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Abstract

Under mild assumptions on primitives, we show that all parameterized state-contingent

games (PSG) have upper Caratheodory () Nash (equilibrium) correspondences which
contain minimal  Nash correspondences having the 3 property (defined here). This

implies that all PSG have Nash correspondences made up of minimal  Nash corre-

spondences taking closed, connected, and essential Nash equilibrium values (essential in

the sense of Fort, 1950). It then follows from Fu and Page (2022b), that because all PSGs
have continuum valued minimal Nash correspondences, all PSGs have Caratheodory ap-
proximable Nash payoff correspondences - which in turn implies that all PSGs have Nash
payoff selection correspondence with fixed points.

Key Words: -tuples of real valued Caratheodory functions, upper Caratheodory cor-

respondences, continuum valued upper Caratheodory sub-correspondences, weak star upper

semicontinuous measurable selection valued sub-correspondences, approximate Caratheodory

selections, fixed points of nonconvex, measurable selection valued correspondences induced

by the composition of an -tuple of Caratheodory functions with a continuum valued upper

Caratheodory sub-correspondence.



1 Introduction

Economics and game theory are replete with examples of parameterized, state-contingent

games (PSG). One of the most interesting examples can be found in the theory of

discounted stochastic games (DSG) with uncountable state spaces and compact metric
action spaces. We know that the key to showing that a discounted stochastic game

has stationary Markov perfect equilibria () is to show that the PSG underlying
the discounted stochastic game contains an equilibrium state-contingent, one-shot game

- that is, a one shot-game parameterized by an equilibrium vector of state-contingent

prices - prices that players use to value their continued use of a particular strategy.1

Once an equilibrium one-shot game has been found, the equilibrium stationary Markov

perfect strategy profile is gotten by measurably stringing together, state-by-state, the

Nash equilibria of the one-shot games corresponding to the equilibrium vector of state-

contingent prices (i.e., the profile of equilibrium valuation functions). The hard problem

is finding the equilibrium vector of valuation functions. This problem is a fixed point

problem involving the measurable selection valued Nash payoff selection correspondence.

We know that a vector of valuation functions is an equilibrium vector if and only if the

vector is a fixed point of the Nash payoff selection correspondence. But this fixed point

problem is very difficult because Nash payoff selection correspondences are, in general,

neither convex valued nor closed valued in the appropriate topology (in this case the weak

star topology). However, as was shown by Fu and Page (2022a) the problem can be solved

by approximate fixed point methods provided the underlying upper Caratheodory ()

Nash payoff correspondence contains a contractible-valued  sub-correspondence. We

show here that this will be the case if the underlying  Nash correspondence contains

a  sub-correspondence taking connected values in the set of Nash equilibria. Here,

we show that all PSG satisfying the usual assumptions (i.e., the usual assumptions
made in specifying a DSG) have  Nash correspondences containing minimal  Nash

correspondences taking closed connected values. In fact, we show here that a PSG0
Nash correspondence consists of state-contingent bundles of upper semicontinuous strands

of connected Nash equilibria - implying that each player’s Nash payoff correspondence

consists of state-contingent bundles of upper semicontinuous strands of closed intervals of

Nash payoffs. Thus, under the usual assumptions, in a PSG, each player’s  Nash payoff
correspondence is given by a bundle of  sub-correspondences each taking closed interval

values of Nash payoffs. As a consequence, players’  Nash payoff sub-correspondences

are Caratheodory approximable (see Kucia and Nowak, 2000), implying that the PSG0
induced Nash payoff selection correspondence has fixed points (see Fu and Page, 2022a).

Why do all PSG satisfying the usual assumptions have minimal  Nash sub-

correspondences taking continuum values? We show that this is true for two reason:

(1) because all PSG have Ky Fan correspondences containing minimal Ky Fan sub-
correspondences having the 3 property (defined below) implying that these minimal

Ky Fan sub-correspondences take minimally essential, connected Nash equilibria values;

and (2) because each minimal  Nash correspondence belonging to a PSG is given by the
composition of a minimal Ky Fan sub-correspondence with the PSG0 collective security
function, a Caratheodory function, mapping from state-value function profile pairs into

the PSG0 Ky Fan sets, where the Ky Fan values taken by the collective security func-
tion at each state-value function profile pair is determined by the PSG0 Nikaido-Isoda
function. Our main contributions are to establish (1) and (2) above. The fixed point im-

plications of what we do here are proved in Fu and Page (2022a), while the implications

for the existence of SMPE in DSG are established in Fu and Page (2022b).
1A PSG is a parameterized collection of -player, state-contingent, strategic form games. Thus, the

collection of one-shot games underlying a DSG is an example of a PSG.
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2 Parameterized, State-Contingent Games

2.1 Primitives, Assumptions, and Comments

2.1.1 Primitives

We begin by considering a collection of strategic form games,

G(Ω×  ) :=
©G() : ( ) ∈ Ω× 

ª
 (1)

where each ( )-game is given by

G() :=

⎧⎪⎨⎪⎩ Φ( )| {z }
feasible actions

 (  (· ·))| {z }
payoff function

⎫⎪⎬⎪⎭
∈

. (2)

We will refer to the entire collection of ( )-games as a parameterized state-contingent

game (a PSG) In a ( )-game each player  = 1 2    , seeks to choose a feasible

action,  ∈ Φ( ) so as to maximize 0 payoff - i.e., so as to solve the problem

max
∈Φ()

(   −),

given state , parameter value , and the feasible actions, −, chosen by the other
players. Each ( )-game is played by  = || players with underlying primitives,

((Ω Ω )  {Φ(· ·) (· · (· ·))}∈) . (3)

2.1.2 Assumptions

We will maintain the following assumptions about the underlying primitives specifying

the parameterized state-contingent games given in expression (3). We will refer to these

assumptions collectively as assumptions [PSG]:

(1)  := {1 2    } is the set of players with typical element .
(2) (Ω Ω ) is a probability space of states with typical element, , where Ω is

complete separable (Polish) metric space and  is a probability measure defined on the

Borel -field Ω.
2

(3)  is a convex, compact metrizable subset of a locally convex Hausdorff topological

vector space  and is equipped with a metric, 
 compatible with the locally convex

topology inherited from .

(4)  := 1 × · · · × is the product space of action profiles equipped with the sum

metric,  :=
P

 
. as well as the Borel product -field,  = 1

× · · · ×
,

generated by the -open sets in .

(5)  := 1 × · · · ×  is the product space of player payoff profiles,  := (1     ),

such that for each player ,  := [− ],   0 and  is equipped with the absolute

value metric,

(
0
 

1
) :=

¯̄
0 − 1

¯̄
, (4)

and  := 1× · · · ×  is equipped with the sum metric,  :=
P

=1  , as well as the

Borel product -field,  = 1 × · · · × , generated by the  -open sets in  .

2Note that the -field, Ω is countably generated. All the results we present here remain valid if

instead we assume that Ω is an abstract set, but one equipped with a countably generated -field (see

Ash, 1972).
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(5)  is player 0 parameter space given by a locally connected continuum of

parameters equipped with -convex metric  .

(8)  := 1 × · · · ×  is the set of player parameter profiles,  := (1     ) equipped

with the -convex sum metric,  :=
P

  , as well as the Borel product -field,

 = 1 × · · · ×, generated by the  -open sets in  .

(9) Φ(· ·) is player 0 action choice constraint correspondence, a Caratheodory
set-valued mapping (i.e., measurable in  and continuous in  - i.e., both upper

semicontinuous and lower semicontinuous in ),

Φ(··) : Ω×  −→ (), (5)

defined on the space of state-parameter pairs, Ω×  taking nonempty, 
-closed (and

hence 
-compact), convex values in player 0 action choice set  (where ()

denotes the collection of all nonempty, 
-closed and classically convex subsets of ).

(10) Φ(· ·) := Φ1(· ·)× · · · ×Φ(· ·) is players’ action profile constraint correspondence,
a Caratheodory set-valued mapping defined on the space of state-parameter pairs, Ω× 

taking nonempty, -closed (and hence -compact) convex values in players’ action

profile set .3

(11) (· · (· ·)) is player 0 payoff function,

(  ( −)) −→ (  ( −)) ∈  := [− ], (6)

a (Ω )- measurable function on Ω for each

( ( −)) ∈  × ( ×−) :=  × and a jointly continuous function on

 × ( ×−) for each  ∈ Ω, with
 −→ (  ( −))

concave in  on  for each (  −) ∈ Ω×  ×−.4

(12) (· · (· ·)) is the game’s Nikaido-Isoda function
 −→ (  ( ))

:=
P

=1 (  ( −))−
P

=1 (  ( −)),

⎫⎬⎭ (7)

a function concave in  := ( −) on  =  ×− for each  := ( −) ∈ .

