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Abstract

We assess the ability of an information aggregation mechanism that operates in the
over-the-counter market for financial derivatives to reduce valuation uncertainty
among market participants. The analysis is based on a unique dataset of price
estimates for S&P 500 index options that major financial institutions provide to a
consensus pricing service. We consider two dimensions of uncertainty: uncertainty
about fundamental asset values and strategic uncertainty about competitors’ valua-
tions. Through structural estimation, we obtain empirical measures of fundamental
and strategic uncertainty that are based on market participants posterior beliefs.
We show that the main contribution of the consensus pricing service is to reduce
its subscribers’ uncertainty about competitors’ valuations.
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1 Introduction

In financial markets, prices serve a dual purpose. They aggregate dispersed in-
formation about asset values. At the same time, they help to coordinate ac-
tions among market participants. Empirical work on the informational content
of prices typically focuses on their ability to reduce valuation uncertainty. How-
ever, their ability to reduce uncertainty about other market participants’ actions
and beliefs, that is strategic uncertainty, can be of equal importance in markets
with strong coordination motives (Angeletos and Pavan (2007); Morris and Shin
(2002)). Episodes of financial markets stress provide ample evidence for this fact.
Lowenstein (2000), for example, gives a vivid account of the bond market at the
height of the LTCM crisis on August 31, 1998:

“It was as if a bomb had hit; traders looked at their screens, and the
screens stared blankly back. [...] So few issues traded, you had to guess
where they were.” (p.159)

Prices provide a public signal about actions and beliefs. At an institutional level
price data are used to value trading books, manage risk exposures and provide
reference prices for trading. As the above quote illustrates, the lack of price data
threatens the common understanding of market conditions among market partic-
ipants. This can lead to costly coordination failures (Morris and Shin (2012)).
Trading, however, is not the only available mechanism to generate prices. In many
markets, alternative information aggregation mechanisms exist to address a tem-
porary or permanent shortage of price information. A popular type of mechanism
in financial markets is consensus pricing. A consensus pricing service collects price
estimates from market participants and aggregates these estimates into a so-called
consensus price. Consensus prices are available to market participants irrespective
of the level of trading activity in the underlying market.

In this paper we develop a structural framework to quantify the price informative-
ness and informational e�ciency of a consensus pricing mechanism. We evaluate
these criteria for both valuation uncertainty and strategic uncertainty. The analy-
sis is based on a novel dataset of individual price estimates that major derivatives
dealers provide to a consensus pricing service.1 We model dealers as Bayesian
agents that learn about a time-varying fundamental asset value. Each dealer re-
ceives two noisy signals about this asset value. The first is a noisy private signal
about the current fundamental value of the asset. The second signal is a consensus

1Derivatives dealers, typically large banks, stand ready to satisfy client demand for derivatives
and manage the risk from these positions by either hedging it with other instruments or entering
o↵setting trades.
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price; it is the average of all submitters’ estimates of the asset value. The consensus
price is modelled as an endogenous signal. It derives from the submitters’ learn-
ing process and, consequently, its informational content is an equilibrium outcome.

Our measures of valuation and strategic uncertainty are based on submitters’ be-
liefs. In particular, we use the variances of a submitter’s posterior beliefs about the
asset value to measure valuation uncertainty. We use the posterior variance of their
beliefs concerning other submitters’ valuations to measure strategic uncertainty.
To evaluate the informational properties of the consensus price feedback, we per-
form two counterfactual experiments for the market’s information structure. First,
to gauge the informativeness of the consensus price, we counterfactually eliminate
the consensus price mechanism and study how posterior beliefs are a↵ected by
this change in submitters’ information sets. Second, we evaluate the informational
e�ciency of the consensus price, that is how well it aggregates dispersed informa-
tion. To do so, we compare the actual information structure of the market to a
counterfactual setting in which submitters pool their private information.

To estimate our model we use a proprietary panel dataset of consensus prices and
the corresponding individual submissions for S&P500 index options. These data
are collected by IHS Markit’s Totem service, a major consensus pricing service in
the derivatives market. Being able to track individual submitters’ price estimates
as well as the consensus feedback they receive allows us to estimate our structural
model. An additional, unique feature of these data, is that broker-dealers submit
to option contracts for a fixed underlying asset but varying times-to-expiration
and moneyness, that is varying extremeness of the insured asset price movements.
As times-to-expiration and moneyness of the options become more extreme, the
dominant market structure changes from centralized options exchanges to over-
the-counter (OTC) trading. Trade in the OTC market is bilateral without the
intermediation of an exchange. In such markets, transaction prices tend to be pro-
prietary information of the trading partners. The variation in dominate market
structure allows us to estimate the importance of a consensus pricing service in
information poor and rich environments.

The estimation of the structural model, contract by contract, reveals important
variation in the informational properties of the consensus price for valuation and
strategic uncertainty. For contracts that are mainly traded on exchanges, we find
that a precise private signal renders the consensus price essentially redundant.
Dealers put little weight on the consensus price when updating their beliefs. For
contracts that are typically traded in the OTC segment of the market, dealers
assign a higher weight to the consensus price. Surprisingly, we find that the con-
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sensus price is not an important source of information for contract valuation. The
reduction in valuation uncertainty by gaining access to the consensus price is at
most 4.6%. However, dealers find the consensus price to be highly informative
about the strategic aspect of the market. For options with extreme contract terms
the reduction in strategic uncertainty ranges from 5% to 37.8%. We find con-
sensus prices in market segments that overlap with exchange-based trading to be
fully e�cient. For the extreme contracts that are traded OTC, a fully e�cient
price could contribute an additional 33.5% reduction in valuation uncertainty and
an additional 66.1% in strategic uncertainty. This demonstrates the importance
of publicly observable valuation data, such as benchmarks, to establish a shared
understanding of market conditions in OTC markets.

The structural estimation framework developed in this paper makes a methodolog-
ical contribution to the empirical measurement of the informational e�ciency and
informativeness of prices. The modern conceptual framework for these questions
dates back to the early 1980s with seminal contributions by Grossman and Stiglitz
(1980), Hellwig (1980) and Diamond and Verrecchia (1981).2 However, as pointed
out by Townsend (1983), determining the informational content of the price pro-
cess in a dynamic equilibrium context poses significant technical challenges. Typ-
ically, the applied literature side-steps these problems. Most structural empirical
analyses of price formation in stock markets, for example, follow the information
structure in Easley, Kiefer, O’Hara, and Paperman (1996) and assume that asset
values do not change intraday and become common knowledge at the end of a
trading day. In this paper, we are particularly interested in the ability of the price
process to track an uncertain, and importantly, changing asset value. This evolv-
ing source of uncertainty paired with privately informed market participants is a
key source of belief heterogeneity and, hence, strategic uncertainty in our model.
We adopt an algorithm developed in Nimark (2017) to solve the dynamic signal
extraction problem and structurally estimate the model. It is well known that
the mix between public and private information is an important determinant for
the speed of information aggregation (Vives (1997), Amador and Weill (2012)).
As we model the consensus price as an endogenous public signal, we can conduct
counterfactual experiments on the market’s information structure to evaluate the
strength of informational externalities caused by public information.

A novel aspect of our empirical approach is the focus on strategic uncertainty.

2The modern literature on information aggregation is too large to do justice to here. Impor-
tant contributions have focused on auctions (Pesendorfer and Swinkels (1997); Kremer (2002)),
decentralized trading (Gale (1986), Golosov, Lorenzoni, and Tsyvinski (2014)), asset design (Os-
trovsky (2012)) or the trade-o↵ between market size and information heterogeneity (Rostek and
Weretka (2012)).
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Here, the structural approach is particularly useful as data on market partici-
pants’ higher-order beliefs are typically not available. We can use model-implied
higher-order beliefs to assess how price information impacts strategic uncertainty.
Empirical work on auctions has taken a similar structural measurement approach
to evaluate the strategic value of information. Hortaçsu and Kastl (2012) and
Hortaçsu, Kastl, and Zhang (2018) work on Treasury auctions, for example, uses
model-implied beliefs derived from a structural estimation to gauge the strategic
value dealers derive from being able to observe client demand. Similarly, Bo-
yarchenko, Lucca, and Veldkamp (2019) use a calibrated model to perform coun-
terfactual informational experiments in the US Treasury market to evaluate the
welfare implications of di↵erent information-sharing arrangements among dealers
and clients. However, the source of strategic information in these models is order
flow information rather than price data. More generally, we see the counterfactual
experiments we perform on the market’s information structure as an illustration of
the usefulness of our structural approach for empirical work on information design
(Bergemann and Morris (2019)).

This paper is, to our knowledge, the first to provide an empirical evaluation of
the informational properties of a consensus pricing mechanism. The consensus
pricing mechanism itself is widely used in financial markets. Many important
financial benchmarks are consensus prices. It is also employed by information
providers, such as Bloomberg, to calculate generic prices for a wide range of fi-
nancial products. The manipulation of major interest rate benchmarks has led to
a regulatory push to base benchmarks on transaction prices or firm quotes rather
than expert judgment (IOSCO (2013), Financial Stability Board (2014)). How-
ever, in illiquid markets and during crisis times this might not always be possible.
It is thus crucially important to understand whether, and how, a consensus pric-
ing mechanism works in practice. Du�e, Dworczak, and Zhu (2017) show how
benchmarks can reduce informational asymmetries in search markets and thereby
increase the participation of less-informed agents. Here, we focus on the ability
of consensus prices to aggregate dispersed information among symmetrically in-
formed derivatives dealers. This also contributes more widely to understanding of
the informational value of non-transaction based price information. Previous work
in this area has focused on information aggregation mechanisms that operate in
stock markets, in particular pre-opening prices (Biais, Hillion, and Spatt (1999),
Cao, Ghysels, and Hatheway (2000)) and opening auctions (Madhavan and Pan-
chapagesan (2000)).

The plan of the paper is as follows. Section 2 explains the Totem consensus
pricing service and provides summary statistics for our data. Section 3 develops a
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theoretical model of consensus pricing. Sections 4 and 5 explain the estimation of
the model and presents the results. Section 6 concludes.

