈ Ω such that ()  0

Summarizing for all  ∈ Ω such that ()  0

() := ()  0⇐⇒(·) is -irreducible
() := () =∞⇐⇒(·) is recurrent

() := ( =∞) = 1⇐⇒(·) is Harris recurrent

⎫⎬⎭ (57)

10.2 Occupation Times

Given Markov process, (·), with Markov transition, (·|·), the -step occupation
measure is given by

( )(|) := 1



−1X
=0

(|) for all  ∈ Ω,  = 1 2 3    (58)

the pathwise occupation measure is given by

( )() :=
1



−1X
=0

(()) (59)

Thus,

( )(|) = (( )())|0() = )

11 Main Implications of The Tweedie Conditions

Let {} be the Markov process governed by the transition kernel, (0|) satisfying
the Tweedie conditions [T]. We have the following results:

Theorem 2

Let {} be the Markov process governed by the transition kernel, (0|)
satisfying [T]. Then there exists a finite positive number of orthogonal invariant

probability measures, (·),  = 1 2      such that for each  with  ()  +∞
and for every  ∈ Ω,

1



X
=1

(|) −→
X

=1

()()

for constants () ≥ 0 such that
P

=1 () = 1

Theorem 3

Let {} be the Markov process governed by the transition kernel, (0|)
satisfying [T]. Then Ω contains at most a finite number of disjoint absorbing sets.

Recall that a set of states  ∈ Ω is a an invariant set or an absorbing set with

respect to the transition kernel, (·|·), if (|) = 1 for all  ∈ 
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Theorem 4

Let {} be the Markov process governed by the transition kernel, (0|)
satisfying [T]. Then there is a decomposition of the state space

Ω =
£∪=1

¤ ∪ (60)

into a finite nonzero number of maximal Harris sets, , and a transient set, ,

such that for each  ∈ , (∪=1) = 1.

Each Harris set  is a largest absorbing set. If we restrict the process to the

maximal Harris set, , giving us a sub-process, 

 (·) :=  

 (·), governed by the
kernel, 

(·|·) := (·|·), then the process is (·)-irreducible (i.e., for all  ⊂ 

with  ∈ 
and ()  0, ()  0 for all  ∈ ). By Theorem 2 above,

it follows from Theorem 2.18 and Corollary 2.19 in Costa and Dufour (2005) that

 
 (·), governed by the kernel, (·|·), is a (·)-irreducible,  -process (see p. 124 in

Meyn and Tweedie, 2009, and Definitions 2.1-2.4 in Costa and Dufour, 2005). By

Theorem 9.3.6, in Meyn and Tweedie, 2009, each Harris set  in expression (60) is

positive Harris recurrent and can be further decomposed as,

 =  ∪ (61)

where  is the set of topological Harris recurrent states, 
∗, where ∗(

∗
=

∞) = 1 (if and only if (∗ ∗) = 1 for all neighborhoods ∗ of 
∗) and

where  is topologically transient (i.e., (

)  ∞).13 Essentially, as soon as

the process, (·), enters the maximal Harris set  it stays in  and becomes a

(·)-irreducible,  -process, visiting the topological Harris recurrent states , ∗ ∈ ,

infinitely often - passing through states in  on its way to states in . But once the

process enters , the process stays in . Thus, a refinement of the decomposition

in Theorem 3 is given by

Ω =
£∪=1( ∪)

¤ ∪. (62)

The process will always leave  in finite time and enter into one of the basins,

 =  ∪ , where it leaves  in finite time and travels for all future time in 

visiting all states in  infinitely often.

Next, we strengthen our assumptions [A-1](15) by adding the assumption that

[A-1](15)∗ The state space, Ω, is a compact metric space and for any sequence of
state-club network pairs, {( )}, converging to (∗ ∗) under the sum metric

Ω×G := Ω +  on the product of the state space Ω and the club network space K,

( | ) −→ ( |∗ ∗) (63)

for all nonempty Ω-closed subsets  of Ω. (i.e.,  ∈  (Ω)).

13Recall that 
∗

:=
∞

=1 ∗ (())
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Let [A-1]∗ denote the list of assumptions [A-1] augmented by the assumption
[A-1](15)∗ above. We have shown that under assumptions [A-1] our  of club

network formation has stationary Markov perfect equilibria. Now we will show that

if we strengthen assumptions [A-1] by adding [A-1](15)∗ then our equilibrium club

network dynamics will satisfy the Tweedie Conditions. In order to accomplish this,

it suffices to show that the equilibrium Markov transition kernel is globally uniform

countably additive.