2.1.3 Comments on Primitives and Assumptions

(1) Because player 0 compact metric space of parameters, , is connected and locally
connected,  is a Peano continuum, and therefore can be equipped with an  -convex

metric  . (see Illanes and Nadler, 1999).
5 A metric space, ( ), is  -convex (

refers for Menger, 1928) if for any two distinct elements, 0 and 1 in  there is a third

element, , in  such that

(
0
 

1
) = (

0
 ) + ( 

1
). (8)

3See Himmelberg (1975) and Wagner (1977) for extensive discussions of continuity and measurability

issues related to correspondences.
4 If the function

 −→ (  ( −))
is concave in  then for each  ∈ [0 1],

(  
1

+ (1− )2


 −) ≥ (  

1

 −) + (1− )(  

2

 −)

5Conversely, any compact, -convex metric space is a Peano continuum.
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Because any compact metric space, ( ) that is a Peano continuum (connected and

locally connected) has an equivalent  -convex metric,  , without loss of generality, we

can assume that each of our Peano continua,  is equipped with an  -convex metric

 . Moreover, if we equip the product space,  := 1 × · · · × , with the sum metric

 :=
X


 , then (  ) is a compact,  -convex metric space, and therefore a Peano

continuum (see III.10 in Illanes and Nadler, 1999, and Theorem 1.2 in Goodykoontz and

Nadler, 1982). It should be emphasized that local connectedness of the parameter space,

in this case  , is required in order to show that the 3 property implies (and is implied

by) the connectedness of the values of the minimal  Nash correspondence.

(2) Suppose ( ) is a compact metric space. Consider the hyperspace of nonempty,

-closed subsets  (). The distance from a point  ∈  to a set  ∈  () is given by

 ( ) := inf
0∈

( 
0). (9)

Given two sets  and  in 2 , the excess of  over  is given by

 () := sup
∈

 ( ). (10)

Given two sets  and  in  (), the Hausdorff distance in  () between  and  is

given by

 () = max{ ()  ()} (11)

Often we will write  rather than  - when the underlying metric is clear.

Finally, let  ( ) be the hyperspace of nonempty, closed (and hence compact) sub-

sets of  , equipped with the Hausdorff metric  induced by the  -convex metric,

 . Because the metric space, (  ) is compact and  -convex, the metric hyperspace

( ( )  ) is compact and  -convex (see Duda, 1970).

2.2 Correspondences

2.2.1 Upper Caratheodory () Correspondences

Consider an upper Caratheodory () correspondence,

N (· ·) : Ω×  −→  (), (12)

jointly measurable in ( ) and upper semicontinuous in , taking nonempty  -closed

(and hence, -compact) values in . The uC correspondence, N (· ·), has graph

N (· ·) := N := {(  ) ∈ Ω×  × :  ∈ N ( )}  (13)

Given  or , for  ⊂  define,

N− () := { ∈  : N() ∩  6= ∅}
and

N− () := { ∈ Ω : N() ∩  6= ∅}

⎫⎬⎭ (14)

where for fixed , N(·) := N ( ·), and for fixed , N(·) := N (· ). Finally, let

N−() := {( ) ∈ Ω×  : N ( ) ∩  6= ∅} (15)

We have the following definitions (see Wagner, 1977). Given correspondence, N (· ·),
we say that,
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(a) N(·) is weakly measurable (or measurable) if for all  open in , N− () ∈ Ω;

(b) N(·) is upper semicontinuous if for all  closed , N− () is closed in  ;

(c) N (· ·) is product measurable (i.e., jointly measurable in  and ) if for all  open

in , N−() ∈ Ω × .

(d) N (· ·) is upper Caratheodory if N (· ·) is product measurable and for each , N(·)
is upper semicontinuous.

Because  is a compact metric space and N(·) is closed valued, weak measurability
of N(·) implies that for each  N− () ∈ Ω for  closed in .

We will denote by,

N := {N ( ·) :  ∈ Ω}  (16)

the nonempty, -compact valued, upper semicontinuous part of N (· ·). Following the
terminology of Hola and Holy (2015), we will refer to N as the USCO part of N .
We will denote the measurable part of N (· ·), by

NΩ := {N (· ) :  ∈  }  (17)

For each state-parameter pair, ( ), the graphs of the USCO part and the measurable

part are given by,

N ( ·) := N := {( ) ∈  × :  ∈ N ( )} 
and

N (· ) := N := {( ) ∈ Ω× :  ∈ N ( )} .

⎫⎬⎭ (18)

Moreover, by Lemma 3.1(ii) in Kucia and Nowak (2000), the correspondence,  −→
N, is measurable.

We will denote the collection of all upper Caratheodory correspondences defined on

Ω×  with nonempty, compact values in  by UCΩ× - ().

2.2.2 USCOs

For compact metric spaces (  ) and ( ), let U− () := U(  ()) denote the
collection of all upper semicontinuous correspondences taking nonempty, -closed (and

hence -compact) values in . Following the literature, we will call such mappings,

USCOs (see Crannell, Franz, and LeMasurier, 2005, Anguelov and Kalenda, 2009, and

Hola and Holy, 2009). We know that Ψ ∈ U - () if and only if Ψ is compact, where

Ψ := {( ) ∈  × :  ∈ Ψ()} .

Given Ψ ∈ U - () denote by U - ()[Ψ] the collection of all sub-USCOs belonging to
Ψ, that is, all USCOs  ∈ U - () whose graph,

 := {( ) ∈  × :  ∈ ()} ,

is contained in the graph of Ψ, Ψ. We will call any sub-USCO,  ∈ U - ()[Ψ] a
minimal USCO belonging to Ψ, if for any other sub-USCO,  ∈ U - ()[Ψ],  ⊆ 

implies that  = . We will use the special notation, [Ψ], to denote the collection

of all minimal USCOs belonging to Ψ. We know that for any USCO Ψ, [Ψ] 6= ∅ (see

Drewnowski and Labuda, 1990). In general, we say that  is a minimal USCO, if for

any other USCO  ∈ U− (),  ⊆  implies that  = . Let M - ()

denote the collection of all minimal USCOs. The following characterizations of minimal

USCOs (gathered from Anguelov and Kalenda, 2009, and Hola and Holy, 2009) will be

useful later.
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Characterizations of Minimal USCOs (Anguelov and Kalenda, 2009, and Hola and Holy,

2009)

Suppose assumptions [PSG] hold. The following statements are equivalent:
(1) (·) ∈ U− () is a minimal USCO.
(2) If  ⊂  and  ⊂  are open sets such that () ∩  6= ∅, then there is a
nonempty open subset  of  such that ( ) ⊂  .

(3) If  ⊂  is an open set and  ⊂  is a closed set such that () ∩  6= ∅ for each
 ∈  , then () ⊂  .

(4) There exists a quasi-continuous selection  of (·) such that  = .6

(5) Every selection  of (·) is quasi-continuous and  = .7

Finally, we say that an USCO, Ψ ∈ U - (), is quasi-minimal if for some  ∈
U - (), [Ψ] = {} (i.e., Ψ has one and only one minimal USCO). Let Q - () de-

note the collection of all quasi-minimal USCOs. We will denote by

Ψ := { ∈  : Ψ() is a singleton}  (19)

the the subset where Ψ takes singleton values. Under our primitives and assumptions, if

Ψ ∈ Q - (), then by Lemma 7 in Anguelov and Kalenda (2009), Ψ is a residual set -

and in particular, a  set  -dense in  .

2.2.3 Minimal uC Correspondences and Minimal USCOs

For N (· ·) ∈ UCΩ× - (), let

UCN := UCΩ× - ()[N (· ·)] (20)

denote the collection of all upper Caratheodory mappings, (· ·), belonging to N (· ·).
Thus, (· ·) ∈ UCN if and only if (· ·) ∈ UCΩ× - () and

( ·) ⊂ N ( ·) for all 

We will be interested in  sub-correspondences, (· ·) ∈ UCN , with the property that
for each , ( ·) is a minimal USCO belonging to N ( ·). Already we know that (i)

for each , [N ( ·)] is nonempty (e.g., see Drewnowski and Labuda, 1990), and (ii) for
each  and ( ·) ∈ [N ( ·)], (·) is a  set  -dense in  , and therefore, for each

( ) ∈ ×(·), ( ) is single-valued. What we don’t know is whether or not the 
correspondence, N (· ·), contains a  sub-correspondence, (· ·), such that for each ,

( ·) is a minimal USCO belonging to N ( ·). We call any such  sub-correspondence
a minimal  sub-correspondence, and we denote by,

MUCN :=
©
(· ·) ∈ UCN : ( ·) ∈ [N ( ·)] for all ª , (21)

the collection of all minimal  sub-correspondences belonging to N (· ·) ∈ UCΩ× - ().
Our first result shows that for any N ∈ UCΩ× - (),MUCN is nonempty.