2 Data

2.1 Consensus Pricing

The empirical analysis of the paper is based on data from a consensus pricing
service for financial derivative contracts, IHS Markit’s Totem service. Consensus
pricing services allow market participants to anonymously share valuation infor-
mation. The service, in turn, aggregates individual contributions into so-called
consensus prices and feeds those back to the contributors. Consensus pricing ser-
vices mostly operate in OTC markets where they address market participants’
demand for reliable price data. These are needed to value books, manage risk
exposures and provide reference prices for trading. Totem is such a service for the
OTC derivatives market. The service started in February 1997 with 6 major OTC
derivatives dealers. Since then, Totem has become the leading platform for OTC
consensus price data with around 120 participants and a coverage of all major
asset classes and types of derivatives contracts.

The pricing services typically operate at a monthly frequency. At the end of the
month, contributors are issued spread sheets into which they enter the relevant
price data. In addition to their estimate of the contract price itself, it includes
other data used in the pricing of the contract such as discount factors, dividend
yields, the price of the underlying asset, etc.3 Price submissions that are deemed
problematic do not enter the consensus price calculation and the submitting insti-
tution does not receive the consensus price for the submission period. The ability
to deprive a submitting institutions of the consensus price information serves as
an incentive mechanism to induce participants to submit high quality price data.4

Accepted price submission are then used to calculate consensus prices, one for
each derivatives contract. The consensus price for a given derivatives contract is

3All submitters are asked to provide their best estimate of the mid-quotes (at a pre-specified
time on the so-called valuation day) for the set of derivatives contracts they participate in. For
a detailed description of the submission process and the quantities submitted see Appendix 7.7.

4Manipulation incentives for consensus prices of OTC derivatives are generally weaker than
for benchmark interest rates, such as Libor, that are compiled using a similar method. Unlike
in the benchmark interest rate case, no financial products in the OTC derivatives markets are
indexed to consensus prices. Hence, changes in consensus prices do not immediately impact an
institution’s profits and losses. Additionally, the Totem consensus pricing service has significantly
more submitters than interest rate benchmarks, on average 30 per contract, which makes strategic
manipulation of the consensus price more di�cult.
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the arithmetic mean of the accepted price estimates.5 Totem provides contribu-
tors with the new consensus prices within 5 hours of their initial price submissions.

We have access to the full history of Totem contributors’ price submissions for
European put and call options on the S&P 500 index for the period December
2002 to February 2015. The individual institutions are anonymised, but we can
track each institution’s submissions over time and across contracts. Our base-
line sample consists of option contracts with moneyness, expressed as the ratio
of the option’s strike price to the current index level, between 60 and 200 and
times-to-expiration between six months and seven years. All options are either
out-of-the-money or at-the-money. This implies that all options with moneyness
below 100 are put options and those with moneyness above 100 are call options.
In total we consider 78 distinct option contracts with, on average, 30 submitters
per contract.6

2.2 Market structure

Put and call options on the S&P 500 index are arguably the central derivatives
contract for the equity market. Their prices contain rich information on market
participants’ beliefs about future US stock market movements and risk premia.
Furthermore, they are a key input for the pricing of more exotic derivatives prod-
ucts.

The dominant market structure for options trading depends on the terms of the
contract. Option contracts with times-to-expiration of less than 6 months and
strike prices close to the current index value are typically traded on options ex-
changes, such as the Chicago Board Options Exchange (CBOE), via limit order
books. Price quotes, transaction prices and volumes are fully transparent and avail-
able to all market participants. For options with more extreme contract terms the
dominant market structure is OTC. The OTC market is centred around a network
of dealers, typically large banks, that act as market-makers and trade with each
other or with clients such as insurers, asset managers, and pension funds. Trades
are negotiated bilaterally, often over the phone, email or instant messaging. For
OTC trades, both transaction price and volume remain proprietary information of
the two parties involved in the trade.7 Figure 1 displays the average on-exchange

5Typically, the highest and lowest price among the accepted prices are dropped from the
sample before the mean is calculated. In the case of fewer than 7 accepted price submissions,
the highest and lowest price are included in the mean.

6Tables 7 and 8 in the Appendix show the range of available option contracts with corre-
sponding sample period and average number of submitters.

7Some dealers run proprietary electronic trading platforms on which they post price quotes.
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trading activity for put and call options on the S&P 500 index for the period 1998 to
2015. On-exchange trading activity is tailing o↵ in the time-to-expiration and the
extremeness of strike price. In the “outer regions” of the time-to-expiration/strike
price space, trading is exclusively OTC.8

2.3 Valuation di↵erences among dealers

To provide a sense of the cross-sectional dispersion in Totem submitters’ option
valuations, the left panel of Figure 2 depicts the cross-sectional standard deviation
of price submissions, averaged over the sample period. Throughout the paper, we
express option prices in terms of Black-Scholes implied volatilities (IVs). This is the
market convention for quoting option prices. It facilitates the comparison of option
prices across times-to-expiration and strike prices. There is considerable variation
in the dispersion in submitters’ prices across the contract space. It is highest for
short-dated options with extreme strike prices. For a given time-to-expiration,
the dispersion is lowest for strike prices close to the current index level, that is a
moneyness of 100. The price dispersion across submitters tends to decrease with
time-to-expiration. The cross-sectional di↵erences in Totem submissions are eco-
nomically meaningful; they are of similar magnitude to bid-ask spreads observed
on option exchanges in regions where OTC and on-exchange trading overlaps, but
they display a low level of correlation with these bid-ask spreads over time, as seen
in Figure 6 in the Appendix.

The right panel of Figure 2 shows how persistent individual submitters’ deviations
from the consensus price are. For each contract, we estimate the following AR(1)
regressions

pci,t � pct = �c
�
pci,t�1

� pct�1

�
+ ✏ci,t,

where pci,t is institution i’s price submission for contract c in period t and pct is the
corresponding consensus price. The right panel of Figure 2 reports the estimated

In 2010, various electronic trading platforms introduced request-for-quote systems to further
increase pre-trade price transparency. The regulatory reforms after the financial crisis have
also introduced mandatory post-trade reporting to trade repositories for all OTC derivatives
transactions. These are regulatory data and not available to market participants. Another source
for price and volume information in OTC markets are central counterparties (CCPs). However,
unlike for interest rate and credit derivatives, OTC equity derivatives trades are currently not
subject to a central clearing mandate. The current proportion of OTC equity derivatives trades
that is centrally cleared is negligible (see Financial Stability Board (2018)).

8For the overlapping region traders might choose an OTC over an on-exchange trade due to
cost or market impact considerations. If a master agreement is already in place between two
parties, direct trading can be cost saving, especially in case of large trades. Furthermore, large
customized client originated trades might be di�cult to hedge for the dealer if the original trade
is publicized. Here, the pre-trade transparency of on-exchange trading is undesirable.
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Figure 1: IHS Markit Totem surface vs on-exchange option trade

This figure presents the average percentage of days in a month options on the S&P500 index are
traded between 1998 and 2015. For a particular submission date we sum the days of trade from
the day after the previous submission date till the current submission date. Only days where
the total volume is 10 contracts or more are included as trading days. The data includes all the
put and call options traded at the specified moneyness. Due to the coarse grid of the options
reported to the Totem service, exchange traded contracts in the proximity of a Totem contract
are aggregated to one point. Proximity is defined here as less than half the distance to the next
totem contract by moneyness and time-to-expiration. The data is provided by OptionMetrics.

� coe�cients expressed as half-lives. Submitters’ deviations from consensus are
persistent for all contracts. The persistence pattern partially mirrors the cross-
sectional dispersion in the left panel of Figure 2. The degree of persistence is
U-shaped in the moneyness dimension. Deviations from consensus are least per-
sistent for short-dated options with strike prices close to the current index level.

From the data, we draw some preliminary observations that guide our structural
modelling:
1. All submitters are asked to provide their best estimate for the mid-quote of
a given contract, i.e. a market-wide price. If all dealers had access to the same
information and assumed the same structure for the market, they should all pro-
vide the same price estimate. In this paper we abstract from model disagreement
or model uncertainty and assume that submitters form expectations via Bayesian
updating. Under this interpretation of the data, the cross-sectional dispersion

8
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(a) CS dispersion (b) Half-lifes

Figure 2: The left figure displays the time-series average of the cross-sectional standard
deviation of submitters implied volatility estimates to a particular contract. The right figure
present half-lives estimates of the individual deviations from the contemporaneous consensus
price. The half-lives are transformations from an AR(1) regression. The estimates are from a
pooled ordinary least squares regression. The y-axis of each figures gives the time-to-expiration
and the x-axis the moneyness of the options contract under consideration. The sample period of
the data is December 2002 to February 2015 for the option contracts on the S&P500 index.

reveals informational frictions in the OTC market. These frictions vary across
market segments.
2. The informational frictions revealed by the cross-sectional dispersion have to
derive from submitting institutions’ private information. Imperfect information
that is observed by all submitters does not induce cross-sectional dispersion. How-
ever, the cross-sectional dispersion alone cannot identify the precision of private
valuation information as both very precise and very imprecise private information
imply low cross-sectional dispersion.
3. If the consensus price perfectly aggregated dispersed information, then all in-
stitutions should have the same expectation about the mid-quote after observing
the current consensus price. Any deviation from consensus has to be driven by
new private information. In this case, deviations from consensus cannot be persis-
tent; an institution’s past relative position to the consensus price has no predictive
power for its future relative position. This is clearly rejected by the data. The
positive persistence points to imperfect information aggregation and, consequently,
long-lived private information at the level of individual submitters.
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3 A Model of Consensus Pricing

We develop a model of consensus pricing that captures the most important features
of the consensus pricing process and is able to generate key features of the data.
The consensus price is the equilibrium outcome of a social learning process. Its
informational content is an equilibrium outcome of the model. We obtain measures
of valuation and strategic uncertainty based on submitters’ beliefs.