Theorem 5 (Global Uniform Countable Additivity)

Suppose assumptions [A-1]∗ hold. Then the equilibrium Markov transition,

∗(·|·) := (·|· ∗(·)) is globally uniformly countably additive

Proof: Let

∆Ω×G(Ω) := {(·|) : () ∈ Ω×G} .
We will show that ∆Ω×G(Ω) is sequentially compact in the ((Ω)L∞ ) topology.14

By the compactness of Ω×G, for any sequence {(·| )} ⊂ ∆Ω×G(Ω), there
is a subsequence, {(·| )} such that (  ) −→

Ω×G
(∗ ∗) implying by

assumption [A-1](15)∗ that for all nonempty, Ω-closed subsets  of Ω,

(|  ) −→ (|∗ ∗) ∈ ∆Ω×G(Ω)

Thus, by Delbaen’s Lemma (1974) for each  ∈ L∞ , we haveZ
Ω

(0)(0|  ) −→
Z
Ω

(0)(0|∗ ∗).

Thus, ∆Ω×G(Ω) is sequentially compact in the ((Ω)L∞ ) topology. By Corollary
2.2 in Lassere (1998), ∗(·|·) is globally uniformly countably additive. In particular,
letting {} ⊂ Ω be any decreasing sequence(i.e.,  ↓ ∅) and {(·)} be the
sequence of functions in L∞ where for each ,

() := 
() ∈ L∞ ,

we have by Corollary 2.2 in Lassere (1998) that the sequential compactness of∆Ω×G(Ω)
implies that

lim
−→∞

sup
()∈Ω×G

Z
Ω

(
0)(0|) = lim

−→∞
sup

()∈Ω×G
(|) = 0

Thus, because

sup
()∈Ω×G

(|) ≥ sup
∈Ω

(| ∗()) ≥ 0

we have

lim
−→∞

sup
∈Ω

(| ∗()) = lim
−→∞

sup
∈Ω

∗(|) = 0

14Recall that (Ω) is the Banach space of finite signed Borel measures on (Ω Ω) and L∞ is the

Banach space of -equivalence classes of real-valued, essentially bounded measurable functions on Ω.
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Thus, the equilibrium Markov transition ∗(·|·) governing the process of club network
formation is globally uniformly countably additive. Letting  = Ω,  () = 1 for all

 ∈ Ω, and  = 2, the drift condition is also satisfied. Thus, under assumptions [A-

1]∗ the equilibrium Markov perfect transition, ∗(·|·), satisfies the Tweedie conditions
globally (i.e., with  = Ω). Q.E.D.

12 Strategically Stable Coalition Structures

Under assumptions [A-1], our discounted stochastic game of club network formation

will have a stationary Markov perfect equilibrium, (∗ ∗(·)) ∈ L∞ × S∞(∆(Φ(·)),
where the profile of state-contingent prices, ∗ ∈ L∞ , incentivizes players, behaving
farsightedly and optimally, to follow strategies, ∗(·)) ∈ S∞(∆(Φ(·)), for all future
time periods. Together, the price-strategy profile pair, (∗ ∗(·)), and the law of mo-
tion, (·|· ·), determine the equilibrium Markov state transition, ∗(·|·) = (·|· ∗(·)),
which generates the stationary equilibrium Markov state process, { ∗

 (·)}.
If we strengthen the assumptions specifying our discounted stochastic game model

of club network formation from [A-1] to [A-1]*, then the induced stationary Markov

state process generated by the equilibriumMarkov state transition, ∗(·|·) = (·|· ∗(·))
will satisfy the Tweedie Conditions. As a consequence, the equilibrium Markov state

transition will generate a unique finite decomposition of the state space given by,

Ω =
£∪=1( ∪)

¤ ∪, (64)

with basins of attraction {1 ∪1      ∪} and transient set , and there will
emerge a finite set, E∗ = {(·)}=1, of ergodic probability measures with (∪) =

1 for all . Once the equilibrium state process, { ∗
 (·)}, enters the set of states ∪

it never leaves passing through states in  on its way to states in , where it stays

for all future periods, visiting the topological Harris recurrent states , ∗ ∈ ,

infinitely often. Finally, the stationary Markov perfect equilibrium strategies, ∗(·),
of the players together with the law of motion determine a state-contingent stationary

Ω × -continuous Markov club network transition which in each state  ∈  is

given by

∗(R|) :=
Z
Ω

∗(R|0)(0|) =
Z
R

Z
Ω

∗(0|0)(0|). (65)

Under the equilibrium Markov dynamics determined by strategic behavior of the

players in forming club networks in order for a set of state-club network pairs to be

stable, not only must the state-club network pairs contained in the set be favored

by the players involved and therefore chosen by their behavioral strategies, but they

must also be favored by nature’s law of motion (i.e., stated loosely, in order for a set

of state-club network pairs to be stable, the state-club network pairs contained in the

set must not only be chosen but they must be reachable - via the law of motion).