6A function ∗ :  →  is quasicontinuous at 0 if for any   0 there exists a   0 such that inside

the open ball,  ( 
0), there is contained an open set,  , such that for all  ∈ 

∗() ∈  ( 
∗(0)).

7Note that if a function is continuous, it is automatically quasi-continuous.
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Theorem 1 (Nonemptiness of MUCN )
Suppose assumptions [PSG] hold. For any upper Caratheodory mapping,

N (· ·) ∈ UCΩ× - ()

there exists a uC-correspondence, (· ·) ∈ UCΩ× - (), such that

( ·) ∈ [N ( ·)] for all .

Proof : First, by Kucia and Nowak (2000), the mapping

 −→ N ( ·) ∈  ( ×)

is measurable. Let  ( ×) be the collection of all nonempty, × -closed (and hence,
× -compact) subsets of  × and equip  ( ×) with the Hausdorff metric, ×
induced by the sum metric × :=  +  on  × . The hyperspace, ( ( ×
) × ) is a compact metric space. Following Holy (2007), equip the space of all

minimal USCOs,M - (), with the sup metric,

sup(N 0N 1) := sup{ (N 0()N 1()) :  ∈  } (22)

From Holy-Vadoric (2007), we know that for N 0 and N 1 contained in U - (),

× (N 0(·) N 1(·)) ≤ sup(N 0N 1). (23)

Thus, N −→ N (·) is sup-× -continuous.8
Letting (  ()) denote the collection of all set-valued mappings with × -closed

graphs, because (  ) and ( ) are compact, ((  ()) sup) is compact. We

also know via results in Holy (2007) that (U− () sup) is a closed (and hence compact)
set in (( ()) sup) and moreover, that (M− () sup) is a closed (and hence
compact) set in (U− () ∗sup). Consider the minimization problem

min(·)∈M - ()
× ((·)N(·)). (24)

For each  the function,

(·) −→ × ((·) N(·)), (25)

is real-valued and ∗sup-continuous on the 
∗
sup-compact metric space,M - ().

9 More-

over, for each (·) ∈M - (), the function,

 −→ × ((·) N(·)), (26)

is real-valued and Ω-measurable on . Thus, by optimal measurable selection (see Wag-

ner, 1977), there exists a measurable selection,  −→ (·) ∈M - () such that

× ((·) N(·)) = min(·)∈M - ()
× ((·) N(·)) (27)

8 If sup(Γ
(·)Γ∗(·)) −→ 0, then

× (Γ
(·) Γ∗(·)) −→ 0

for {Γ(·)} ⊂ U - and Γ∗(·) ∈ U - .
9 If sup(

(·) (·)) −→ 0, then for each 

× (Γ(·) (·)) −→ × (Γ(·) (·))
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By the properties of the excess function on  ( ×), we have for all ( ),

() ⊂ N() := N ( ),

Thus, we have that (·)(·) is upper Caratheodory, and because for all ( ),

() ⊂ N ( ) and (·) ∈M− ()

we have for each , (·) ∈ [N ( ·)] - implying thatMUCN 6= ∅. Q.E.D.

2.2.4 -Caratheodory Selections for Minimal  Correspondences

We begin with the basic definitions.

Definitions 1 (Caratheodory Functions)

A function, (· ·) : Ω×  −→ , is said to be Caratheodory if (i) for each  ∈ Ω the
function, ( ·) := (·), defined on  with values in  is  --continuous, and if

(ii) for each  ∈  the function, (· ) := (·) is (Ω )-measurable.

Definitions 2 ( -Caratheodory Selections of uC Correspondences)

An upper Caratheodory correspondence, N (· ·) ∈ UCΩ× - (), has an -Caratheodory

selection if there is a sub-correspondence, (· ·) ∈ UCN belonging to N (· ·) such that for
each   0 there is a Caratheodory function, (· ·) : Ω×  −→ , having the property

that for each ( ) ∈ Ω×  and each ( ( )) ∈  × there exists

( ) ∈ ( ·) such that

 ( ) + (
( ) )  ,

or equivalently, a Caratheodory function,  : Ω×  −→ , such that for each 

( ·) ⊂ × (( ·)).

We say that the uC correspondence, N (· ·) ∈ UCΩ× - (), is Caratheodory
approximable if N (· ·) has a uC subcorrespondence, (· ·) ∈ UCN , such that for each
  0, (· ·) has an -Caratheodory Selection

By Theorem 4.2 in Kucia and Nowak (2000), a sufficient condition for N (· ·) to have
for each   0 an -Caratheodory selection is for each  the minimal uC correspondence,

( ·) to have an -continuous selection.

Definitions 3 ( -Continuous Selections of Minimal USCOs, ( ·))
Given N (· ·) ∈ UCΩ× - (), let (· ·) ∈ UCN . A function, (·) :  −→  is said to

be -continuous selection of ( ·) if for each  ∈  and each ( ()) ∈  × there

exists ( ) ∈ ( ·) such that

 ( ) + (
() )  ,

or equivalently, such that the continuous function,  :  −→ , has the property that

(·) ⊂ × (( ·)).

We say that the uC subcorrespondence, (· ·) ∈ UCN , is approximable if for each  and

for each   0, the sub-USCO, ( ·) has an -continuous selection

8



Our first objective is to identify conditions that the  Nash correspondence N (· ·)
must satisfy in order to guarantee that some Nash sub-correspondence (· ·) ∈ UCN is

continuum valued. In fact, we will show that under assumptions [PSG] if (· ·) ∈MUCN
has the 3 property, then for each , ( ·) is a continuum valued USCO such that for

each , ( ) is a continuum of essential Nash equilibria. Once we have achieved our first

objective, our second objective will be to show that all parameterized, state-contingent

games satisfying assumptions [PSG] have minimal  Nash correspondences having the

3 property, and therefore, continuum valued minimal  Nash correspondences,

3 3 Minimal Nash Correspondences Are Continuum

Valued

A profile of player action choices, ∗ ∈ Φ( ), is a Nash equilibrium for the ( )-game,
G(), if for each player  ∈ 

(  (
∗
 
∗
−)) = max∈Φ() (  ( 

∗
−)).

Under assumptions [PSG] for each ( ) ∈ Ω× the ( )-game, G(), has a nonempty,
-compact set of Nash equilibria, N ( ), and using Berge’s Maximum Theorem it is

straightforward to show that the Nash correspondence,

N (· ·) : Ω×  −→  ()

is upper Caratheodory, (Ω ×   )-measurable in ( ) and  - -upper semicon-

tinuous in  with nonempty,  -compact values. Here, recall that  () denotes the

collection of nonempty,  -closed (and hence, -compact) subsets of .

3.1 Essential Sets, the 3 Property, and Connected Values

We begin with the definitions of essential and minimally essential values belonging to

an upper Caratheodory correspondence’s USCO part for a particular  - where essential

and minimally essential are in the sense of Fort (1950). Then we introduce the 3

property and we show that, given the primitives and assumptions above (call these PSG),
all minimal uC correspondences have USCO parts that are minimally essentially valued

and if they have the 3 property, they are continuum valued and if they are continuum

valued, they are 3 . Later, when we introduce an extended notion of Ky Fan sets and

our decomposition of the upper Caratheodory Nash correspondence of a parameterized,

state-contingent game, we will revisit the 3 property - in the hyperspace of Ky Fan sets.

More importantly, we will show, given the primitives and assumptions made above, that all

parameterized, state-contingent games have 3 minimal uC Nash sub-correspondences.

3.1.1 Essential Sets and the 3 Property

Let N (· ·) be an upper Caratheodory correspondence with USCO part,

N :=
©N(·) ∈ U− () :  ∈ Ω

ª
.

Definitions 4 (Essential Sets)

(1) (Essential Set) A nonempty closed subset (
0) of N ( 0) is said to be essential

for N(·) at 0 ∈  if for each   0 there exists   0 such that for all

 ∈ 
( 0),

N ( ) ∩
( (

0)) 6= ∅ (28)

9



We will denote by E[N ( 0)] ⊂  (N ( 0)) the collection of all nonempty, -closed
subsets of N ( 0) essential for N(·) at 0 ∈  .