3.1 The model

A large number of dealers, modelled as a continuum indexed by i 2 (0, 1), par-
ticipate in a consensus pricing service. At discrete submission dates, indexed by
t = {...,�1, 0, 1, ...}, each dealer i submits its best estimate for the current value of
a latent stochastic process (✓t), the fundamental value of a contract, to the service.
The stochastic process itself evolves according to

✓t = ⇢ ✓t�1 + �u ut with ut ⇠ N (0, 1) , (1)

and �1 < ⇢ < 1.9

At each submission date t, submitters observe two signals. Each institution re-
ceives a noisy private signal si,t about ✓t,

si,t = ✓t + �⌘ ⌘i,t with ⌘i,t ⇠ N (0, 1) ,

where 1/�2

⌘ measures the precision of the private signal. All dealers receive signals
are of equal quality.

Additionally, each institution observes last period’s consensus price pt�1. This
timing assumption is a key di↵erence to standard rational expectations equilib-
rium (REE) models. The available consensus price is a signal of last period’s
state.10 The consensus price pt is a noisy average of submitters’ best estimates of
✓t. Submitter i’s information set at the time of period t’s consensus price submis-
sion consists of the (infinite) history of previous consensus prices and the private

9We do not explicitly model the economic forces responsible for the variation in fundamen-
tal values. A possible interpretation is based on demand-based option pricing models (see, for
example, Gârleanu, Pedersen, and Poteshman (2009)). Changes in fundamental values derive
from time-varying client demand that is satisfied by risk-averse broker-dealers. Under this inter-
pretation, ut is an aggregate demand shock for options with a specific strike price and maturity
combination.

10This feature of the consensus pricing mechanism allows us to avoid certain technical di�-
culties that arise in the REE literature. Given that it is a signal of the past state of the market,
it can never fully reveal the current state.

10

Electronic copy available at: https://ssrn.com/abstract=3533518



signals that i has observed up to period t, that is

⌦i,t = {si,t, pt�1,⌦i,t�1}.

All dealers submit their best estimate of ✓t. For each dealer, we take this to
mean its conditional expectation of ✓t given ⌦i,t.11 We denote this conditional
expectation by

✓i,t = E (✓t|⌦i,t) ,

and the corresponding cross-sectional average across submitters by

✓̄t =

Z
1

0

✓i,t di.

The consensus price is a noisy signal of this average expectation,

pt = ✓̄t + �" "t with "t ⇠ N (0, 1) . (2)

Modelling the consensus price as a noisy public signal of average expectations is
motivated by two considerations. First, Totem eliminates some submitted prices
from the consensus calculations and, hence, the consensus price itself does not
exactly correspond to the average submission. The parameter �" can capture this
divergence between consensus price and the cross-sectional average of submissions.
Second, we want to allow for the possibility that the consensus price does not fully
reveal the average expectation. Given a continuum of submitters, an assumption
we need for technical tractability, a consensus price that fully reveals last period’s
average expectation allows submitters to perfectly learn last period’s fundamental
value. But this rules out long-lived private information which is needed to capture
the persistence of the deviations of individual price submissions from the consensus
price, a feature we observe in our data.

3.2 Learning from consensus prices

In order to characterise dealer i’s submission to the consensus pricing service, we
need to calculate the dealer’s conditional expectation E (✓t|⌦i,t). Its information

11We do not specify submitters’ preferences, which would determine why they value the con-
sensus price information. Certain preference specifications could create an incentive to strategi-
cally manipulate the consensus price, for example in order to experiment or to gain a compet-
itive advantage (see Brancaccio, Li, and Schürho↵ (2017) for experimentation motives in OTC
markets). However, given the assumption of a continuum of submitters (and mild technical
restrictions on admissible submissions), no single submitter can influence the consensus price.
Hence, asking submitters to submit their best estimate of ✓t is compatible with their incentives.
Raith (1996) gives a theoretical analysis of the incentives for competitive firms to participate
in (truthful) information sharing arrangements. Appendix 7.8 provides an example of how to
approach welfare questions within the context of our model.
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set ⌦i,t, however, depends on all other dealers’ submissions via the consensus price
process (pt). The information set is endogenous, as (pt) is both an input and
an output of the joint learning process of the consensus pricing participants. We
adopt an iterative algorithm developed in Nimark (2017) to solve filtering prob-
lems with endogenous signals.12

The algorithm works as follows:

1. Start with any covariance-stationary process (p0t ) that lies in the space spanned
by linear combinations of current and past aggregate shocks (ut) and ("t).

2. This consensus price process (p0t ) yields information sets for all i and t defined
recursively by ⌦0

i,t = {si,t, p0t�1
,⌦0

i,t�1
}.

3. Given information set ⌦0

i,t, each dealer i can compute the conditional expec-
tation E(✓t|⌦0

i,t) for each period t under the assumed stochastic process for
(p0t ).

4. Averaging the expectations across submitters yields a new consensus price
process

p1t =

Z
1

0

E(✓t|⌦0

i,t) di+ �" "t for all t.

5. If the distance (in m.s.e.) between (p0t ) and (p1t ) is smaller than some pre-
specified stopping criterion, stop. Otherwise, go to step 2 with (p1t ) as the
new consensus price process and so on.

Nimark (2017) shows that for any initial choice of (p0t ) the sequence of price pro-
cesses {(pnt )}n converges (in m.s.e.) to a unique limit process (pt) that is the
solution of the original filtering problem. The proof relies on the fact that the
integral in step 4 is a contraction on the space of covariance-stationary price pro-
cesses. This allows the calculation of bounds for the approximation error when
stopping the algorithm after a finite number of steps. Setting the initial process
(p0t ) such that p0t = ✓t + �" "t allows the problem to be solved by a sequential
application of the Kalman filter. Appendix 7.4 provides a detailed description of

12As first pointed out by Townsend (1983), signal extraction problems in which signals are
equilibrium variables, such as prices, typically lead to an infinite state space representations.
One direction of attack is to show that the original problem can be approximated arbitrary well
by a finite state space. This is the approach taken here. Similar approaches have been developed
in Sargent (1991)), Huo and Takayama (2015), and Huo and Pedroni (2017). For special cases,
frequency domain techniques have been employed to obtain finite state space representations,
e.g. Kasa (2000).

12

Electronic copy available at: https://ssrn.com/abstract=3533518



the solution algorithm applied to the above consensus pricing model.

If the algorithm stops after n steps, the equilibrium learning dynamics are well
approximated by a linear state-space system with an n+1 dimensional state vector
xt having the fundamental value ✓t and the cross-sectional average expectation ✓̄t
as its first and second element respectively.13 The state evolves according to

xt = Mxt�1 +Nvt with vt = (ut, "t�1)
T, vt ⇠ N(0, I2).

The matrices M and N are known functions of the model parameters, namely
{⇢, �u, �", �⌘}. A dealer’s signals in period t can be expressed as noisy observations
of the state,

si,t = eT
1
xt + �⌘ ⌘i,t = ✓t + �⌘ ⌘i,t,

pt�1 = eT
2
xt�1 + �" "t�1 = ✓̄t�1 + �" "t�1.

Here, eTn is a vector with 1 in the nth position, 0 otherwise. The two signals can
be written in vector form as

yi,t = D1 xt +D2 xt�1 +B ✏i,t,

with yi,t = (si,t, pt�1)T and ✏i,t = (vTt , ⌘i,t)
T.

We can now use the Kalman filter to obtain dealer i’s beliefs about ✓t and ✓̄t,
the first two elements of xt, given the information in ⌦i,t. Given the linear-
normal structure of the above state-space system, dealer i’s beliefs are normally
distributed,

xt | ⌦i,t ⇠ N (xi,t,⌃) ,

where the conditional expectations about the state evolve according to

xi,t = Mxi,t�1 +K (yi,t � (D1M +D2) xi,t�1) , (3)

where K is a (n + 1) ⇥ 2 dimensional matrix of Kalman gains. Here K and the
covariance matrix of dealers’ beliefs ⌃ are known functions of the model parame-
ters.14

13The kth element of xt is the cross-sectional average of submitters’ kth-order expectation of
✓t given their information in period t. Appendix 7.4 provides a definition of these higher-order
expectations.

14Given the infinite history of past signals, the covariance matrix ⌃ and the matrix of Kalman
gains K are not time dependent. Also, ⌃ and K are not dealer-specific as dealers are symmetri-
cally informed. They all receive signals of the same quality.
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3.3 Valuation and strategic uncertainty

We use the covariance matrix of beliefs ⌃ to measure uncertainty. In particular, we
focus on a dealer’s uncertainty about the current fundamental value of a contract,
✓t, and its uncertainty about the cross-sectional average expectation, ✓̄t of this
value. We have already derived dealer i’s beliefs about the state xt. Restricted to
✓t and ✓̄t these can be written as

✓
✓t
✓̄t

◆
| ⌦i,t ⇠ N

✓✓
✓i,t
✓̄i,t

◆
,

✓
�11 �12

�12 �22

◆◆
, (4)

where dealer i’s conditional expectations about ✓t and ✓̄t are updated according to

✓i,t = ⇢ ✓i,t�1 + ks (si,t � ⇢ ✓i,t�1) + kp
�
pt�1 � ✓̄i,t�1

�
, (5)

✓̄i,t = m2 · xi,t�1 + k̄s (si,t � ⇢ ✓i,t�1) + k̄p
�
pt�1 � ✓̄i,t�1

�
. (6)

The above covariance matrix of beliefs corresponds to the top left 2⇥2 sub-matrix
of ⌃. ks and kp are the Kalman gains for private signal and the consensus price,
respectively. This is the weight a dealer puts on “news” in these signals when up-
dating expectations about the fundamental value ✓t. They correspond to the first
row of K in (3). Similarly, k̄s and k̄p are the Kalman gains for private signal and
the consensus price, respectively, for the average expectation ✓̄t. They correspond
to the second row of K.

