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Abstract

We show that any measurable selection valued correspondence induced by the composi-
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sition contains a continuum valued  sub-correspondence. Moreover, this composition

of the -tuple of real-valued Caratheodory functions with the continuum valued  sub-
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1 Introduction

We show that any measurable selection valued correspondence induced by the composition

of an -tuple of real-valued Caratheodory functions with an upper Caratheodory ()

correspondence has fixed points if the underlying  correspondence in the composition

contains a continuum valued  sub-correspondence. Moreover, we show that the induced

composition sub-correspondence is upper semicontinuous in the appropriate weak star

topologies.

2 Primitives, Assumptions, and Preview

Let (Ω Ω ) be a probability space where Ω is a complete, separable metric space with

metric Ω, Ω the Borel -field generated by the Ω-open sets in Ω, and  a regular Borel

probability measure. Let  := [− ] ⊂  where  0 and let  := 1×· · ·×

where for each  = 1 2    ,  is a convex, compact metrizable subset of a locally

convex Hausdorff topological vector space  equipped with a metric 
compatible with

the locally convex topology inherited from . Finally, equip  with sum of absolute values

metric,  ( 
0) :=

P
 ( 

0
) :=

P
 | − 0| and equip  with the sum metric,

 :=
P

 
, compatible the product topology inherited from  = 1 × · · · × .

Next, let L∞ := L∞1 × · · · × L∞ , where for each  = 1 2    , L∞ is a convex,
weak star compact metrizable subset of L∞ , the Banach space of -equivalence classes
of -essentially bounded, measurable, real-valued functions, where  ∈ L∞ if and only if

() := (1()     ()) ∈  a.e. []. Equip L∞ with the sum metric, ∗ :=
P

 ∗
,

compatible the weak star product topology inherited from L∞ . Finally, let  () be
the hyperspace of nonempty -closed subsets of 

Consider an upper Caratheodory () correspondence,

N (· ·) : Ω×L∞ −→  (), (1)

jointly measurable in ( ) and upper semicontinuous in  for each . We call the col-

lection of upper semicontinuous correspondences, {N ( ·) :  ∈ Ω} the USCO part (Hola
and Holy, 2015), and {N (· ) :  ∈ L∞ } the measurable part of the  correspondence

N . Denote by UCΩ×L∞

- () the collection of all such  correspondences.

Next consider the  -valued Caratheodory function,

(  ) −→ (  ) := (1(  )     (  )) ∈  , (2)

measurable in  and jointly continuous in ( ), and let

P(· ·) : Ω×L∞ −→  ( ) (3)

denote the composition of  correspondence N (· ·) with the -tuple of Caratheodory
functions, (1(· · ·)     (· · ·)). For each ( ) ∈ Ω×L∞ let

P( ) := ( N ( )) (4)

The correspondence, P(· ·), is also a  correspondence. We will call such a correspon-

dence a  composition correspondence.

Each  composition correspondence, P(· ·) ∈ UCΩ×L∞

- ( ), induces a measurable

selection valued correspondence,

 −→ S∞(P(· )) := S∞(P), (5)

1



where for each  ∈ L∞ , S∞(P) is the collection of -equivalence classes of functions 
in L∞ such that () ∈ P( ) a.e. []. We will show that for all such  composition

correspondences,

 −→ S∞(P(· )) = S∞((· N (· )))

= (S∞(1(· N (· ))    S∞((· N (· )))

⎫⎬⎭ (6)

if the underlying  correspondence, N (· ·) ∈ UCΩ×L∞

- (), contains a continuum

valued sub-correspondence, (· ·) ∈ UCΩ×L∞

- () (i.e., a  correspondence (· ·) taking

continuum values such that ( ·) ⊂ N ( ·) for all ) then its  composition

correspondence, ( ) −→ (  ( )), induces a selection sub-correspondence,

 −→ S∞((· )) := S∞((·  (· ))), (7)

that is weak star upper semicontinuous and has fixed points. Thus while the original

selection correspondence,  −→ S∞(P), may fail to be weak star upper semicontinuous,
its selection sub-correspondence induced by a continuum valued  sub-correspondence

will be weak star upper semicontinuous, and more importantly, will have fixed points.