(2) (Minimal Essential Set) A nonempty closed subset (
0) of N ( 0) is said to be

minimally essential for N(·) at 0 ∈  if (i) (
0) ∈ E[N ( 0)] and if (ii) (

0)

is a minimal element of E[N ( 0)] ordered by set inclusion (i.e., if
(

0) ∈ E [N ( 0)] and (
0) ⊆ (

0) then (
0) = (

0)). We will denote by

E∗[N ( 0)] the collection of all nonempty, closed subsets of N ( 0) minimally
essential for N(·) at 0 ∈ 

The 3 property (i.e., the 3 misses property) is defined as follows:

Definition 5 (The 3 Property)

Let N (· ·) ∈ UCΩ×− () be an upper Caratheodory correspondence and consider the
minimal upper Caratheodory correspondence, (· ·) ∈MUCN . We say that (· ·) is 3
at (0 0) if the minimal 0-USCO, 0  has the property at 

0 that for any   0 and

for any pair of nonempty disjoint closed sets,  1 and  2, in  there exists 1 and 2 in


( 0) such that

0(
1) ∩  1 = ∅ and 0(

2) ∩  2 = ∅ (29)

then there exists a third point, 3, in the larger open ball, 
(3 0), such that

0(
3) ∩ [ 1 ∪  2] = ∅. (30)

We say that an upper Caratheodory correspondence, N (· ·), is 3 if for some

(· ·) ∈MUCN , (· ·) is 3 at ( ) for all ( ) ∈ Ω×  . We will denote by

MUCN3 the collection of all 3 minimal uC correspondences belonging to N (· ·), and
we will denote by UC3Ω× - (), the collection of all uC correspondences such that
MUCN3 6= ∅.
We say that an upper Caratheodory correspondence, N (· ·), is quasi-minimal at , if

the -USCO, N(·) := N ( ·) is quasi-minimal. We say that N (· ·) is quasi-minimal if
the -USCO, N(·) := N ( ·) is quasi-minimal for all . We will denote the collection of
quasi-minimal upper Caratheodory correspondences by QΩ× - (). The following The-
orem establishes a fundamental fact about quasi-minimal upper Caratheodory correspon-

dences: any minimal uC correspondence belonging to a quasi-minimal uC correspondence

takes minimally essential values.

Theorem 2 (The Quasi-Minimal Theorem for uC Correspondences)

Suppose assumptions [PSG] hold. Let N (· ·) be a quasi-minimal upper Caratheodory
correspondence. Then, for (· ·) ∈MUCN , ( ) ∈ E∗[N ( )] for each
( ) ∈ Ω×  .

Proof : Suppose that for some (0 0) ∈ Ω ×  there is some nonempty, closed

and proper subset 0(
0) of (0 0) with 0(

0) ∈ E[N (0 0)]. Fix some 0 ∈
(0 0)Â0(

0) and let 
(0 0(

0)) be an open enlargement of 0(
0) such that

0 ∈ 
(0 0(

0)). Since 0(
0) ∈ E[N (0 0)] there is a 0  0 such that for all

 ∈ 
(0 0), N0() ∩

(0 0(
0)) 6= ∅. Define the mapping 0(·) as follows:

0() :=

½ N0() ∩
(0 0(

0))  ∈ 
(0 0)

N0()  ∈ Â
(0 0).

(31)

By Lemma 2(ii) in Anguelov and Kalenda (2009), 0(·) is an USCO with0 ⊂N0

and hence 0 ⊂ 0 . In particular, 
0 ∈ 0(

0), a contradiction. Q.E.D.

If N (· ·) ∈ UCΩ× - () is quasi-minimal, then it can contain only one sub uC corre-
spondence, namely, its minimal uC correspondence.

10



Theorem 3 (Quasi-minimal USCOs and minimal USCOs)

Suppose assumptions [PSG] hold. Let N (· ·) be a quasi-minimal upper Caratheodory
correspondence. If (· ·) ∈MUCN , then for any  ∈ U - with  is a proper subset

of N0 for some 0,  = 0 .

Proof: First, suppose that (0 0) ∈ , but (0 0) ∈ 0 . Thus, we have

0 ∈ 0(
0). Because 0(

0) is  -closed, there is a closed ball, 
(0  

0) of suffi-

ciently small radius 0  0, such that 
(0  

0) ∩ 0(0) = ∅.

Consider the correspondence, 0 :  −→ , given by

0() :=

½
() ∩

(0  
0)  ∈ 

( 0)

()  ∈  \
( 0).

(32)

By Lemma 2(ii) in Anguelov and Kalenda (2009), 0(·) is an USCO provided 0() 6= ∅
for all  ∈  . To show that this is true, it suffices to show that for some 0  0,

() ∩
(0  

0) 6= ∅ for all  ∈ 
( 0). (33)

Suppose that (33) is false. Thus for each , there exists  ∈ 
( 1

 0) such that

 (
0 ()) := min

∈()
(

0 )  0 .

For each , the closest point  ∈ () to 0 is at a  -distance from 0 greater than 0 .

Thus, no point in () is contained in the closed ball 
(0  

0). Thus, for  not equal

to 0 but arbitrarily close to 0,  (
0 ())  0 , but at 

0,  (
0 (0)) = 0.

We will show that this jump discontinuity leads to a contradiction. First note that because

the function (
0 ·) is -continuous on , for each 0 ∈ (0) there exists 0  0 and

an -open ball, 
(0  

0) such that for all  ∈ 
(0  

0)

(
0 ) ≤ (

0 0) + 0 

Thus, we have (0) ⊂ ∪0∈(0)
(0  

0) implying via the -compactness of (
0)

that there are finitely many balls,©


(0  
0) 

(1  
1)     

(  
)
ª


covering (0), where {0 1     } ⊂ (0). Given that (·) is USCO, there exists
0  0 such that for all  ∈ 

(0  
0),

() ⊂ ∪=0
(  

)

Thus, if  ∈ 
(0  

0) and  ∈ (), then  ∈ 
(  

) for some  = 0 1     ,

and therefore, we have for all  ∈ 
(  

)

 (
0 ()) := min

∈()
(

0 ) ≤ (
0 ) ≤ (

0 ) + 0 .

Because

 (
0 (0)) := min

∈(0)
(

0 ) = 0

we have for  ∈ 
(0  

0),

 (
0 ()) ≤ min

0≤≤
(

0 ) + 0 ≤  (
0 (0)) + 0 = 0 .
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Thus, we have a contradiction and we must conclude that (33) is true for 0  0.

Therefore, 00
(·) ∈ U - . Letting  be any minimal USCO contained in [00

], we

have a contradiction: [N0(·)] contains at least two different minimal USCO maps, 0
and  - but [N0(·)] = {0(·)}. Therefore, we must conclude that  = 0 .Q.E.D.

LetMUCN3 denote the collection of minimal , (· ·), belonging toN ∈ UCΩ×− ()
such that for each  ∈ Ω, ( ·), an USCO defined on  taking nonempty closed values

in , is 3 . Let MUCN() denote the collection of minimal uCs, (· ·), belonging to
N ∈ UCΩ× - () such that for each  ∈ , ( ·), an USCO defined on  taking non-

empty closed and connected values in  - i.e., values in  (), where  () denotes the

hyperspace of nonempty closed and connected subsets of  (i.e., subcontinua of ). Our

next Theorem establishes that for any minimal  correspondence, (· ·), defined on an
 -convex, compact metric space taking nonempty, -closed values in ,

(· ·) ∈MUCN3 if and only if (· ·) ∈MUCN()

Theorem 4 (For N ∈ UCΩ×− (),MUCN3 =MUCN())
Let (Ω Ω) be a measurable space of states with Borel -field Ω and let (  ) and

( ) be Peano continua with -convex metrics  and  . Given any

N (· ·) ∈ UCΩ× - (), any (· ·) ∈MUCN , and any state-parameter pair,
( ) ∈ Ω×  , the following statements are equivalent:

(1) (·) is 3 at .

(2) () is connected.

⎫⎬⎭ (34)

Before we present the proof, note that if 0(·) ∈ [N0(·)], then 0(·) is quasi-minimal
relative to 0(·). Thus, by the Quasi-Minimal Theorem 2 above, we have for 0(·) ∈
[N0(·)] that 0(·) ∈ E[N0(·)] with 0(·) ∈ E∗[0(·)].
Proof: (1) =⇒ (2). We will show that if for some (0 0), 0(

0) is not connected,

then  is not 3 at (0 0). In particular, we will show that there is an open ball,


( 0) and two disjoint closed sets,  1 and  2 such that for 1 and 2 in 

( 0),

0(
1) ∩  1 = ∅ and 0(

2) ∩  2 = ∅,
but such that (

( 0)) ⊂  1 ∪  2 - implying that  is not 3 at (0 0).

To this end, suppose that for some (0 0), 0(
0) is not connected. Let 0(

0) =

10(
0) ∪ 20(

0) for two nonempty, disjoint closed sets, 10(
0) and 20(

0). We can

find two nonempty, disjoint open subsets,  1 and  2, in  such that (i) 10(
0) ⊂ 1

and 20(
0) ⊂  2, and (ii) 

1 ∩ 2
= ∅. By the upper semicontinuity of 0(·), we

have for some 0  0,
0(

(0 0)) ⊂ 1 ∪ 2.