Our measures of valuation and strategic uncertainty are based on the posterior
variance of beliefs about ✓t and ✓̄t given by �11 and �22, respectively. They cor-
respond to the variance of a dealer’s forecast errors, ✓i,t � ✓t and ✓̄i,t � ✓̄t, at the
time of its consensus price submission. Of independent interest is the correlation
between these two forecast errors, ⇢12 = �12/

p
�11�22. It is a natural measure

for the commonality of information in the sense that consensus price submitters
interpret new valuation information in a similar way.15

To develop an intuition for the relationship between valuation uncertainty, strate-
gic and informational commonality, it is best to split up the expectation updating
for ✓t into two steps: (i) First, the dealer updates its expectations about ✓t�1 af-
ter observing the consensus price pt�1. Call this updated expectation ✓+i,t�1

. Its
posterior expectation for ✓t is now ⇢ ✓+i,t�1

. (ii) Next, after having observed private
information si,t in period t, the dealer updates expectation about ✓t. This is the

15Section 5.1. in Angeletos and Pavan (2007) provides a more detailed discussion of the notion
of informational commonality.
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expectation it then submits to the consensus pricing service. We have

✓i,t = (1� ks)⇢


✓i,t�1 +

kp
⇢(1� ks)

(pt�1 � ✓̄i,t�1)

�

| {z }
✓+i,t�1

+ks si,t ,

where the term in the square brackets gives the first updating step. The average
expectation can then be expressed as

✓̄t = (1� ks)⇢ ✓̄
+

t�1
+ ks ✓t.

This allows us to link the forecast errors for ✓t and ✓̄t as follows

✓̄i,t � ✓̄t = (1� ks)
⇥
E(⇢ ✓̄+t�1

|⌦i,t)� ⇢ ✓̄+t�1

⇤
+ ks (✓i,t � ✓t) .

The forecast error for ✓̄t is a weighted sum of the forecast error for ✓t and the
forecast error for the average prior expectation about ✓t before observing the pri-
vate signal in period t. Submitter i’s forecast errors for ✓̄t and ✓t are perfectly
correlated if the submitter knows the average expectation ✓̄+t�1

. In our model,
where the only exogenous source of information is the private signals, this can
only happen if the consensus price perfectly aggregates all dispersed information.
In that case, all submitters have a common posterior expectation ✓̄+t�1

= pt�1 and
the average expectation is given by ✓̄t = (1 � ks)⇢ pt�1 + ks ✓t. As forecast er-
rors are perfectly correlated, strategic uncertainty mirrors valuation uncertainty,
namely �22 = k2

s �11. Strategic uncertainty is necessarily smaller than valuation
uncertainty as 0  ks  1; when updating their expectations, submitters put some
weight on the commonly known consensus price pt�1. As a result, they are less
uncertain about the location of the average expectation than about the current
value of the fundamental.

If submitters are uncertain about the average expectation ✓̄+t�1
at the time of their

consensus price submission in period t, then forecast errors for the fundamental
value ✓t and the average posterior expectation ✓̄t are no longer perfectly corre-
lated; strategic uncertainty is no longer simply a scaled-down version of valuation
uncertainty. This causes private information to be long-lived in the sense that sub-
mitters do not return to a common posterior after observing the consensus price
and before observing new private signals. This drives a wedge between forecast er-
rors. The lack of a common perspective on past market conditions, as measured by
uncertainty about ✓̄+t�1

, partially feeds into current uncertainty about ✓̄t through
the weight put on priors when updating expectations.16 For a submitter whose

16See Sethi and Yildiz (2016) for a related discussion of the di↵erence between well-informed
and well-understood information sources and the implications for information segregation in
markets.
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prior expectations for fundamental and average valuation are equal, this weight is
given by 1� k, where

k = ks +
kp
⇢
, (7)

as can be seen from rewriting equation (5),

✓i,t = (1� k)⇢ ✓i,t�1 + ks si,t + kp pt�1 + kp
�
✓i,t�1 � ✓̄i,t�1

�
.

As long as the consensus price is a noisy signal of the average expectation, that
is as long as �" > 0, it cannot perfectly aggregate dispersed private information.
Submitter i’s posterior expectations after observing the consensus price, ✓+i,t�1

par-
tially depend on ✓i,t�1 and hence submitters do not return to a common market
perception after observing the consensus price. Individual perceptions are par-
tially dependent on the individual history of private signals, unless private signals
are very precise (�⌘ is low) or the fundamental value process is not persistent (⇢
is close to 0). In that case the history of past private signals does not matter.

The fact that we model the consensus price as an endogenous signal has important
consequences for the interpretation of the data and the implications of alternative
information structures. First, a noisier signal, that is a higher �", does not neces-
sarily correspond to a less informative signal about ✓t. Submitters react by shifting
weight to the private signal, but this in turn increases the informational content of
the consensus price. In equilibrium, the Kalman gain on the consensus price kp can
increase in �". This informational externality is similar to the mechanism discussed
in Amador and Weill (2012). Secondly, shutting down the consensus price process
does not destroy exogenous information, it simply prevents its aggregation. This
fact allows us to conduct counterfactual experiments on the information struc-
ture. Modelling the consensus price as an exogenous public signal of ✓t would be
problematic for this exercise.

4 Estimation

We estimate the parameters of the model presented in Section 3, namely � =
{⇢, �u, �", �⌘}, separately for each options contract. For a given contract our data
consists of the panel of Totem price submissions of individual dealers and the
corresponding consensus price. We denote by ◆t ⇢ {1, 2, .., S} the set of dealers
active in t where S is the total number of distinct dealers that have submitted
to Totem over the course of our sample period. The time series of submissions
is given by (mt)Tt=1

, where mt = (mj,t)j2◆t is a |◆t|-dimensional vector consisting
of the individual period t consensus price submissions. Our data set for a given
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contract, (y)Tt=1
, then consists of the time-series of dealers’ price submissions for

this contract and the corresponding consensus price, i.e. yt = (pt ,mt)T.17

4.1 Likelihood function and estimation

To estimate the model for a given contract, we now show how it can be cast into
state-space form. The panel of individual price submissions and the time series of
consensus prices constitute the available observations of the system.

Based on Section 3, the latent state space has the following dynamics,

xt = M(�) xt�1 +N(�) vt , vt ⇠ N(0, I2),

where vt = (ut "t)T. M(�) and N(�) are obtained employing the previously ex-
plained solution algorithm for a given parameter vector �.

We assume that dealer i’s price submission for period t is its conditional expecta-
tion of ✓t,

mi,t = ✓i,t.

Based on Section 3, dealer i’s conditional expectation of the current state xt is a
partial latent variable with dynamics

xi,t = M(�) xi,t�1 +K(�)

✓
si,t
pt�1

◆
� (D1 M(�) +D2) xi,t�1

�
.

Dealer i’s private signal si,t is also modelled as a latent variable, that is not observed
by the econometrician,

si,t = ✓t + �⌘ ⌘i,t with ⌘i,t ⇠ N(0, 1).

All shocks ⌘i,t are uncorrelated across submitting dealers and time.

Furthermore, we assume that the observed consensus price of period t is equal to
the average first-order belief of period t plus aggregate noise, that is

pt = ✓̄t + �" "t with "t ⇠ N(0, 1).

Given the linearity of the above system and the joint normality of all shocks, the
likelihood function for the observed data (y)Tt=1

can be derived using the Kalman

17To be precise, mj,t is the (demeaned) natural logarithm of the Black-Scholes implied volatil-
ity of submitter j’s time t price submission, and pt is the (demeaned) natural logarithm of the
consensus Black-Scholes implied volatility calculated by Totem for the corresponding contract.
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filter. We obtain maximum-likelihood estimates for the parameter vector � using
MCMC methods with di↵use priors. Appendix 7.5 provides a detailed derivation of
the filter for the above model and discusses the estimation technique.18 Appendix
7.1 reports parameter estimates and standard errors for ⇢, �u, �", and �⌘ for all
contracts.

4.2 Identification

Appendix 7.6 provides a formal proof of identification for the model. Here, we give
a short summary of which moments of the data help us to identify the structural
parameters of the model. The time-series variance of the di↵erences between pt
and cross-sectional average of submission identifies �". The speed at which indi-
vidual deviations from the average submission mean-revert determines the weight
submitters put on their prior expectations (as opposed to weight put on news in
the current signal and consensus price). Knowing this weight allows us to iso-
late changes in price submissions that are due to new information a submitter
received in a given period. As these news are linked to the current fundamen-
tal, the autocorrelation of these expectation updates that have been “cleaned” of
prior expectations allow us to identify ⇢, the persistence in the fundamental value
process. The weight submitters put on their prior depends on how persistent the
fundamental is and how high the quality of their new information is, i.e. the
signal-to-noise ratio of their signals. Having identified ⇢, we can now identify this
signal-to-noise ratio from the weight submitters put on their prior expectations.
The signal-to-noise ratio depends on the variance of the fundamental shocks, �2

u,
and the precision of private signals and the consensus price as determined by �⌘

and �". We have already identified �". The relative weight submitters put on
the consensus price as opposed to the private signal depends on the relative pre-
cision of these two signals. This allows us to identify �⌘ and, finally, �u from the
signal-to-noise ratio.

4.3 Model fit and robustness checks

To judge how well the model fits the data, we compare the model implied cross-
sectional dispersion of price submissions and the time-series volatility of the consen-
sus price to their empirical analogues. The upper panel in Table 1 in the Appendix
displays the ratio of the model implied cross-sectional standard deviation and the
empirical cross-sectional standard deviation. The ratios for the di↵erent contracts

18For the estimation of the parameters we assume di↵use priors. We constrain �u,�", and
�⌘ to be positive and 0 < ⇢ < 1. For each contract we run chains of length 100.000 with the
Metropolis-Hastings algorithm and disregard the first 10.000 draws. We subsequently pick every
10th draw to construct the posterior distribution of the parameters.
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are between 0.909 and 1.125, which implies that the model is able to reproduce
the size of the cross-sectional dispersion for the di↵erent contracts.