Recall that given a club network  ∈ K, the implied coalition structure is given by
{ :  ∈ } where
 :=  := { ∈  : ( ) ∈ D()} and D() := {( ) ∈  × {} : () 6= ∅} 
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Thus,  is the coalition of players who are members of club  in club network .

Definition 4 (Strategically Stable Coalitions)

Let ∗(·) be a stationary Markov perfect equilibrium strategy profile of the dynamic

club network formation game with equilibrium Markov transition,

∗(·|·) = (·|· ∗(·)) and state space decomposition given by,

Ω =
£∪=1( ∪)

¤ ∪. (66)

We say that a coalition structure, {() : () ∈  ×K}, is stable if for each club
 ∈  the membership of club  is the same across the club networks in the vio set,

R, in each of finitely many basins, i.e., for each club  ∈  and for some fixed

 ⊂ ,

 =  for all  ∈ R (67)

where for all () ∈  ×R,

∗(|) = (| ∗()) = 1 (68)

and

∗(R|) :=
Z
Ω

∗(R|0)(0|) =
Z
R

Z
Ω

∗(0|0)(0|) = 1. (69)

We saw in Section 3 above that if two club networks  and 0 are at -distance,

(
0) :=

X
=1

X
=1


( 

0
)    1, (70)

then both club networks  and 0 have the same coalition structures, i.e.,

 := (1     ) = (10      0) := 0 . (71)

We note that if two club networks,  and 0, are sufficiently close, as measured by
the -distance, then they are in the same domain equivalence class. In particular, if

(
0)    1 for all pairs of networks,  and 0, in R, then given the properties

of the metric  all the networks in R have the same pre-network - implying that

the set of clubs with members (active clubs) as well as club memberships are the

same across networks in R. Thus, the coalition structures, {() : () ∈ ×R},
underlying the club networks in R - networks chosen by the stationary Markov

perfect equilibrium behavioral strategy profile, ∗(0|0), when the state process is
in state vio set  - are the same across the networks in R. If networks are close

together, then their differences are due entirely to differences in the actions club

members take in their respective clubs rather than differences in club memberships.

Thus, if the equilibrium state dynamics generate vio sets such that the equilibrium

behavioral network formation strategies generates club networks which are -close

together, then we can conclude that the equilibrium dynamics will lead to coalitional

homogeneity within each network vio set R as represented by some pre-network,  ∈
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 (×) which is common to all the club networks in R. This will be the case if the

club networks in R are topologically Harris recurrent - meaning that for all -open

neighborhoods, 0 , of 
0 ∈ R (for example, for all -open balls about 

0 of any
radius   0), it is true that players’ club network formation strategies are such that

the induced equilibrium process,  −→ ∗(()), visits any neighborhood 0 of

0 ∈ R infinitely often. Stated formally, a condition sufficient to guarantee coalitional

stability (or more to the point, coalitional homogeneity) of the club networks in R

is that

∗(0 =∞|
0) = 1 for all (0) ∈  ×R

We summarize all of this in our last result.

Theorem 6 (Topological Harris Recurrence and Coalitional

Homogeneity)

Let ∗(·) be a stationary Markov perfect equilibrium strategy profile of the dynamic

club network formation game with equilibrium Markov transition,

∗(·|·) = (·|· ∗(·)) and state space decomposition given by,

Ω =
£∪=1( ∪)

¤ ∪. (72)

If each club network vio set, R,  = 1 2     , is topologically Harris recurrent -

that is, if for any (0) ∈  ×R and for any neighborhood 0 of 0 ∈ R

∗(0 =∞|
0) = 1, (73)

then for each club network vio set, R,  = 1 2     , and any pair of club

networks,  and 0 in R,

(
0)    1, (74)

and therefore,

() = (0) for each club  = 1 2     (75)

If the club network vio set, R,  = 1 2     , is topologically Harris recurrent,

then no matter what the starting state-network pair (0) ∈ ×R is, the equilib-

rium network formation process will visit any neighborhood, 0 , of 
0 ∈ R infinitely

often. Using (65) and using argument similar to those used in the proof of Theorem

5 (especially, Corollary 2.2 in Lassere, 1998), it can be shown that the club network

vio sets, R,  = 1 2     , are topologically Harris recurrent. Thus, if we strengthen

the assumptions specifying our discounted stochastic game model of club network

formation from [A-1] to [A-1]*, then the equilibrium club network formation process

will, in the long run, generate stable coalition structures - which while they may differ

across basins of attraction, will be homogeneous within each basin.
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