Because (· ·) is quasi-minimal relative to (· ·), we have by the Quasi-Minimal Theorem
above that for each ( ) ∈ Ω×  , ( ) ∈ E∗[N ( )] implying that neither 10(0)
nor 20(

0) are essential for 0(·) at 0. Thus, there are two nonempty, disjoint open
sets 1 and 2 with

10(
0) ⊂ 1and 20(

0) ⊂ 2

such that for all   0, there exists 1 and 2 in 
( 0) such that

0(
1) ∩1 = ∅ and 0(

2) ∩2 = ∅
Let 1 =  1 ∩1 and 2 =  2 ∩2. We have 1and 2 disjoint open sets such that

10(
0) ⊂ 1 and 20(

0) ⊂ 2 and for all   0, there exist

1 ∈ 
( 0) and 2 ∈ 

( 0)
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such that

0(
1) ∩ 1 = ∅ and 0(

2) ∩ 2 = ∅ (35)

Given that the sets 0(
) are compact, there exists open sets  1 and  2 such that for

 = 1 2,

0(
0) ⊂   ⊂ 

 ⊂  .

Thus, we have for all   0,  ∈ 
( 0) such that

0(
1) ∩  1

= ∅ and 0(
2) ∩  2

= ∅ (36)

Because 0(
0) is minimally essential for 0(·) at 0 (see Theorem 2 above) and because

0(
0) ⊂ £ 1 ∪  2

¤
, there exists a ∗  0 such that for all  ∈ 

(∗ 0),

0() ∩
£
 1 ∪  2

¤ 6= ∅, (37)

implying that for all  ∈ 
(∗ 0),

0() ∩
h

1 ∪  2

i
6= ∅. (38)

But because   0 can be chosen arbitrarily, choosing  = ∗
3
, we have

0(
∗
3
1) ∩  1

= ∅ and 0(
∗
3
2) ∩  2

= ∅

But for no

 ∈ 
(3 

∗
3
 0) = 

(∗ 0)

is it true that

0() ∩
h

1 ∪  2

i
= ∅. (39)

Thus,  is not 3 at (0 0).

(2) =⇒ (1). We will show directly that if 0(
0) is connected, then  is 3 at

(0 0). Suppose that 0(
0) is connected. Let 

(1 0) be an open ball about 0,

1  0, and let  1 and  2 be any two disjoint closed sets in .

First, suppose that 0(
0)\[ 1 ∪  2] 6= ∅. By the minimality of 0 and part (3) of

the Characterizations of Minimal USCOs above for some open subset  of 
(1 0)

0() ∩ [ 1 ∪  2] = ∅.

Taking 0 = 1, we see that  is 3 at (0 0).

Second, suppose that 0(
0) ⊂ [ 1 ∪  2]. Since 0(0) is connected we can assume

that 0(
0) ⊂  1. By the upper semicontinuity of 0(·) there is 0  1 such that

0(
(0 0)) ∩  2 = ∅. Again, we see that  is 3 at (0 0). Q.E.D.

4 All Parameterized State-Contingent Games Have the

3 Property

Our main objective now is to show that all parametrized state-contingent games satisfying

assumptions [PSG] introduced above have upper Caratheodory Nash correspondences
having the 3 property. A key ingredient in our approach is our novel decomposition of

the Nash correspondence. In particular, we show that all PSG satisfying assumptions
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[PSG] have Nash correspondences that can be written as the composition of the Ky Fan
correspondence,

(·) :    −→    ,

with the collective security function,

(· ·) : -  −→   

In particular, we show that for any parameterized, state-contingent game satisfying [PSG],
the upper Caratheodory Nash correspondences, N (· ·), is given by the composition map-
ping,

( ) −→ N ( ) =  ◦( ),
where (·) is an USCO mapping from Ky Fan sets into Nash equilibrium action profiles

and (· ·) is a Caratheodory function from state-parameter pairs into Ky Fan sets (Ω-

S-measurable in  and  -S-continuous in ). While the collective security function,

(· ·), is game specific, for each ( ), encoding in the game’s Ky Fan set the relevant
details of the game, the KFC, (·), is universal and common to all strategic form games.

4.1 Ky Fan Sets and the Ky Fan Correspondence

We begin by introducing an expanded notion of Ky Fan sets, and then present several

results concerning the properties of the hyperspace of Ky Fan sets and the Ky Fan Corre-

spondence - i.e., the . The big surprise here is that all , (·) : S −→  (),

from the compact metric hyperspace, S, of Ky Fan sets into nonempty, closed sets of Nash
equilibria are 3 USCOs possessing minimal USCOs (i.e., minimal ), (·), all of
which are 3 . Hence, by Theorem 4 above, all minimal  are continuum-valued

and when composed with the collective security mapping, (· ·), induce in each state 
a closed, connected-valued minimal USCO, (( ·)), belonging to the -Nash USCO,
N ( ·). Moreover, we will show that the composition of a minimal KFC, (·) ∈ [(·)],
with the PSG0 collective security mapping, (· ·), induces an upper Caratheodory Nash
correspondence,

( ) −→ (( ))

with the property that for all ,

(( ·)) ∈ [N ( ·)].
By Theorem 4 above and the results we will establish in this section - and in particular

our results establishing that all minimal KFCs, (·), are 3 - we will be able to conclude

that ((· ·)) ∈MUCN ⊂ UC3Ω× - () - i.e., that ((· ·)) is a minimal Nash corre-
spondence belonging to the Nash correspondence, N (· ·), and that ((· ·)) has the 3
property.

We begin by introducing an expanded notion of Ky Fan sets and a detailed analysis

of KFCs.

4.2 The Domain and Range of a Ky Fan Set

Let  ( × ) denote the collection of all nonempty, ×-closed subsets of  × 

and equip  ( × ) with the Hausdorff metric, × , induced by the sum metric

× :=  +  on  ×.10 Given any set  ∈  ( ×), define the domain of 

10Because the metric  on  is -convex, the sum metric, × , on  × is -convex, implying

that the hyperspace ( ( ×) ×) is an -convex continuum (Theorem 4.1 in Duda, 1970).
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to be the set

D() := { ∈  : ( ) ∈  for some  ∈ } ∈  ()

Define the range of  to be the set

R() := { ∈  : ( ) ∈  for some  ∈ } ∈  ()

The mappings D(·) and R(·) are × --continuous. To see this, simply note that if
×( 0) −→ 0, then for every (0 0) ∈ 0 there exists a sequence {( )}
such that ( ) −→

×
(0 0) and ( ) ∈ .

Because the games we will consider are state and parameter contingent, and in partic-

ular, because each player in making an optimal choice faces a convex-valued Caratheodory

constraint correspondence, ( ) −→ Φ( ), we must modify the classical definition
of a Ky Fan set to take this into account (e.g., see Zhou, Xiang, and Yang, 2005, and Yu,

Yang, and Xiang, 2005, for the classical definition).

Definition 6 (Ky Fan Sets)

A set  ∈  ( ×) is a Ky Fan set if  satisfies the following properties:

(Z1) D() is nonempty, closed, and convex and D() = R();
(Z2) for all  ∈ D(), ( ) ∈ ;

(Z3) for all  ∈ R(), { ∈ D() : ( ) ∈ } is convex (possibly empty).

We will denote by S the collection of all Ky Fan sets in  ( ×). Thus,

S := { ∈  ( ×) :  satisfies (Z1)-(Z3)} 

4.3 The Hyperspace of Ky Fan Sets

Theorem 5 (The Hyperspace of Ky Fan Sets)

Suppose assumptions [PSG] hold. Then S is a ×-closed subspace of  ( ×).

Proof : Let {} ⊂ S be a sequence of Ky Fan sets such that ×( 0) −→
0. We must show that 0 ∈ S. Because (D()D(0)) −→ 0 and because each

D() = R() is convex, we have that D(0) ∈ () and D(0) = R(0).11 Thus,
0 satisfies (Z1). Also, note that 0 satisfies (Z2). The proof will be complete if we

can show that for all  ∈ R(), { ∈ D() : ( ) ∈ } is convex and possibly empty
(i.e., that 0 satisfies (Z3)). Suppose not. Then for some 0 in R(0), there exists 1
and 2 in D(0) such that for some 0 = 01 + (1 − 0)2 ∈ D(0), 0 ∈ (0 1), 0
deters 0 but does not deter 1 or 2 Therefore, we have 0 ∈ 0(1) =⇒ (1 0) ∈ 0,

0 ∈ 0(2) =⇒ (2 0) ∈ 0, but 0 ∈ 0(0) =⇒ (0 0) ∈ 0. But now because

×( 0) −→ 0, and because ( 0) ∈ 0, for   0 sufficiently small, we have for

some  sufficiently large that for any 
0 on the line segment between 1 and 2 contained

in each of the convex sets, { ∈ R() : ( 0) ∈ },

[
( 0)× {0}] ∩ = ∅ for all  ≥ ,

contradicting the assumption that for 0 = 0, (0 0) ∈ 0. Q.E.D.