The model implied volatility of the consensus price is the unconditional variance
of pt = ✓̄t + �" "t. The unconditional variance of ✓̄t is the solution to a Lyapunov
equation that defines the unconditional variance of the state xt.19 In the lower
panel of Table 1 we see that the model is able to match the volatility of the con-
sensus price for contracts with moneyness 80 to 120. For the contracts with a short
time-to-expiration and the most extreme moneyness the model implied time-series
volatility is two to three times higher than in the data. However, the wide poste-
rior distributions of these estimated volatilities implies that we cannot reject that
the model implied and data given consensus price volatility are di↵erent from one
another at conventional confidence levels.

The sample period covers two peculiar time periods. The low volatility period from
2002 to 2006 and the Great Recession from 2007 to 2010. The estimated values may
be driven solely by the dynamics in one of these periods. We find that our results do
not change if we consider these two sample periods separately. Another potential
split is that of submitters that participate for a limited time frame and routine
submitters. We therefore exclude submitters who have submitted less than 40%
of the total sample period. The parameter estimates are comparable to the whole
sample period. Including only the ‘routine’ submitters makes the contrast between
the at-the-money (ATM) and the out-of-the-money (OTM) options slightly larger.

5 Results

The estimated precision of the di↵erent types of information determines the rela-
tive weights dealers put on the their signals and their prior expectations. We show
what this implies for the level of valuation and strategic uncertainty and how these
uncertainties vary across market segments. Furthermore, we quantify the infor-
mativeness and e�ciency of the consensus pricing mechanism via counterfactual
experiments on the market’s information structure.

5.1 Price versus private information

The only source of information in our framework is the private signals. The consen-
sus price mechanism allows submitters to partially infer their competitors’ private
information. The informational value of private signals and the consensus price

19This Lyapunov equation is given by V = M VM
T + NN

T, where V is the unconditional
variance of the state xt.
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for dealers is neatly summarized by their Kalman gains, ks and kp as given in
(5) for the fundamental value, k̄s and k̄p as given in (6) for the average market
valuation. Given our estimates of the parameter vector �, we can compare the
implied Kalman gains across contracts. This allows us to compare the relative
importance of signals across the options market. Figure 3 shows these Kalman
gains for contracts with fixed times-to-expiration of 1 and 5 years.

A key structural parameter for understanding the variation in the Kalman gains
across market segments is 1/�⌘, the precision of the private signal. The estimates
for �⌘, given in Table 3 in the Appendix, show that dealers receive very precise
private signals for contracts that overlap with active exchange-based trading ac-
tivity.20 Consequently, the implied Kalman gains in Figure 3 show that submitters
put essentially full weight on their private signal and largely ignore the informa-
tion contained in the consensus price when updating expectations about ✓t. For
OTC options in market segments with low exchange-based trading activity, the
private signals are estimated to be noisier. Therefore, increasingly more weight is
given to the consensus price. When updating expectations about ✓̄t, the consensus
price receives relatively higher weight for all contracts. This shows the importance
of the consensus price mechanism for forming expectations about average market
valuations.

When signals are imprecise, dealers put relatively more weight on their priors. This
weight is given by 1�k where equation (7) expresses k in terms of the Kalman gains
ks and kp. Table 4 provides estimates for k across market segments. We see that
only for the most extreme contracts that are exclusively traded in the OTC market
dealers do not put full weight on new information. For those contracts k is smaller
than one. We also find that in these market segments, dealers’ forecast errors are
not perfectly correlated, that is ⇢12 is smaller than 1. As described in Section
3.3, this leads to long-lived private information and, consequently, dispersed priors
among submitters. Table 4 reports these correlations for all contracts.

20For contracts with time-to-expiration of 6 and 12 months we exclude the contracts with
a moneyness of 200. For these contracts, prices are close to zero and crucially depend on the
numerical precision used by Totem submitters when reporting prices. Additionally, the inversion
of the prices to Black-Scholes implied volatilities can become numerically unstable.

20

Electronic copy available at: https://ssrn.com/abstract=3533518



●

●

●
● ●

●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

● ● ● ●
●

●

●

0.4

0.6

0.8

1.0

60 80 90 100 110 120 150 200
Strike (in moneyness)

Ka
lm

an
 g

ai
n

Fundamental private news (Term 12 vs 60)

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

0.00

0.05

0.10

0.15

0.20

60 80 90 100 110 120 150 200
Strike (in moneyness)

Ka
lm

an
 g

ai
n

Fundamental public news (Term 12 vs 60)

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

0.25

0.50

0.75

1.00

60 80 90 100 110 120 150 200
Strike (in moneyness)

Ka
lm

an
 g

ai
n

Strategic private news (Term 12 vs 60)

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

60 80 90 100 110 120 150 200
Strike (in moneyness)

Ka
lm

an
 g

ai
n

Strategic public news (Term 12 vs 60)

Figure 3: These figures present the Kalman gains with respect to their private signals and con-
sensus feedback for their first- and second-order posterior believes. The horizontal axis denotes
the moneyness of the option contracts. The black dots in the figures represent the Kalman gain
extracted from the K matrix in Equation (4). The top figures depict the ks and kp elements.
From left to right, these are the weights put on the private signal and public signal in updating
the posterior believe about the fundamental. The bottom figures depict the k̄s and k̄p elements.
From left to right, these are the weights put on the private signal and public signal in updating
the posterior believe about the average believe. The two standard deviation of the posterior
distribution of Kalman gain estimates are given by the bars surrounding the dots. The Kalman
gains for the option contracts with a time-to-expiration of 12 months are given by black
dots and the estimates for the 60 month contracts by red squares. The sample period is
December 2002 to February 2015 for the option contracts on the S&P500 index. Data provided
by IHS Markit’s Totem service.
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5.2 The uncertainty “smile”

The precision of signals as well as the relative weight submitters put on them
are key determinants for their uncertainty about ✓t and ✓̄t. We measure these
uncertainties by the posterior variance of dealers’ beliefs, �11 and �22. As the
model-implied posterior beliefs are given by a normal distribution, a convenient
way to display valuation and strategic uncertainty is as 95% posterior intervals
centered around the consensus price of a contract as shown in Figure 4.

Both top figures show the well-known “smile” of the implied volatility curve. OTM
put options (moneyness below 100) tend to be relatively more expensive than
ATM put options or OTM call options reflecting market participants’ demand
for insurance against drops in the S&P500 index. The width of the posterior
intervals shows that for options with more extreme strike prices (further away from
moneyness 100), valuation and strategic uncertainty are also higher. These areas
correspond to market segments in which trading is predominately or exclusively
OTC as was previously shown in Figure 1. For options with moneyness 150 and
time-to-expiration of 12 months, for example, the posterior intervals are on the
order of 8 volatility points. This is substantial given that the average consensus
price and time-series standard deviation for this contract are 13 and 3.8 volatility
points, respectively. It reflects the low precision of the private signal for this
contract and, consequently, a higher weight put on prior expectations which, in
turn, is the source of sizable strategic uncertainty. This contrasts with posterior
intervals well below one volatility point for ATM options. Here, private signals are
estimated to be precise and dealers’ submissions put most weight on the private
signal. This implies low levels of �11. As all submitters are symmetrically informed
and receive private signals from the same distribution, strategic uncertainty is
small as well. These results illustrate that for the exclusively OTC traded areas of
the option market, dealers are not only relatively uncertain about the correctness
of their own option valuations, but also face substantial uncertainty about the
relative position of their valuation to the average market valuation.

5.3 The informational properties of consensus prices

We use counterfactual experiments on the information structure to evaluate two
informational properties of the consensus price: price informativeness and informa-
tional e�ciency of the price. Furthermore, given the lagged nature of the consensus
price, even a fully e�cient price does not eliminate all uncertainty about asset val-
ues. Therefore, we also quantify the potential for further uncertainty reduction
outside the scope of this consensus price mechanism.
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Figure 4: These figures present the variance of submitters’ posterior beliefs expressed in terms
of posterior intervals centred around the unconditional mean of implied volatilities, ✓m. The left
figures depict the 95% posterior intervals for first-order beliefs, [✓m ± 1.96 · �11], as given in (4).
The figures on the right display the posterior intervals for second-order beliefs, [✓m ± 1.96 · �22],
as in (4). The two top panels depict the variances along the di↵erent levels of moneyness for the
option contracts with a time-to-expiration of 12 months and 60 months. The two bottom
panels show the term structure of the uncertainties for ATM options with moneyness 100 and
OTM option with moneyness of 60. The sample period is December 2002 to February 2015 for
the option contracts on the S&P500 index. Data provided by IHS Markit’s Totem service.