We will refer to all the assumptions made above concerning spaces and correspondences

as [A-1].

2.1 Comments

(1) Given the probability space, (Ω Ω ), metric spaces, ( ) compact and ( )

separable, consider an arbitrary set-valued mapping or a correspondence, Γ, from Ω× 

into  taking nonempty values in , denoted

Γ : Ω×  −→  (). (8)

For any metric space ()  () will denote the collection of all nonempty subsets

of , and  () :=  () will denote the collection of all nonempty and  -closed

subsets of  (we will often leave off the subscript denoting the metric). Given  and ,

we have for any subset  of  the following definitions,

Γ− () := { ∈  : Γ() ∩  6= ∅}
and

Γ− () := { ∈ Ω : Γ() ∩  6= ∅}

⎫⎬⎭ (9)

where for fixed , Γ(·) := Γ( ·), and for fixed , Γ(·) := Γ(· ). Finally, let

Γ−() := {( ) ∈ Ω×  : Γ( ) ∩  6= ∅} (10)

Let  and  be the Borel -fields in  and  (respectively). We have the following

definitions. Given correspondence, Γ(· ·), we say that,
(a) Γ(·) is weakly measurable (or measurable) if for all  open in , Γ− () ∈ Ω,

(b) Γ(·) is upper semicontinuous if for all  closed , Γ− () is -closed,
(c) Γ(· ·) is product measurable if for all  open in , Γ−() ∈ Ω × .

(d) Γ(· ·) is upper Caratheodory if Γ(· ·) is product measurable and for each , Γ(·)
is upper semicontinuous.

For  a separable metric space, weak measurability of Γ(·) implies that for each ,

Γ(·) := {( ) ∈ Ω× :  ∈ Γ()} ∈ Ω × . (11)
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Finally, for  compact and Γ(· ·) upper Caratheodory, we have by Lemma 3.1 in Kucia
and Nowak (2000) that the mapping

 −→ Γ(·) ∈  ( ×) (12)

is measurable - i.e., for  an open subset of  ×, (Γ(·)(·))−() ∈ Ω, where

(Γ(·)(·))−() := { ∈ Ω : Γ(·) ∩  6= ∅} (13)

(2) Let ( ) be any metric space. Consider the hyperspace of nonempty, -closed

subsets of ,  (). The distance from a point  ∈  to a set  ∈  () is given by

() := inf
0∈

( 
0). (14)

Given two sets  and  in  (), the excess of  over  is given by

 () := sup
∈

 ( ). (15)

The given two sets  and  in  (), the Hausdorff distance in  () between  and

 is given by

 () = max{ ()  ()} (16)

If ( ) is separable, then ( ()  ) is a separable metric space. If ( ) is compact,

then ( ()  ) is a compact metric space (see Aliprantis and Border, 2006). Often we

will write  rather than  - when the underlying metric is clear.

(3) Again let ( ) be any metric space.  is said to be connected if it cannot be

written as the union of two nonempty, disjoint open subsets of . Equivalently,  is

connected if and only if the only subsets of  that are open and closed in  are the

empty set and  itself. If  is compact and connected it is called a continuum.

2.2 ∗-Convergence and -Convergnece in L∞
A sequence, {} ⊂ L∞ , converges weak star to ∗ = (∗1(·)     ∗(·)) ∈ L∞ , denoted
by  −→

∗
∗, if and only if

Z
Ω

h() ()i () −→
Z
Ω

h∗() ()i () (17)

for all (·) ∈ L1 .
A sequence, {} ⊂ L∞ ,-convergences (i.e., Komlos convergence - Komlos, 1967) tob ∈ L∞ , denoted by  −→


b, if and only if every subsequence, {(·)},  {(·)} has

an arithmetic mean sequence, {b(·)}, where
b(·) := 1



X
=1

(·) (18)

such that b() −→


b() a.e. [] (19)