11() denotes the collection of all nonempty,  -closed and (classically) convex subsets of .

15



4.4 D-Equivalence Classes of Ky Fan Sets
Given Ky Fan set  ∈ S, we define the D-equivalence class, S, of Ky Fan sets as follows:

S := {0 ∈ S : D(0) = D()} . (40)

Because D(·) is × --continuous, it is easy to show that S is a × -closed subset
of S. Thus, if {} is a sequence of Ky Fan sets in S  for some e ∈ S, then  −→

×
0

implies that 0 ∈ S  . Also, viewing S(·) as a mapping from S into D-equivalence classes
of Ky Fan sets, it is easy to show that S(·) has a ×-×-closed graph. In particular,
if

×( 0) + ×( 0) −→ 0,

where for all ,  ∈ S , then 0 ∈ S0 . This too is an immediate consequence of the

×- -continuity of D(·).
Let S() denote the space of Ky Fan sets D-equivalent to the Ky Fan set, Φ( )×

Φ( ).12 For each , this D-equivalence class is given by

S() := SΦ()×Φ() := { ∈ S : D() = Φ( )} ⊂ S (41)

Because Φ( ·) := Φ1( ·) × · · · × Φ( ·) is a continuous correspondence, it is easy to
show that  −→ S() has a  -× -closed graph in  × S for each , and hence, that

 −→ S() is upper semicontinuous.

4.5 Ky Fan Correspondences

Consider the correspondence,

 −→ () := ∩∈D() { ∈ R() : ( ) ∈ } , (42)

defined on S taking values in  (). We will call the correspondence (·) from S into
 () the Ky Fan Correspondence (i.e., the KFC). It follows from Lemma 4 in Ky Fan

(1961) that if  ∈ S, then
() := ∩∈D() { ∈ R() : ( ) ∈ } 6= ∅.

Theorem 6 (The KFC is an USCO)

Under assumptions [PSG], the KFC, (·) is an USCO, that is,

(·) ∈ US- := U(S  ()) (43)

Proof: By Ky Fan (1961) () is nonempty for all  ∈ S and it is easy to see that
() is compact for all  ∈ S. To see that (·) is upper semicontinuous consider a
sequence {( )} ⊂ (·) where {} ⊂ S and WLOG assume that  −→

×
0,

and  −→


0. By (42) we have for each , ( ) ∈  for any  ∈ D(). By

12Note that for the “box” Ky Fan set

Φ( )×Φ( )

we have
D(Φ( )×Φ( )) = Φ( ),

(Φ( )×Φ( )) = Φ( ),

and

{ ∈ D(Φ( )×Φ( )) : ( ) ∈ Φ( )×Φ( )} = ∅.
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the ×--continuity of D(·), we have for any 0 ∈ D(0) a sequence {} with
 ∈ D() for all  and  −→


0. This, together with  −→

×
0 and  −→


0,

imply that (0 0) ∈ 0 for any 0 ∈ D(0). Thus, (0 0) ∈ (·). By compactness,
the fact that (·) is closed implies that (·) is upper semicontinuous - with nonempty,
compact values. Q.E.D.

4.6 Essential Sets and the 3M Property in the Hyperspace of Ky

Fan Sets

We begin by revisiting the notions of essential and minimally essential sets but for KFCs.

Definition 7 (Again, Essential Sets and Minimal Essential Sets)

Let (·) be a KFC and let 0 ∈ S be a given Ky Fan set.
(1) A nonempty, closed subset (0) of (0) is said to be essential for (·) at 0 ∈ S
if for any   0 there exists   0 such that for all  ∈ S with  ∈ × (

 0),

() ∩
( (0)) 6= ∅ (44)

We will denote by E[(0)] the collection of all nonempty, closed subsets of (0)
essential for (·) at 0 ∈ S
(2) A nonempty closed subset (0) of (0) is said to be minimally essential for

(·) at 0 ∈ S if (i) (0) ∈ E [(0)] and if (ii) (0) is a minimal element of
E[(0)] ordered by set inclusion (i.e., if (0) ∈ E[(0)] and (0) ⊆ (0) then

(0) = (0)). We will denote by E∗[(0)] the collection of all nonempty, closed
subsets of (0) minimally essential for (·) at 0 ∈ S

Note that for any  ∈ S, if  is a proper subset of (), then  ∈ E[()]. The 3
property for KFCs is defined as follows:

Definition 8 ( 3M KFCs)

Let G(Ω×  ) be a parameterized, state contingent game satisfying assumptions [PSG],
and let, (·) ∈ US- , be a KFC.
We say that (·) is 3 at 0 ∈ S if, given any   0 and given any pair of nonempty,

disjoint, closed sets,  1 and  2 in , there exists Ky Fan sets 1 and 2 in

× ( 
0) such that

(1) ∩  1 = ∅ and (2) ∩  2 = ∅

then there exists a third Ky Fan set, 3 in the larger open ball,× (3 
0), such

that

(3) ∩ [ 1 ∪  2] = ∅.
We say that the KFC, (·), is 3 if (·) is 3 at  for all  ∈ S. We will denote
by U3S- the collection of all 3 KFCs.

Our next Theorem, the 3 Theorem, establishes that under assumptions [PSG],
US- = U3S- - all USCOs defined on the hyperspace of Ky Fan sets (i.e., all KFCs)

are 3 and therefore all minimal USCOs defined on the hyperspace of Ky Fan sets (i.e.,

all minimal KFCs) take closed, connected, minimally essential Nash values.

Theorem 7 (The 3 Theorem)

Let G(Ω×  ) be a parameterized, state contingent game satisfying assumptions [PSG].
Then US- = U3S- .
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Proof: We have U3S- ⊂ US- . Suppose (·) ∈ US- does not have the 3 property

at 0 ∈ S. Then for some 0  0 and some pair of closed disjoint sets  1 and  2 in ,

the open ball, × (
0 0) ⊂ S contains two Ky Fan sets, 1 and 2, such that

(1) ∩  1 = ∅ and (2) ∩  2 = ∅ (45)

but such that for all  ∈ × (3
0 0), () ∩ [ 1 ∪  2] 6= ∅. We will show that this

leads to a contradiction by exhibiting a Ky Fan set, ∗ ∈ × (3
0 0) such that if

(∗) ∩ [ 1 ∪  2] 6= ∅ , then () ∩   6= ∅ for  = 1 or 2 violating (45).
First, given that the KFC (·) is an USCO, under [PSG] there are disjoint open sets

  such that   ⊂   and () ∩   = ∅,  = 1 2, and moreover, such that

(∗) ∩ [ 1 ∪  2] 6= ∅ for all ∗ ∈ × (3
0 0) ∩ S,

implies that

(∗) ∩ [1 ∪ 2] 6= ∅ for all ∗ ∈ × (3
0 0) ∩ S

⎫⎬⎭ (46)

We will show that (46) leads to a contradiction by constructing a Ky Fan set, ∗ ∈ S
with ∗ ∈ × (3

0 0) such that

(∗) ∩ [1 ∪ 2] 6= ∅ (*),
implying that () ∩   6= ∅ for some  = 1 and/or 2. Our candidate for such a set is
given by

∗ := [1 ∩ ( × 2)] ∪ [2 ∩ ( × 1)] (47)

where

( ×  ) :=
©
( ) ∈  × :  ∈  

ª


To complete the proof we must show that,

(a) ∗ ∈ S
(b) ∗ ∈ × (3

0 0),

and

(c) (∗) ∩ £1 ∪ 2¤ 6= ∅ ⇒ () ∩   6= ∅ for some  = 1 2.

(a) ∗ ∈ S: It is easy to see that ∗ ∈  (×). Moreover, because  ∈ S  = 1 2,
it is easy to see that (Z1) holds for ∗.13 Thus, D(∗) is nonempty, closed, and convex
and

D(∗) = R(∗) = D(0).
Also, it is easy to see that (Z2) holds for ∗.14 Thus, ( ) ∈ ∗ for all  ∈ D(∗).
It remains to show that for all  ∈ R(),

{ ∈ D(∗) : ( ) ∈ ∗}
is convex or empty.