Price informativeness

To quantify how informative the consensus price is, we ask the following question:
“By how much would a (non-participating) dealer’s posterior uncertainty change
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if it gained access to the consensus price, keeping all else equal?” More precisely,
we calculate the percentage change in the posterior intervals for valuation and
strategic uncertainty, as specified in (4). To do so, we calculate the counterfactual
posterior beliefs of a dealer who only has access to the private signal. We take this
as the baseline informational setting against which to measure changes in uncer-
tainty. Denote by ⌃̂ the covariance matrix of dealer i’s posterior beliefs under this
counterfactual information set, namely ⌦̂i,t = {si,t, ⌦̂i,t�1}. This covariance matrix
can be obtained by solving a standard single-agent learning problem using param-
eter estimates for {⇢, �u, �⌘}.21 The percentage reduction in a dealer’s valuation
uncertainty when gaining access to the consensus price is

b�1 =
b�11 � �11

b�11

. (8)

Similarly, we denote the percentage reduction in strategic uncertainty by

b�2 =
b�22 � �22

b�22

. (9)

Price e�ciency

To understand how well the consensus price mechanism aggregates dispersed in-
formation, we compare the current consensus price to a fully e�cient price that
perfectly reveals last period’s fundamental value, i.e. ✓t�1. As the price reveals
✓t�1, it provides submitters with a common prior before receiving new private sig-
nals. In addition to providing a benchmark for e�ciency, this counterfactual also
helps us understand how big an impediment the lack of a common prior is for
creating a common understanding of market conditions. Denote by ⌃̃ the coun-
terfactual covariance matrix of posterior beliefs for a dealer who receives a fully
e�cient consensus price in the above sense. Again, we focus on the percentage re-
duction in valuation and strategic uncertainty as measured by posterior intervals,

e�1 =
�11 � e�11

b�11

, (10)

and
e�2 =

�22 � e�22

b�22

. (11)

21Appendix 7.9 derives the stationary posterior covariance matrices for first- and second-order
beliefs for all counterfactional informational scenarios.
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Residual informational frictions

Given an informationally e�cient price, the residual uncertainty �̆ = 1 � b� �
e� is attributable to informational frictions that are outside of the scope of this
consensus pricing mechanism. The scope for a further reduction in valuation and
strategic uncertainty is given by

�̆1 =
e�11

b�11

. (12)

and

�̆2 =
e�22

b�22

. (13)

The influence of information structure on uncertainty

Figure 5 displays the percentage reductions in uncertainty under the di↵erent in-
formational settings for contracts with a fixed time-to-expiration of 12 months.
The dark gray region, i.e. b�j, displays the informativeness of the price for the dif-
ferent contracts. The lack of uncertainty reduction in the moneyness range from
80 to 110 is to be expected as submitters solely rely on their precise private sig-
nal as previously revealed by the estimates of the Kalman gain ks. For the more
extreme contracts the consensus price is relatively more informative about ✓t; its
Kalman gain kp is higher. Table 5 in the Appendix shows similar patterns for
other times-to-expirations. The reduction in valuation uncertainty is between 0%
for the ATM contracts to 4.6% for the more extreme contracts. The bottom plot
in Figure 5 shows that the consensus price signal is much more informative about
✓̄t. The reduction in strategic uncertainty ranges from 0.02% to 37.75% as can
be seen in Table 5. The relative larger decrease in strategic uncertainty in com-
parison to valuation uncertainty points to the importance of the consensus price
for learning about the average market valuation ✓̄t. This is also echoed by the
di↵erence between kp and k̄p. Given the scarcity of shared trade data in market
segments that are dominated by OTC trading, the ability of the consensus price
to significantly reduce strategic uncertainty is both intuitive and important.

The light gray area in Figure 5 corresponds to e�j, the additional reduction in
uncertainty due to a price that perfectly reveals ✓t�1. Knowing the past state
eliminates two sources of uncertainty. The uncertainty that originates from the
noise in the consensus price and the uncertainty that emanates from the dispersion
in dealers’ prior expectations. In the top and bottom panel of Figure 5, the lack
of uncertainty reduction in the moneyness range from 80 to 110 is mainly due to
the precision of private information. The signal-to-noise ratio �u/�⌘ puts an upper
bound on the weight the consensus price can receive when updating expectations.
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The consensus price can at most reveal the past state while the private signal is
a signal about the current state. This limits the potential impact of a fully e�-
cient price on valuation uncertainty. For contracts with intermediate moneyness,
little weight is put on prior expectations thus limiting the potential of a fully e�-
cient price to reduce uncertainty by providing a common prior. For contracts with
extreme moneyness, the relative imprecision of the private signal shifts weight to-
wards the consensus price and the prior. This explains the up to 33.46% drop in
valuation uncertainty and 62.10% drop in strategic uncertainty for the deep OTM
call options as seen in Table 6 in the Appendix. The potential consequences of
dispersed priors is highlighted in Sethi and Yildiz (2016). They illustrate that dis-
persion in priors can lead market participants to search out other participants with
similar priors, leading to informational segmentation of markets. A focal point,
such as a consensus price, helps to reduce dispersion in priors, reduces strategic
uncertainty and creates a common understanding of market conditions.

The white area in the figures marks �̆j, the potential uncertainty reduction outside
of the scope of this consensus pricing mechanism. The reduced size of this area
for the more extreme contracts illustrates the important role a consensus pricing
mechanism can play in these market segments, especially in providing information
about average market valuations. For contracts with moneyness between 80 and
110, informational frictions that could not be remedied by a perfectly e�cient con-
sensus pricing mechanism dominate. Reducing the remaining uncertainty would
require changing the design parameters of the consensus pricing service. Increas-
ing the frequency of the consensus service, for example, can be thought of as a
lowering of �u. However, given the labor intensive nature of the consensus pricing
process, running a more frequent services is costly. In appears that the marginal
cost of increasing the frequency of the service exceeds the dealers’ willing to pay
for a marginal reduction in uncertainty.
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Figure 5: These two figures present the percentage reductions in valuation and strategic un-
certainty under di↵erent informational settings. The upper figure presents the results for the
percentage reduction in valuation uncertainty and the bottom figure presents the reductions
in strategic uncertainty. The figures depict the uncertainty reductions along the di↵erent levels
of moneyness for the option contracts with a time-to-expiration of 12 months. In the base
case setting, submitters only observes their private signal. This is indicated by the horizontal
axis. The dark gray shade area is the percentage reduction in uncertainty due to observing the
consensus price, i.e e�i from in (8) and (9). The light gray area indicates the further reduction
in uncertainty due to observing the past state, i.e. b�i in (10) and (11). The white area is the
further reduction in uncertainty from learning outside of the market, i.e. �̆ in (12) and (13).
The sample period is from December 2002 to February 2015.

27

Electronic copy available at: https://ssrn.com/abstract=3533518



6 Conclusion

In this paper we provide empirical evidence on the ability of consensus prices to
reduce valuation uncertainty among major broker-dealers in the over-the-counter
market for S&P500 index options. This evidence is based on a structural model
of learning from prices. The estimation is based on a proprietary panel of price
estimates that large broker-dealers have provided to a consensus pricing service
for OTC derivatives. The structural model allows us to address three questions.
First, how large is the valuation uncertainty of broker-dealers participating in the
OTC market for S&P500 index options? Here, we consider two dimensions of un-
certainty: a dealer’s uncertainty about fundamental values and uncertainty about
its valuations in relation to other market participants’ valuations? Second, does
the consensus price feedback help to reduce market participants’ valuation uncer-
tainty? Lastly, how well does the consensus pricing mechanism aggregate dispersed
information.

Both fundamental and strategic valuation uncertainty vary substantially across
the di↵erent market segments. We find higher uncertainty for option contracts
with strike prices that correspond to more extreme index moves; these contracts
are typically traded in the OTC segment of the market. Broker-dealers do not
appear to rely heavily on the consensus price feedback to reduce fundamental
uncertainty. The consensus price feedback is found to be most important for
reducing strategic uncertainty, and particularly so for extreme option contracts.
This result is consistent with the scarcity of shared valuation information for such
extreme contracts. It stresses the importance of publicly observable valuation data,
such as benchmarks, to establish a shared understanding of market conditions in
OTC markets. Such a shared understanding can be particularly valuable during
episodes of market stress where high levels of strategic uncertainty might cause
derivatives markets to freeze up.

28

Electronic copy available at: https://ssrn.com/abstract=3533518



References

Amador, M., P.-O. Weill, 2012. Learning from private and public observations of
others' actions. Journal of Economic Theory 147(3), 910–940.

Angeletos, G.-M., A. Pavan, 2007. E�cient use of information and social value of
information. Econometrica 75(4), 1103–1142.

Bergemann, D., S. Morris, 2019. Information design: A unified perspective. Journal
of Economic Literature 57(1), 44–95.

Biais, B., P. Hillion, C. Spatt, 1999. Price discovery and learning during the pre-
opening period in the Paris Bourse. Journal of Political Economy 107(6), 1218–
1248.

Boyarchenko, N., D. O. Lucca, L. Veldkamp, 2019. Taking orders and taking notes:
Dealer information sharing in treasury auctions. Working paper.
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7 Appendix

7.1 Tables

Table 1: Matching cross-sectional dispersion and consensus price volatility

60 80 90 95 100 105 110 120 150 200

6 1.021 1.043 1.045 1.050 1.052 1.058 1.115 1.125 0.961 ·
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.014) ·

12 1.026 1.050 1.039 1.047 1.056 1.049 1.058 1.103 0.988 ·
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.013) ·

24 1.079 1.052 1.047 1.053 1.064 1.063 1.164 1.082 0.999 0.909
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.011) (0.012) (0.016)

36 1.058 1.040 1.043 1.048 1.052 1.059 1.060 1.061 1.013 0.928
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.014)

48 1.036 1.033 1.038 1.038 1.033 1.034 1.035 1.041 1.019 0.960
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.014)

60 0.992 1.028 1.041 1.039 1.038 1.037 1.040 1.043 1.014 1.003
(0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.012) (0.015)

84 0.986 1.026 1.021 1.019 1.015 1.012 1.015 1.023 1.005 0.913
(0.012) (0.012) (0.012) (0.012) (0.012) (0.021) (0.012) (0.012) (0.012) (0.014)

(a) Matching cross-sectional dispersion

60 80 90 95 100 105 110 120 150 200

6 1.437 1.058 1.138 1.053 1.045 1.401 1.155 1.242 2.595 ·
(0.271) (0.243) (0.294) (0.224) (0.277) (0.780) (0.315) (0.213) (0.629) ·

12 1.110 1.028 1.117 1.320 1.104 0.990 1.120 1.014 2.573 ·
(0.264) (0.201) (0.313) (0.553) (0.252) (0.219) (0.263) (0.228) (0.755) ·

24 1.086 1.030 1.050 1.413 1.213 1.033 1.095 1.183 1.483 3.635
(0.286) (0.203) (0.214) (0.733) (0.484) (0.290) (0.324) (0.394) (0.476) (2.366)

36 1.019 1.158 1.049 2.062 1.199 0.931 1.383 1.017 1.061 1.761
(0.214) (0.593) (0.336) (1.594) (0.365) (0.158) (0.644) (0.254) (0.347) (0.379)