The relationship between ∗-convergence and -convergence is summarized via the fol-

lowing results which follow from Balder (2000): For every sequence of value functions,
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{} ⊂ L∞ , and b ∈ L∞ the following statements are true:

(i) If the sequence {} -converges to b, then {} ∗-converges to b
(ii) The sequence {} ∗-converges to b if and only if

every subsequence {} of {} has a further subsequence, { },
-converging to b.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (20)

For any sequence of value function profiles, {} in L∞ it is automatic that



Z
Ω

k()k ()  +∞ (21)

Thus, by the classical Komlos Theorem (1967), any such sequence, {}, has a subse-
quence, {} that -converges to some -limit, b ∈ L∞ .
3 USCOs and Upper Caratheodory Correspondences

3.1 USCOs

We have compact metric spaces (L∞  ∗) and ( ). Let UL∞ - () := U(L
∞
   ())

denote the collection of all upper semicontinuous correspondences taking nonempty, -

closed (and hence -compact) values in . Following the literature, we will call such

mappings, USCOs (see Crannell, Franz, and LeMasurier, 2005, Anguelov and Kalenda,

2009, and Hola and Holy, 2009). Given any N ∈ UL∞

- (), denote by UL∞ - ()[N ]

the collection of all sub-USCOs belonging to N, that is, all USCOs  ∈ UL∞

- () whose

graph,

 := {( ) ∈ L∞ × :  ∈ ()} ,
is contained in the graph of N ,

N := {( ) ∈ L∞ × :  ∈ N ()} .

We will call any sub-USCO,  ∈ UL∞

- ()[N ] a minimal USCO belonging to N , if for

any other sub-USCO,  ∈ UL∞

- ()[N ],  ⊆  implies that  =  (see

Drewnowski and Labuda, 1990). We will use the special notation, [N ], to denote the
collection of all minimal USCOs belonging to N .

3.2 Upper Caratheodory Sub-Correspondences

Consider the  correspondence ( ) −→ N ( ), and let

UCΩ×L∞

- ()[N (· ·)] := UCN (22)

denote the collection of all upper Caratheodory mappings belonging to N (· ·). Thus,
(· ·) ∈ UCN if and only if (· ·) ∈ UCΩ×L∞


- () and

( ·) ⊂ N ( ·) for all 

We will refer to the  correspondence (· ·) as a  sub-correspondence belonging to

N (· ·).
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3.3 Connectedness and Caratheodory Approximability

Consider the  composition correspondence,

( ) −→ P( ) := ( N ( ))

:= (1( N ( ))     ( N ( ))) ∈  ( )

⎫⎬⎭ (23)

where N (· ·) ∈ UCΩ×L∞

- () and the function,

(  ) −→ (  ) := (1(  )     (  )) ∈  , (24)

is Caratheodory, measurable in  and jointly continuous in ( ). For all  sub-

correspondences, (· ·) ∈ UCN the induced sub-correspondence

( ) := (  ( )) := (1(  ( ))| {z }
1()

     (  ( ))| {z }
()

) ∈  ( ), (25)

is a  sub-correspondence belonging to P(· ·). Thus, (· ·) ∈ UCP . Each  sub-

correspondence in UCP induces a selection sub-correspondence,  −→ S∞((· )) :=
S∞(1(· )) × · · · × S∞((· )), and we will show that if the underlying  sub-

correspondence, (· ·) ∈ UCN , is continuum valued then this selection sub-correspondence
is weak star upper semicontinuous in  and has fixed points. Thus, we will show that

there exists ∗ ∈ L∞ , such that

∗ ∈ S∞((· ∗)) ⊂ S∞(P(· ∗)) ⊂ L∞  (26)

For  = 1 2    , consider the  sub-correspondence,

( ) −→ ( ) := (  ( )) ⊂ P( ) ∈  (). (27)

Definitions 1 (Caratheodory Approximable  Correspondences)

We say that (· ·) ∈ UCΩ×L∞

- () is Caratheodory approximable if for each   0

there is a Caratheodory function, (· ·) : Ω×L∞ −→ , having the property that for

each ( ) ∈ Ω×L∞ and each ( ( )) ∈ L∞ ×  there exists (
 ) ∈ ( ·)

such that

∗( 
) + (


( ) )  . (28)

