Asset Management and Market Stability

Dimitri Vayanos

LSE, CEPR and NBER

IGA/FMG/SRC Conference

30-31 January 2019

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Introduction

- Financial markets have become highly institutionalized.
 - Individual investors held directly 21.5% of US stocks in 2007, down from 47.9% in 1980 (French (JF 2008)).
 - Remainder held by mutual funds, pension funds, insurance companies, etc.
 - Share of institutions is larger for bonds, derivatives and commodities.
- Professional asset managers should be better able than individual investors to correct market inefficiencies.
 - Greater specialization and expertise.
- Yet, institutions may generate important procyclicalities.
 - Flows in and out of mutual funds are sensitive to performance and amplify price movements.
 - Benchmarking and tracking-error constraints can amplify price movements.
- Agency problem is key to the procyclicalities.

- Should policy makers care about prices in financial markets being distorted?
- Prices determine allocation of capital in the economy.
 - Overvalued companies may attract too much real investment, at the expense of undervalued ones.
- Distortions matter for the conduct of monetary policy.
 - Rise in interest rates can be amplified through institutional flows. (Ferroli-Kashyap-Schoenholtz-Shin (2014)).
- Bank of England and Financial Conduct Authority.
 - FCA/LSE/SEBI conference "Paying for Efficient and Effective Markets", 22-23 March 2019.
 - BoE/Imperial/LSE conference "Non-Bank Financial Institutions and Financial Stability", 28 September 2019.

- Evidence on the procyclicalities.
- Theoretical approaches to modelling the procyclicalities.
- Policy implications.

Amplification Through Flows

• Performance of stocks held by mutual funds that experience extreme outflows in a given quarter ("event quarter").

Summary

- Before event quarter:
 - $\bullet\,$ Large negative return. Cumulative average abnormal return (CAAR) \approx -11% over 12 months.
 - Large negative stock return is associated with large negative fund return. Fund return triggers the extreme outflows and the fire-sales.
- During event quarter:
 - Large negative return. CAAR \approx -3% over 3 months.
- After event quarter:
 - Large positive return. CAAR \approx 9% over 18 months (long time!)
 - \rightarrow Flows amplify price drop.
- Similar findings for "fire-purchases" (extreme inflows).

- Performance-based flows amplify price movements.
- If flows respond to performance with a lag, stock returns exhibit short-run momentum (continuation) and long-run reversal.
 - Lou (RFS 2012): Empirical evidence linking momentum to flows.
 - Vayanos-Woolley (RFS 2013): Theory.

Flow-Performance Relationship

- Flows respond to performance with a lag.
- Impulse response flattens after twelve quarters (long time!)

8 / 16

• Effect of a stock's addition to the S&P 500 index.

Panel A. Additions			
	196207-197608	197609-198909	198910-200012
Initial sample	305	297	303
Final sample	279	263	218
Cumulative Abnormal Returns			
Anndate	-0.047	3.171***	5.446***
	0.495	0.932***	0.940***
Anndate to effdate			8.899***
			0.927***
Anndate to effdate + 20 (CAR20)	-0.742	3.123***	6.396***
	0.470	0.681***	0.688***
Anndate to effdate + 60 (CAR60)	0.588	3.556***	6.189***
	0.505	0.635***	0.615^{***}

Source: Chen-Noronha-Singal (JF 2004)

• Effect of a stock's deletion from the S&P 500 index.

Panel B. Deletions			
	196207-197608	197609–198909	198910-200012
Initial sample	305	297	303
Final sample	145	28	62
Cumulative Abnormal Returns			
Anndate	-0.407^{*}	-1.168	-8.462^{***}
	0.469	0.393	0.016***
Anndate to effdate			-14.436^{***}
			0.032***
Anndate to effdate + 20 (CAR20)	1.189*	-1.642	-4.710
	0.593**	0.357	0.339**
Anndate to effdate + 60 (CAR60)	2.172	-1.715	0.394
	0.572^{*}	0.429	0.452

Source: Chen-Noronha-Singal (JF 2004)

• Before 1976, index additions and deletions had no effect.

- During 1976-1989:
 - Index additions raised price of average stock by 3.17%.
 - Index deletions lowered price, but effect was not statistically significant.

(日) (部) (注) (注) (三)

- After 1989, index additions and deletions had strong effect.
 - Index additions raised price of average stock by 8.90%.
 - Index deletions lowered price of average stock by 14.44%.
 - Effect reversed partly after two months, especially for deletions.
- Could effects be due to signalling?

Index-Induced Comovement

- Effect of a stock's classification on return comovement.
- Marginal value vs. marginal growth stocks: Similar characteristics, but classified into BARRA's value and growth index, repectively.

1992-2004					
Marginal Growth Portfolio		Marginal Valu	Marginal Value Portfolio		
β_{GG}	β_{GV}	β_{VG}	β_{VV}		
0.875 ***	0.235	0.339 ***	0.920 ***		
(3.65)	(1.11)	(3.97)	(9.61)		
T3-A	Т3-В				
$\beta_{GG} - \beta_{VG}$	$\beta_{VV} - \beta_{GV}$				
0.537 **	0.685 ***				
(1.86)	(2.71)				

1981-1991 (Control)					
Marginal Growth Portfolio		Marginal Valu	Marginal Value Portfolio		
β _{GG}	β_{GV}	β _{VG}	β _{vv}		
0.498 ***	0.477 ***	0.368 ***	0.651 ***		
(6.23)	(6.22)	(4.41)	(8.55)		
T3-A	T3-B				
$\beta_{GG} - \beta_{VG}$	$\beta_{VV} - \beta_{GV}$				
0.130	0.174 *				
(0.98)	(1.41)				

Source: Boyer (JF 2010)

- Stocks much more correlated with their respective indices.
- Effects not due to signalling.
 - BARRA's indices are constructed mechanically (unlike S&P's).

4 1 1

- Benchmarking and tracking-error constraints affect prices.
- Constraints are relevant for many types of institutions.
 - Mutual funds, institutional asset managers, pension funds, insurance companies, endowments, sovereign wealth funds.
- Constraints can arise in response to agency problem. (Vayanos (2018), Buffa-Vayanos-Woolley (2019))
 - Investors limit tracking error because the managers may gamble for a high fee while being uninformed.

Tracking-Error Constraints and Amplification

- \bullet Overvalued asset rises \rightarrow Volatility of a position relative to benchmark rises
 - \rightarrow Asset managers who underweigh the asset buy to reduce tracking error.
 - Buffa-Vayanos-Woolley (2019).

• Distortions are higher during bubbles than during crises.

- Can volatility of a position rise when price drops?
- Natural assumption for bond market.
- $\bullet \rightarrow$ Tracking-error induced distortions may be:
 - Larger during bubbles for stock market.
 - Larger during crises for bond market.

- Design of asset-management contracts and benchmarks matters for asset prices.
 - Contracts solve agency issues at the micro level.
 - But they also affect asset prices at the macro level.
- Tracking-error constraints in Buffa-Vayanos-Woolley (2019):
 - Render overvalued assets more overvalued and volatile.
 - Render undervalued assets more undervalued and less volatile.
 - Raise aggregate market by 4% and its volatility by 5%, relative to the case where investors do not impose the constraints (acting sub-optimally).
 - Asymmetry: Effects on overvaluation are larger.
 - By seeking to reduce risk at micro level, investors amplify it at macro level.
- Design of asset-management contracts and benchmarks deserve policy-makers' attention.