Let  ∈ 1, then because 1 and 2 are disjoint,

{ ∈ D(∗) : ( ) ∈ ∗} = © ∈ D(∗) : ( ) ∈ 1
ª


a convex or empty set because 1 ∈ S.
Let  ∈ 2, then because 1 and 2 are disjoint,

{ ∈ D(∗) : ( ) ∈ ∗} = © ∈ D(∗) : ( ) ∈ 2
ª


13 (Z1) D() is nonempty, closed, and convex and D() = R().
14 (Z2) for all  ∈ D(), ( ) ∈ .
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a convex or empty set because 2 ∈ S.
Let  ∈ D(∗)\1 ∪ 2. Then

{ ∈ D(∗) : ( ) ∈ ∗}

=
©
 ∈ D(∗) : ( ) ∈ 1

ª ∩ © ∈ D(∗) : ( ) ∈ 2
ª


the later being the intersection of convex or empty sets. Therefore,

{ ∈ D(∗) : ( ) ∈ ∗}

is convex or empty.

(b) ∗ ∈ × (3
0 0): We have

∗ = [1 ∩ ( × 2)] ∪ [2 ∩ ( × 1)] (48)

and by the triangle inequality,

×(1 2) ≤ ×(1 0) + ×(0 2)  2
0

and

×(∗ 0) ≤ ×(∗ 1) + ×(1 0).

(49)

We know already that ×(1 0)  0. Consider ×(∗ 1). We have

×(∗ 1) := max
©
×(∗ 1) ×(1 ∗)

ª


It is easy to check that,

×(∗ 1) = sup()∈∗ ×(( ) 
1)

= sup()∈[2∩(×1)] ×(( ) 
1)

≤ sup()∈2 ×(( ) 1) = ×(2 1)

To show that ×(1 ∗) ≤ ×(1 2) observe that

×(1 ∗) = sup()∈1 ×(( ) ∗)

= sup()∈1 ×(( ) [1\( × 2)] ∪ [2\( × 1)])

Letting 1 = [1\( × 2)] ∪ £1 ∩ ( × 2)
¤
, we have for all

( ) ∈ 1\( × 2)

×(( ) ∗)

= ×(( ) [1\( × 2)] ∪ [2\ × 1)])

≤ ×(( ) [2\( × 1)] ∪ [2 ∩ ( × 1)])

= ×(( ) 2).

Moreover, we have for all

( ) ∈ 1 ∩ ( × 2)
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×(( ) ∗)

= ×(( ) [1\( × 2)] ∪ [2\( × 1)])

= ×(( ) [2\( × 1)])

and
×(( ) 2)

= ×(( ) [2\( × 1)] ∪ [2 ∩ ( × 1)])

= ×(( ) [2\( × 1)]).

Thus, for all ( ) ∈ 1,

×(( ) 
∗) ≤ ×(( ) 

2)

implying that ×(1 ∗) ≤ ×(1 2). Together,

×(1 ∗) ≤ ×(1 2)

and

×(∗ 1) ≤ ×(2 1)

imply that

×(∗ 1) ≤ ×(2 1)  2
0

Thus, we have

×(∗ 0) ≤ ×(∗ 1) + ×(1 0)

≤ ×(2 1) + ×(1 0)

 20 + 0 = 30.

(c) (∗) ∩ £1 ∪ 2¤ 6= ∅ ⇒ () ∩   6= ∅ for some  = 1 and/or 2:
WLOG suppose that  ∈ (∗) ∩ 1. Given the definition of the , (·), We

have for each  ∈ (∗) and  ∈ D(∗),

( ) ∈ ¡1 ∩ ¡ × 2
¢¢ ∪ ¡2 ∩ ¡ × 1

¢¢
,

and because  ∈ 1, this implies that for each  ∈ D(∗),

( ) ∈ 1 ∩ ¡ × 2
¢
,

and specifically, that for each  ∈ D(∗),

( ) ∈ 1 ∩ ¡ × 1
¢
. (*)

Thus, given that  ∈ (∗) and  ∈ D(∗), (*) implies that

 ∈ (1) ∩ 1,

contradicting the fact that (1) ∩ 1 = ∅. Thus we must conclude that (·) has the
3M property. Q.E.D.

The following result concerning the equivalence of 3 and connectedness for minimal

KFCs is an immediate consequence of Theorem 4 above.
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Theorem 8 (For Minimal KFCs being Minimally Essential and Continuum Valued is

Equivalent to Being 3)

Let G(Ω×  ) be a parameterized, state contingent game satisfying assumptions [PSG]
and let (·) ∈ US- be a KFC. The following statements about (·) ∈ [(·)] are
equivalent:

(1) (·) is 3 at 0 ∈ S
(2) (0) is connected.

5 The Collective Security Mapping - the 

With each ( )-game,

G() := {Φ( ) (  (· ·))}∈ , (50)

we can associate a Nikaido-Isoda function (Nikaido and Isoda, 1955) given by

(  ( )) := (  ( ))− (  ( ))

:=
P

∈ (  ( −))−
P

∈ (  ( −)),

⎫⎬⎭ (51)

for each ( ) ∈ Φ( )×Φ( ). We say that 0 ∈ Φ( ) is collectively secure against
a feasible defection profile, 0 ∈ Φ( ), with player specific noncooperative player defec-
tions given by, (0 

0
−), for players  = 1 2    , if and only if

(0 0) ∈ ( ) := {( ) ∈ Φ( )×Φ( ) : (  ( )) ≤ 0}
Thus, for each one-shot game, G(Ω× ), satisfying assumptions [PSG], there is collective
security mapping - a  - given by

( ) −→ ( ) := {( ) ∈ Φ( )×Φ( ) : (  ( )) ≤ 0} (52)

The collectively secure action mapping (i.e., the  action mapping) is given by,

 −→ ( )() := { ∈ Φ( ) : (  ( )) ≤ 0}  (53)

For each defection profile  ∈ Φ( ) with player specific defections of the form  =

( −), ( )() is the (closed) set of action profiles,  = ( −), in Φ( ) that
are collectively secure against potential noncooperative defections represented by profile,

. Note that if  is contained in ( )() for all possible defection profiles  ∈ Φ( ),
that is, if

 ∈ ∩∈Φ()( )() (54)

then for each player ,  = ( −) is secure against any defection of the form  =

( −). Thus,  ∈ ∩∈Φ()( )() implies that
(  ( −)) ≤ (  ( −))

for all players, , and all pairs  = ( −) and  = ( −) - and conversely. Thus,
the set of Nash equilibria given state-value function profile pair ( ) can be fully char-

acterized as follows:

 ∈ N ( ) if and only if  ∈ ∩∈Φ()( )(), (55)

and therefore, the Nash correspondence is given by,

( ) −→ N ( ) = ∩∈Φ()( )() (56)

Under assumptions [PSG], the function, (· · (· ·)) which specifies for each ( ) ∈
Ω×  a particular Nikaido-Isoda function has the following properties:
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(F1) for each , ( · (· ·)) is continuous on the compact metric space,  × ( ×);

(F2) for each ( ( )), (·  ( )) is (Ω  )-measurable; and

(F3)  −→ (  (· )) is concave in  on .

For each state-value function profile pair ( ), the graph of the  action mapping,

( )(·), is given by
( )(·) := {( ) ∈ Φ( )×Φ( ) : (  ( )) ≤ 0}. (57)

Thus, for any (0 0) ∈ ( )(·), strategy profile 0 ∈ Φ( ) is secure against
defection profile 0 ∈ Φ( ) and we have (  (0 0)) ≤ 0 Thus, for each ( ) ∈
Ω×  , the value of the  , ( ), is given by the graph of the  action mapping

( )(·) - and we will show that ( ) = ( )(·) is a Ky Fan set. Thus, the
 is given by the Ky Fan set-valued mapping,

( ) −→ ( ) := ( )(·) ∈ S for all ( ) ∈ Ω×L∞ . (58)

Moreover, we will show that for each minimal, (·), the composition correspondence,
( ) −→ (( )), is upper Caratheodory and takes connected values.

Our main results regarding the collective security mapping are the following:

Theorem 9 (The collective security function, (· ·), is Ky Fan valued and
Caratheodory)

Let G(Ω×  ) be a parameterized, state contingent game satisfying assumptions [PSG]
with Nash correspondence, N (· ·) ∈ UCΩ× - (), KFC, (·) ∈ US- . and CSM, (· ·).
Then the following statements about the  , (· ·), are true:
(1) For each state-parameter pair, ( ) ∈ Ω×  , ( ) is a Ky Fan set with

D(( )) = Φ( ) and R(( )) = Φ( ).
(2) For each minimal ,  ∈ [ ], ((· ·)), is upper Caratheodory (i.e., ((· ·))
is (Ω × -)-measurable and for each , (( ·)) is  --upper
semicontinuous (i.e., for each ,  −→


 and  −→


 with  ∈ (( )) for all 

implies that  ∈ (( ))).