We call this Caratheodory function, (· ·), an -Caratheodory selection of (· ·) - or
equivalently, a Caratheodory function,  : Ω×L∞ −→ , such that for each 

( ·) ⊂ ∗×
(( ·)). (29)

We say that the uC correspondence, P(· ·) ∈ UCΩ×L∞

- (), is Caratheodory

approximable if P(· ·) has a uC sub-correspondence, (· ·) ∈ UCP , such that for each
  0, (· ·) has an -Caratheodory Selection

By Corollary 4.3 in Kucia and Nowak (2000), a sufficient condition for (· ·) to
be Caratheodory approximable, and therefore, for (· ·) to have for each   0 an -

Caratheodory selection, is for the  sub-correspondence, (· ·), to have closed, interval
values.
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4 A Fixed Point Theorem for Measurable Selection

Valued Correspondences Induced by  Composi-

tion Correspondences

We will show here, under assumptions [A-1], that for any  composition correspondence,

( ) −→ P( ) := ( N ( )), (30)

if there exists a  sub-correspondence, (· ·) ∈ UCN , taking continuum values in 

(closed and connected values in ), then for each  = 1 2    , the  composition

sub-correspondence,

( ) −→ ( ) := (  ( )), (31)

takes closed, interval values in , and therefore, by Corollary 4.3 in Kucia and Nowak

(2000), (· ·) is Caratheodory approximable. As a consequence, we are able to show that
there exists a function ∗ ∈ L∞ such that

∗() ∈ P( ∗) a.e. [],

or equivalently,

∗ ∈ S∞(P∗).
Here is our main result.

Theorem (A selection correspondence induced by a  composition correspondence

with underlying continuum valued  correspondence has fixed points)

Suppose assumptions [A-1] hold. Let

( ) −→ P( ) := ( N ( ))

be a  composition correspondence where N (· ·) ∈ UCΩ×L∞

- () and

(  ) −→ (  ) ∈  is Caratheodory. If the  correspondence, N (· ·), contains
a  sub-correspondence, (· ·), taking closed connected values in , then there existsb ∈ L∞ such that b() ∈ P( b) a.e. [].
Proof: As noted above, because (· ·) takes closed and connected values, the induced

 composition sub-correspondence,

( ) −→ ( ) := (1( )     ( ))

= (1(  ( ))     (  ( ))) := (  ( )),

⎫⎬⎭ (32)

is such that for each  = 1 2    , ( ) −→ ( ), takes closed interval values in

, implying via Corollary 4.3 in Kucia and Nowak (2000) that (· ·) is Caratheodory
approximable. Thus, there is a sequence of -tuples of Caratheodory functions,

{(· ·)} := {(1 (· ·)     (· ·))}, (33)

such that for each  and for each ( ) ∈ Ω × L∞ there exists for each , (  ) ∈
( ·) such that,

∗( 
) + (


 ( ) 


 ) 

1
· . (34)
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Next, consider the mapping from L∞ to L∞ given by

 −→ () := (· ) := (1 (· )     (· )) ∈ L∞ . (35)

Observe that for each , (·) is continuous (i.e.,  −→
∗

∗ implies that () −→
∗

(∗)). This is true because for each   −→
∗

∗ implies that for each  ∈ Ω, as
 −→ ∞, ( ) −→


( ∗) ∈  . Therefore, for  ∈ L1 chosen arbitrarily,

( ) ()
® −→


h( ∗) ()i a.e. [], implying that as  −→∞,Z

Ω


( ) ()

®
() −→

Z
Ω

h( ∗) ()i ()

Since the choice of  ∈ L1 was arbitrary, we can conclude that if  −→
∗

∗, then

(· ) −→
∗

(· ∗) ∈ L∞ . By the Brouwer-Schauder-Tychonoff Fixed Point Theorem
(e.g., see Aliprantis-Border, 17.56, 2006), for each , there exists  ∈ L∞ such that

 = () := (· ). (36)