48 0.987 1.203 1.090 0.985 1.086 1.027 1.346 1.011 0.968 1.490
(0.203) (0.561) (0.327) (0.203) (0.339) (0.229) (0.838) (0.244) (0.246) (0.420)

60 1.296 1.373 1.157 1.009 1.106 1.043 1.070 1.300 0.980 1.324
(0.418) (0.642) (0.409) (0.247) (0.338) (0.299) (0.306) (0.579) (0.254) (0.433)

84 0.942 1.149 1.142 1.098 0.968 1.029 0.989 1.054 1.045 1.055
(0.179) (0.526) (0.379) (0.341) (0.181) (0.222) (0.209) (0.265) (0.265) (0.234)

(b) Matching volatility consensus price

These two tables present the mean and standard deviation of the ratio of the raw moments of
the data versus the model implied moments for each contract. The upper table displays the
ratio of the model implied cross-sectional dispersion versus the average cross-sectional standard
deviation in the data. The lower table displays the ratio of the model implied volatility of the
consensus price to the volatility of the consensus price observed in the data. The model implied
volatility is given by the unconditional volatility of the first-order believe plus �✏. The first row
and first column of each table denotes the moneyness and time-to-expiration, respectively, of the
options under consideration. The standard deviation of the posterior distribution of the ratios
is given in parenthesis below its mean (0.000 signifies standard deviations below 0.0005). The
sample period of the data is January 2002 to December 2015 for the option contracts on the
S&P500 index.
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Table 2: Estimates ⇢ and �u

60 80 90 95 100 105 110 120 150 200

6 0.950 0.911 0.930 0.923 0.920 0.945 0.949 0.956 0.950 ·
(0.019) (0.031) (0.028) (0.026) (0.028) (0.030) (0.022) (0.015) (0.021) ·

12 0.967 0.930 0.939 0.949 0.941 0.930 0.949 0.967 0.969 ·
(0.015) (0.024) (0.027) (0.028) (0.022) (0.025) (0.022) (0.013) (0.017) ·

24 0.935 0.940 0.943 0.956 0.947 0.938 0.945 0.962 0.970 0.971
(0.025) (0.021) (0.020) (0.026) (0.028) (0.024) (0.023) (0.020) (0.015) (0.017)

36 0.939 0.943 0.941 0.969 0.952 0.932 0.958 0.948 0.963 0.946
(0.022) (0.026) (0.023) (0.026) (0.023) (0.021) (0.025) (0.021) (0.017) (0.021)

48 0.935 0.949 0.947 0.938 0.944 0.942 0.953 0.945 0.959 0.943
(0.022) (0.025) (0.022) (0.021) (0.024) (0.022) (0.026) (0.020) (0.017) (0.022)

60 0.982 0.956 0.951 0.941 0.948 0.941 0.945 0.956 0.963 0.937
(0.012) (0.028) (0.022) (0.021) (0.021) (0.025) (0.024) (0.027) (0.016) (0.026)

84 0.968 0.947 0.949 0.947 0.939 0.945 0.940 0.945 0.941 0.954
(0.011) (0.025) (0.026) (0.023) (0.019) (0.019) (0.022) (0.024) (0.023) (0.017)

(a) Mean and standard deviation ⇢

60 80 90 95 100 105 110 120 150 200

6 0.079 0.092 0.099 0.106 0.116 0.120 0.115 0.111 0.166 ·
(0.001) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006) (0.002) (0.005) ·

12 0.047 0.076 0.082 0.086 0.091 0.095 0.095 0.073 0.135 ·
(0.001) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.003) ·

24 0.064 0.065 0.070 0.072 0.075 0.078 0.080 0.073 0.078 0.135
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.005)

36 0.056 0.059 0.063 0.065 0.067 0.069 0.070 0.068 0.061 0.110
(0.002) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.003)

48 0.054 0.056 0.059 0.061 0.062 0.064 0.065 0.065 0.057 0.097
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.002) (0.002)

60 0.033 0.055 0.055 0.057 0.058 0.059 0.060 0.061 0.051 0.089
(0.001) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

84 0.033 0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.062 0.058
(0.001) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.001)

(b) Mean and standard deviation �u
These two tables present the mean and standard deviation of the estimate of the persistence
of the process for the fundamental, ⇢, and the variance of the shock to the fundamental, �u.
The structural model is estimated with Bayesian analysis through MCMC methods. The first
row and first column of each table denotes the moneyness and time-to-expiration, respectively,
of the options under consideration. The standard deviation of the posterior distribution of
the parameter is given in parenthesis below its mean (0.000 signifies standard deviations below
0.0005). The sample period of the data is December 2002 to February 2015 for the option
contracts on the S&P500 index.
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Table 3: Estimates �" and �⌘

60 80 90 95 100 105 110 120 150 200

6 0.121 0.004 0.007 0.009 0.011 0.016 0.021 0.151 0.328 ·
(0.008) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.010) (0.013) ·

12 0.055 0.004 0.006 0.007 0.009 0.011 0.014 0.036 0.262 ·
(0.004) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.003) (0.016) ·

24 0.002 0.004 0.006 0.007 0.008 0.009 0.010 0.015 0.114 0.270
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.008) (0.016)

36 0.003 0.004 0.005 0.006 0.007 0.008 0.008 0.011 0.054 0.183
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004) (0.012)

48 0.003 0.004 0.005 0.006 0.006 0.007 0.007 0.009 0.034 0.121
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.009)

60 0.032 0.002 0.004 0.005 0.005 0.006 0.006 0.007 0.024 0.083
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.006)

84 0.034 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.069
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005)

(a) Mean and standard deviation �"

60 80 90 95 100 105 110 120 150 200

6 0.096 0.022 0.015 0.013 0.013 0.018 0.030 0.131 0.380 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.020) ·

12 0.041 0.014 0.010 0.010 0.010 0.011 0.015 0.036 0.281 ·
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011) ·

24 0.024 0.012 0.009 0.008 0.008 0.009 0.013 0.018 0.093 0.395
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.023)

36 0.021 0.011 0.009 0.008 0.008 0.009 0.010 0.015 0.049 0.231
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011)

48 0.022 0.012 0.010 0.009 0.009 0.009 0.011 0.014 0.035 0.155
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.006)

60 0.025 0.012 0.010 0.009 0.009 0.010 0.011 0.014 0.027 0.116
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004)

84 0.029 0.014 0.011 0.011 0.011 0.011 0.012 0.014 0.023 0.069
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

(b) Mean and standard deviation �⌘
These tables presents the mean and standard deviation of the estimate of the noise of the public
signal, �", and the noise of the private signal submitter i receives, �⌘. The structural model
is estimated with Bayesian analysis through MCMC methods. The first row and first column
of each table denotes the moneyness and time-to-expiration, respectively, of the options under
consideration. The standard deviation of the posterior distribution of the parameter is given
in parenthesis below its mean (0.000 signifies standard deviations below 0.0005). The sample
period of the data is December 2002 to February 2015 for the option contracts on the S&P500
index.
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Table 4: Weight on new information

60 80 90 95 100 105 110 120 150 200

6 0.625 0.998 0.996 0.995 0.995 0.990 0.978 0.649 0.465 ·
(0.012) (0.000) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.012) ·

12 0.733 0.998 0.996 0.996 0.995 0.993 0.989 0.901 0.490 ·
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.010) (0.014) ·

24 0.999 0.997 0.995 0.995 0.995 0.993 0.990 0.976 0.639 0.440
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.017)

36 0.997 0.995 0.995 0.995 0.994 0.993 0.991 0.984 0.781 0.513
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.012) (0.017)

48 0.996 0.995 0.994 0.994 0.993 0.993 0.991 0.986 0.860 0.613
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.013) (0.019)

60 0.778 0.999 0.994 0.994 0.994 0.993 0.992 0.989 0.900 0.703
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.015) (0.018)

84 0.747 0.997 0.996 0.996 0.995 0.995 0.994 0.993 0.994 0.671
(0.012) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.016)

(a) k

60 80 90 95 100 105 110 120 150 200

6 0.954 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.915 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.003) ·

12 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) ·

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.956 0.909
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

36 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.925
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.947
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

60 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.964
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

84 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.962
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003)

(b) ⇢12
This table presents the mean and standard errors of the Kalman gain, k. The Kalman gain gives
the weight submitters put on new information and 1 � k shows how much weight is put on the
prior. ⇢12 is the correlation between the forecast error for asset value and average valuations.
The first row and first column of each table denotes the moneyness and time-to-expiration,
respectively, of the options under consideration. The sample period of the data is December
2002 to February 2015 for the option contracts on the S&P500 index.
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Table 5: Counterfactual - No consensus price

60 80 90 95 100 105 110 120 150 200

6 1.40 0.12 0.02 0.01 0.00⇤ 0.01 0.11 1.61 2.99 ·
(0.17) (0.03) (0.00) (0.00) (0.00) (0.00) (0.02) (0.19) (0.31) ·

12 0.94 0.05 0.01 0.00⇤ 0.00⇤ 0.00⇤ 0.01 0.50 2.93 ·
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.34) ·

24 0.63 0.04 0.01 0.01 0.00⇤ 0.00⇤ 0.02 0.07 1.54 4.56
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.19) (0.54)

36 0.59 0.04 0.01 0.01 0.01 0.01 0.01 0.06 1.15 3.31
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.14) (0.41)

48 0.76 0.07 0.02 0.01 0.01 0.01 0.02 0.06 0.93 3.15
(0.15) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.12) (0.39)

60 0.93 0.09 0.04 0.02 0.02 0.02 0.03 0.09 0.76 3.16
(0.12) (0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.10) (0.37)

84 1.22 0.20 0.09 0.07 0.06 0.07 0.08 0.14 0.54 1.94
(0.16) (0.04) (0.02) (0.02) (0.01) (0.10) (0.02) (0.03) (0.11) (0.25)

(a) Decrease in valuation uncertainty : �̂1

60 80 90 95 100 105 110 120 150 200

6 10.70 0.71 0.12 0.05 0.03 0.09 0.78 12.14 23.75 ·
(1.26) (0.16) (0.03) (0.01) (0.01) (0.02) (0.16) (1.37) (2.16) ·