Proof of (1): It is easy to see that D(( )) = R(( )) = Φ( ). Thus (Z1)
holds. Let ( ) ∈ Ω×  . We must show that ( ) ∈ S. Recall that

( ) := {( ) ∈ Φ( )× Φ( ) : (  ( )) ≤ 0}
and note that for all  ∈ Φ( ), (  ( )) = 0. Thus, (Z2) holds.
To see that (Z3) holds observe that because (  (· )) is affine in ,  ∈ Φ( )

such that ( ) ∈ ( ) is given by the set, { ∈ Φ( ) : (  ( ))  0}, and this
set is convex (or empty).

Proof of (2): Let  be fixed and suppose that the sequence, {( )}, is such that,
 −→


0 and  −→


0 with  ∈ (( )) for all . By the continuity of Φ( ·),

we have for any 0 ∈ Φ( 0) a sequence {} with  ∈ Φ( ) for all  such that
 −→


0, and because  ∈ (( )) for all , we have that (  ( )) ≤ 0

for all . Thus by the continuity of ( · (· ·)) for each , we have in the limit that

( 0 (0 0)) ≤ 0 for any point 0 ∈ Φ( 0) implying that 0 ∈ (( 0)).

That ((· ·)) is (Ω × -)-measurable follows from Lemma 3.1 in Kucia and

Nowak (2000).Q.E.D.

22



5.1 Parameter Values, Ky Fan Sets, and Nash Equilibria

For the collection of ( )-games (i.e., the parameterized state-contingent game), G(Ω×
 ), satisfying [PSG], the Nash correspondence is given by

N ( ) = (( )) :=  ◦( ) for all ( ) ∈ Ω×  , (59)

where the Ky Fan valued  , (· ·), is such that for each minimal , (·),
belonging to (·), the composition correspondence, ( ) −→ (( )), is upper

Caratheodory and takes connected values with

(( )) ⊂ (( )) = N ( ) for all ( ) ∈ Ω×  .

Thus, for the , (·), we have for each Ky Fan set  ∈ S that

() = ∩∈D() { ∈ R() : ( ) ∈ } . (60)

Thus, the Nash correspondence given as the composition of the  , (· ·), and the
KFC, (·), is given by

N ( ) = (( )) = ∩∈D(()) { ∈ R(( )) : ( ) ∈ ( )} 

= ∩∈Φ(){ ∈ Φ( ) : (  ( )) ≤ 0}| {z }
()()



⎫⎪⎪⎬⎪⎪⎭ (61)

where ( ) ∈ S.
Because all minimal USCOs, (·), belonging to a KFC, (·), (i.e., all minimal KFCs) are
continuum-valued and because the  , (· ·), belonging to the parameterized game,
G(Ω×  ), is a Ky Fan valued, the composition mapping

 −→ (( ))

is a continuum-valued minimal -USCO for the Nash -USCO, N ( ·) (i.e., (( ·)) ∈
[N ( ·)] with continuum values). Thus, we have for any parameterized game, G(Ω×  ),

satisfying [PSG] with Nash correspondence, N (· ·),  , (· ·), and , (·), that

((· ·)) ∈MUCN ().

where  () is -compact hyperspace of continua - an -closed sub-hyperspace of

 (). Because (·) is a minimal KFC and therefore 3 , (·) is not only minimally
essential valued but also connected-valued (see Theorem 8 above). What we conclude

from all of this is that if (·) is a minimal USCO for the KFC (·), then ((· ·)) is a
continuum valued, minimal upper Caratheodory mapping for the Nash correspondence,

N (· ·). Formally, we have the following result.

Theorem 10 (The Composition Theorem: A minimal KFC composed with the CSM is a

continuum-valued minimal Nash correspondence)

Suppose the parameterized state-contingent game, G(Ω×  ), satisfies assumption [PSG]
with upper Caratheodory Nash correspondence, N (· ·) = ((· ·)) where
(·) ∈ U(S  ()) is the KFC and (· ·), a set-valued correspondence taking Ky Fan
values defined on Ω×  is the CSM. Then for each (·) ∈ [(·)]

(( ·)) ∈ [N ( ·)] for each .
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Proof : Suppose that for some 0, ((0 ·)) is not a minimal USCO belonging to

N (0 ·). Let 0(·) be a minimal USCO of ((0 ·)) ∈ U(  ()) such that for
some 0 ∈  , 0(

0) is a proper subset of ((0 0)) (i.e., an USCO defined on 

with values in  () such that 0(·) ∈ [((0 ·))]). Because 0(·) ∈ [((0 ·))],
we have for each 0  0 a 0  0 such that for all


0 ∈ 

(0 0) ⊂ 

((0 
0

)) ∩
(00(

0)) 6= ∅

⎫⎬⎭ (62)

Because

((0 
0

)) ∩
(00(

0))

is a closed subset of both ((0 
0

)) and 
(00(

0)),

((0 
0

)) ∩
(00(

0))

is not an essential set of ((0 
0

)) in  . Therefore, there is some 1  0 such that

for each  there exists 
 ∈ 

( 1

 

0

) ⊂  such that

((0 


)) ∩

h
1 ((0 

0

)) ∩
(00(

0))
i
= ∅ (63)

Given (62) and the fact that for  sufficiently large


 ∈ 

( 1

 

0

) ⊂ 
(0 0) ⊂  ,

we have

((0 


)) ∩
(00(

0)) 6= ∅.
Therefore, for all  sufficiently large, we have some

 ∈ ((0 


)) ∩
(00(

0))

Because  ∈ ((0 


)), for all  sufficiently large we have by (63),

 ∈ 

h
1 ((0 

0

)) ∩
(00(

0))
i
. (64)

WLOG, suppose that  −→


0 and note that 
 −→




0

. Thus, because ((0 ·)) is
an USCO and 

(00(
0)) is closed, we have

0 ∈ ((0 
0

)) ∩
(00(

0))

But now we have a contradiction, because by (64) it must be the case that for some

2 ∈ (0 1),
0 ∈ 

h
2 ((0 

0

)) ∩
(00(

0))
i
.

Therefore, we must conclude that for no  ∈  can it be true that0() is a proper subset

of ((0 )) - and therefore we can conclude that ((0 ·)) ∈ [N (0 ·)]. Q.E.D.
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5.2 Comments

(1) For the Nash correspondence, N (· ·), belonging to any parameterized state contingent
game, G(Ω× ), satisfying assumptions [PSG], we know thatMUCN 6= ∅. In particular,
we have ((· ·)) ∈ MUCN . But more importantly, we now know that for each ,

(( ·)) is minimally essential and continuum-valued. Therefore, by Theorem 8, we

know that for each , (( ·)) is 3 . Thus, we have that
((· ·)) ∈MUCN () ⊂ UCΩ× - ().

Note that if the KFC, (·) is quasi-minimal so that [(·)] = {(·)} for some minimal
KFC, then

{((· ·))} =MUCN .
(2) Let

( ) := ∪∈()

denote the range of the function,  −→ ( ), from the set of parameter profiles,  ,

into Ky Fan sets, S. Because  is  -compact and (·) is  - -upper semicontinuous
for each , ( ) is -compact. Moreover, because  is locally connected, if for each

,  −→ ( ) is  --lower semicontinuous, then  −→ ( ) is  -S-continuous

and ( ) is locally connected - implying that because ( ) is also connected, for each

, ( ) is a Peano continuum. Therefore, we can assume without loss of generality that

the sub-hyperspace of Ky Fan sets, ( ), specific to a particular parameterized game,

G(Ω× ), can be equipped with an  -convex metric, ( ) equivalent to the metric S
restricted to ( ). Thus, for any two distinct Ky Fan sets 

1 and 2 in ( ) there

is a third Ky Fan set  ∈ ( ) such that

( )(
1 2) = ( )(

1 ) + ( )(
2).

Moreover, by Theorem 2.7 in Nadler (1977) for any two distinct Ky Fan sets 1 and 2 in

( ) there is a subset  ⊂ ( ) ⊂ S such that 1 ∈  and 2 ∈  where  is isometric

to the interval [0 ( )(
1 2)] and such that if 1 = 2 then  = {1} = {2} and

if 1 6= 2, then  is an arc with end points 1 and 2.

(3) Page (2015a) shows very directly that if there is a Nash sub-correspondence

(· ·) ∈ UCN taking contractibly-values or -values in , then the Nash payoff se-

lection correspondence will have fixed points. But it is difficult to identify conditions on

primitives guaranteeing that Nash sub-correspondences, (· ·) ∈ UCN , take contractibly
values or -values in . Here we have shown that for parameterized, state-contingent

games satisfying assumptions [PSG], it is automatic that all such PSG possess  Nash

correspondence having continuum valued minimal  Nash correspondences. This in turn

implies that in all such games players have induced  Nash payoff sub-correspondences

taking interval values and hence contractible values - further implying that all such games

have Nash payoff selection correspondences having fixed points.
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