Thus, we have for each  a set, , of -measure zero such that

() = ( ) for all  ∈ Ω\, () = 0 (37)

Letting ∞ := ∪ - so that, (∞) = 0 - we have for each  = 1 2   and for each

 = 1 2    , that

 () =  ( 
) for all  ∈ Ω\∞, (∞) = 0 (38)

Call the equation (38), one for each , the Caratheodory equation and call the sequence,

{}, in L∞ the Caratheodory fixed point sequence

For each pair of -tuples of Caratheodory approximating functions and fixed points,

((· ·) ), consider the measurable function,
 −→ min()∈(·)[∗(

 ) + (

 ( 

) )], (39)

By Lemma 3.1 in Kucia and Nowak (2000) the graph correspondence,  −→ ( ·),
is measurable, and therefore, by the continuity of the function

( ) −→ [∗(
 ) + (


 ( 

) )]

on L∞ × , there exists for each , a measurable (everywhere) selection of ( ·),
 −→ (  ) ∈ L∞ ×  (40)

solving the minimization problem (39) state-by-state (see Himmelberg, Parthasarathy,

and VanVleck, 1976). Moreover, we have by the Caratheodory approximability of 

Nash payoff sub-correspondence,

(· ·) := (1(· ·)     (· ·)),

and (34) above that for the sequences of optimal selections, {((·)  (·))},  = 1 2    ,
where for each  and for each ,  ∈ L∞ and  ∈ , we have for each  and for each

,

∗(
  )| {z }


+ (

 ( 

) )| {z }


 1
· . (41)
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Given (37) and (41), we have for the sequences,

{(· ·) } and {(·)  (·)}  = 1 2    , (42)

that for all  ∈ Ω\∞, (∞) = 0, and for all ,

∗(
  ) + (


 () 


)| {z }



 1
· , (43)

where for each  and for each ,  −→  is L∞ -valued, while  −→  is -valued,

and

 := (

1     


) ∈ (1( 1 )     (  )) for all  ∈ Ω. (44)

Next, because (L∞  ∗) is a compact metric space we can assume without loss of

generality that the sequence of fixed points in L∞ , {}, -converges to some b ∈ L∞ ,
implying that  −→

∗
b and therefore implying via (41)A that  −→

∗
b uniformly in 

and . Moreover, by (43)C, we have that

b = 1


X
=1

 −→


b() a.e. [], (45)

where for each ,  ∈ ( 

 ) for all . By the properties of -convergence, for

each  = 1 2 3   , there is a set, b, of -measure zero such that for all  and for all

 ∈ Ω\ b as  −→∞

b+ = 1


X
=1

+ −→
b(),

and

b+ () = 1


X
=1

+ () −→


b().

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(46)

Letting b∞ := ∪∞=1 b we have that for any  = 1 2 3   , that for each player the trun-

cated sequences, {+
(·) }∞=1 and {+ (·)}∞=1, have arithmetic mean sequences, {b+(·) }∞=1

and {b+ (·)}∞=1, converging pointwise to b(·) off the set b∞ of -measure zero where

the exceptional set b∞ is independent of .

Because ( ·) is ∗--upper semicontinuous and because for each ,  −→
∗

b
uniformly in  and , we have for each  and  and for any sequence of  = 1 2   ,

increasing to ∞, that there is a sequence {} increasing to ∞, such that for all  ≥
 the -open ball, 

( 1

 ( b)), about ( b) of radius 1


with closure given

by the closed, convex ball, 
( 1

 ( b)), about ( b) of radius 1


, is such that

for all  ≥  and  = 1 2   .

( 
(+)
 ) ⊂ 

(
1



 ( b)) ⊂ 
(
1



 ( b)) (47)

Moreover, for all  ∈ Ω\(∞ ∪ b∞),  ≥  , and  = 1 2   , we have for each 


+
 ∈ ( 

(+)
 ) ⊂ 

(
1



 ( b)). (48)
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Because 
( 1

 ( b)) is closed and convex, and because

b+ ∈ 
(
1



 ( b)) for all  ∈ Ω\(∞ ∪ b∞),  ≥  , and  = 1 2    , (49)

the fact that for each , b+ −→


b() for each  ∈ Ω\(∞∪ b∞) and for each  ≥ 

as  = 1 2   , goes to ∞, implies that for each  and for all  ∈ Ω\(∞ ∪ b∞),
b() ∈ 

(
1



 ( b)) for all . (50)

Thus, as  −→∞ we have in the limit for each  and for each  ∈ Ω\(∞ ∪ b∞)
b() ∈ ( b).

Thus, we have b = (b1     b) such that
b() ∈ ( b) ⊂ P( b) a.e. []. (51)

Q.E.D.

5 Comments

(1) Note that, due to the fact that Komlos convergence implies weak star convergence,

the arguments given in the latter part of the proof above (see expressions (45)-(50) above)

establish that the  Nash payoff sub-correspondence induces a weak star upper semi-

continuous selection sub-correspondence,  −→ S∞().
(2) Fu and Page (2022a) established that all PSG satisfying assumptions [-1] above

have  Nash correspondences given by a bundle of minimal  Nash correspondences

each of which takes minimally essential, connected Nash values. Given that all DSG
satisfying the usual assumptions have one-shot games satisfying assumptions [-1], all

such DSG have Nash payoff selection correspondences having fixed points - implying
that all such DSG have stationary Markov perfect equilibria (SMPE) - see Fu and Page
(2022b).

References

[1] Aliprantis, C. D. and Border, K. C. (2006) Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, 3rd Edition, Springer-Verlag, Berlin-Heidelberg.

[2] Anguelov, R. and Kalenda, O. F. K. (2009) “The Convergence Space of Minimal

USCO Mappings,” Czechoslovak Mathematical Journal 134, 101-128.

[3] Balder, E. J. (2000) “Lectures on Young Measure Theory and Its Application in

Economics,” Rend. Instit. Mat. Univ. Trieste XXXI Suppl. 1, 1-69.

[4] Crannell, A., Franz, M., and LeMasurier, M. (2005) “Closed Relations and Equiva-

lence Classes of Quasicontinuous Functions,” Real Analysis Exchange 31, 409-424.

[5] Drewnowski, L. and Labuda, I. (1990) “On Minimal Upper Semicontinuous Compact-

Valued Maps,” Rocky Mountain Journal of Mathematics 20, 737-752.

9



[6] Fu, J. and Page, F. (2022a) “Parameterized State-Contingent Games, 3 Minimal

Nash Correspondences, and Connectedness,” Discussion Paper 116, Systemic Risk

Centre, London School of Economics.

[7] Fu, J. and Page, F. (2022b) “New Properties of Nash Correspondences: Discounted

Stochastic Games and Stationary Markov Perfect Equilibria,” Discussion Paper 114,

Systemic Risk Centre, London School of Economics.

[8] Himmelberg, C. J. (1975) “Measurable Relations,” Fundamenta Mathematicae 87,

53-72.

[9] Himmelberg, C. J., Parthasarathy, T., and VanVleck, F. S. (1976) “Optimal Plans for

Dynamic Programming Problems,” Mathematical of Operations Research 1, 390-394.

[10] Hola, L. and Holy, D. (2009) “Minimal USCO Maps, Densely Continuous Forms,

and Upper Semicontinuous Functions,” Rocky Mountain Journal of Mathematics 39,

545-562.

[11] Hola, L. and Holy, D. (2015) “Minimal USCO and Minimal CUSCOMaps,” Khayyam

Journal of Mathematics 1, 125-150.

[12] Komlos, J. (1967) “A Generalization of a Problem of Steinhaus,”Acta Mathematica

Academiae Scientiarum Hungaricae 18, 217-229.

[13] Kucia, A. and Nowak, A. (2000) “Approximate Caratheodory Selections,” Bull. Pol.

Acad. Sci. Math. 48, 81-87.

10



 



The London School of Economics 
and Political Science 

Houghton Street 
London WC2A 2AE 

United Kingdom

tel: +44 (0)20 7405 7686 
systemicrisk.ac.uk 

src@lse.ac.uk