12 7.18 0.28 0.06 0.03 0.02 0.04 0.10 3.77 22.40 ·
(0.86) (0.06) (0.01) (0.01) (0.01) (0.01) (0.02) (0.46) (2.50) ·

24 3.61 0.26 0.06 0.04 0.03 0.03 0.12 0.54 11.58 37.75
(0.71) (0.06) (0.01) (0.01) (0.01) (0.01) (0.03) (0.11) (1.37) (4.44)

36 3.45 0.28 0.08 0.05 0.04 0.05 0.09 0.40 8.68 26.16
(0.68) (0.06) (0.02) (0.01) (0.01) (0.01) (0.02) (0.09) (0.99) (3.08)

48 4.44 0.44 0.15 0.10 0.08 0.10 0.15 0.44 6.96 24.05
(0.87) (0.10) (0.03) (0.02) (0.02) (0.02) (0.03) (0.10) (0.84) (2.84)

60 7.11 0.53 0.25 0.16 0.14 0.15 0.22 0.56 5.59 23.64
(0.87) (0.12) (0.06) (0.04) (0.03) (0.03) (0.05) (0.12) (0.68) (2.61)

84 9.24 1.19 0.53 0.43 0.39 0.44 0.49 0.88 3.18 14.53
(1.12) (0.26) (0.12) (0.10) (0.09) (0.58) (0.11) (0.19) (0.64) (1.78)

(b) Decrease in strategic uncertainty : �̂2

These two tables present the counterfactual results of the percentage decrease in valuation un-
certainty when moving from an setting without consensus price to a setting with consensus price
feedback. The upper table presents the results for the percentage decrease in valuation uncer-
tainty, �̂1 in (8). The lower table presents the results for the percentage increase in strategic
uncertainty, �̂2 in (9). The first row and first column of each table denotes the moneyness and
time-to-expiration, respectively, of the options under consideration. The standard deviation of
the posterior distribution of the parameter is given in parenthesis below its mean (0.00 signifies
standard deviations below 0.005). The sample period is from December 2002 to February 2015.
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Table 6: Counterfactual - Perfect Consensus price

60 80 90 95 100 105 110 120 150 200

6 12.02 0.01 0.00⇤ 0.00⇤ 0.00⇤ 0.01 0.07 11.35 27.01 ·
(0.52) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.03) ·

12 6.15 0.00⇤ 0.00⇤ 0.00⇤ 0.00⇤ 0.00⇤ 0.01 1.02 25.45 ·
(0.35) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.16) (0.84) ·

24 0.01 0.01 0.00⇤ 0.00⇤ 0.00⇤ 0.00⇤ 0.01 0.07 11.99 33.46
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.21)

36 0.02 0.01 0.00⇤ 0.00⇤ 0.00⇤ 0.01 0.01 0.03 4.71 24.14
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.34) (1.00)

48 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.03 2.19 16.80
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.27) (0.82)

60 4.60 0.00⇤ 0.01 0.01 0.01 0.01 0.01 0.03 1.24 11.55
(0.33) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.24) (0.74)

84 6.13 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 10.88
(0.39) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.63)

(a) Reduction in valuation Uncertainty : �̃1

60 80 90 95 100 105 110 120 150 200

6 41.31 0.02 0.01 0.01 0.01 0.04 0.27 38.80 62.69 ·
(1.43) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.49) (1.09) ·

12 24.49 0.01 0.01 0.01 0.01 0.02 0.05 4.35 61.23 ·
(1.28) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.74) (1.52) ·

24 0.03 0.02 0.01 0.01 0.01 0.02 0.05 0.27 40.68 62.10
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.48) (1.95)

36 0.07 0.03 0.02 0.02 0.02 0.02 0.04 0.13 18.68 57.87
(0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.04) (1.31) (1.75)

48 0.09 0.03 0.03 0.02 0.02 0.03 0.04 0.12 8.94 46.67
(0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.16) (1.89)

60 18.72 0.01 0.03 0.02 0.02 0.03 0.04 0.10 5.06 35.14
(1.29) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.05) (1.94)

84 23.65 0.04 0.03 0.03 0.03 0.03 0.04 0.07 0.13 36.56
(1.41) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.04) (1.82)

(b) Reduction in Strategic Uncertainty : �̃2

These two tables present the counterfactual results of the percentage reduction in valuation
uncertainty when moving from the current information structure to an information structure
where the consensus price perfectly reveals last period’s state (0.00⇤ means below 0.005). The
upper table presents the results for the percentage reduction in valuation uncertainty, �̃1 in
(10). The lower table presents the results for the percentage reduction in strategic uncertainty,
�̃2 in (11). The first row and first column of each table denotes the moneyness and time-
to-expiration, respectively, of the options under consideration. The standard deviation of the
posterior distribution of the parameter is given in parenthesis below its mean (0.00 signifies
standard deviations below 0.005). The sample period is from December 2002 to February 2015.
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7.2 Totem Submission Statistics

Table 7: Range of the times series for plain vanilla options
moneyness

term 20 30 40 50 60 70 80 90 95 100 105 110 120 130 150 175 200 250 300
1 08/09 08/09 08/15 13/15 07/15 13/15 02/15 02/15 02/15 02/15 02/15 02/15 02/15 09/15 07/15 09/15 07/15 - -
2 08/09 08/09 08/15 13/15 08/15 13/15 08/15 08/15 08/15 08/15 08/15 08/15 08/15 09/15 08/15 09/15 08/15 - -
3 08/09 08/09 08/15 13/15 07/15 13/15 02/15 02/15 02/15 02/15 02/15 02/15 02/15 09/15 07/15 09/15 07/15 - -
6 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
9 08/15 08/15 08/15 13/15 07/15 13/15 07/15 07/15 07/15 07/15 07/15 07/15 07/15 09/15 07/15 09/15 07/15 08/15 08/15
12 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
18 08/15 08/15 08/15 13/15 07/15 13/15 07/15 07/15 07/15 07/15 07/15 07/15 07/15 09/15 07/15 09/15 07/15 08/15 08/15
24 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
30 08/15 08/15 08/15 13/15 07/15 13/15 07/15 07/15 07/15 07/15 07/15 07/15 07/15 09/15 07/15 09/15 07/15 08/15 08/15
36 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
48 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
60 08/15 08/15 08/15 13/15 98/15 13/15 98/15 98/15 98/15 98/15 98/15 98/15 98/15 09/15 99/15 09/15 02/15 08/15 08/15
72 10/15 10/15 10/15 13/15 10/15 13/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15
84 08/15 08/15 08/15 13/15 99/15 13/15 99/15 99/15 99/15 99/15 99/15 99/15 99/15 09/15 99/15 09/15 02/15 08/15 08/15
96 10/15 10/15 10/15 13/15 10/15 13/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15
108 10/15 10/15 10/15 13/15 10/15 13/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15 10/15
120 08/15 08/15 08/15 13/15 99/15 13/15 99/15 99/15 99/15 99/15 99/15 99/15 99/15 09/15 99/15 09/15 03/15 08/15 08/15
144 08/15 08/15 08/15 13/15 05/15 13/15 05/15 05/15 05/15 05/15 05/15 05/15 05/15 09/15 05/15 09/15 05/15 08/15 08/15
180 08/15 08/15 08/15 13/15 05/15 13/15 05/15 05/15 05/15 05/15 05/15 05/15 05/15 09/15 05/15 09/15 05/15 08/15 08/15
240 11/15 11/15 11/15 13/15 11/15 13/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15 11/15

This table gives the coverage of the data for the specific contracts on the S&P 500 Index. The
table reports the start and end year that a contract covers.

Table 8: Average number of submitters

moneyness
term 60 80 90 95 100 105 110 120 130 150 200
6 27 31 31 31 31 31 31 31 29 27 ·
9 26 29 29 29 29 29 29 29 29 26 ·
12 27 30 30 30 30 30 30 30 28 27 19
24 27 30 30 30 30 30 30 30 28 26 19
36 26 29 29 29 29 29 29 29 27 26 18
48 26 29 29 29 29 29 29 29 26 25 18
60 25 28 28 28 28 28 28 28 26 25 18
84 24 25 25 25 25 25 25 25 24 23 17

This table provides the average number of submitters for the specific options on the S&P 500
Index. These are the accepted prices per contract for the dates that the contract is polled. In
our analysis we ignore submissions with a price of 0. The data sample is from December 2002
till February 2015.
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7.3 Additional figures
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Figure 6: Bid-Ask spread vs Submission Range IV (S&P 500)

The figure above displays the range of the price submissions to the Totem service and bid-ask
spread on traded options from OptionMetrics. This is for a contract with time-to-experation of
6 months and moneyness 100. The bid-ask spread is given by the best di↵erence between the
best closing bid price and best closing ask price across all US option exchanges. The options
in the Totem service are matched to the traded options in the OptionMetrics database. On a
given Totem valuation date we match OptionMetrics option contracts that are a close proxy for
the totem option contracts. We search for contracts with a ± 10 days-to-maturity and a ±1
moneyness value. When multilple options match the criteria an average is taken of their bid-ask
spread.
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7.4 Solution algorithm

Here we show how to apply the algorithm developed in Nimark (2017) to solve the consensus
pricing problem of section 3. We adopt the following standard notation for higher-order beliefs,
defining recursively

✓
(0)
t = ✓t,

✓
(k+1)
i,t = E

⇣
✓
(k)
t |⌦i,t

⌘
and ✓

(k+1)
t =

Z 1

0
✓
(k+1)
i,t di for all k � 0.

We denote institution i’s hierarchy of beliefs up to order k by

✓
(1:k)
i,t =

⇣
✓
(1)
i,t , ..., ✓

(k)
i,t

⌘T

and for the hierarchy of average beliefs up to order k, including the fundamental value ✓(0)t as
first element,

✓
(0:k)
t =

⇣
✓
(0)
t , ✓

(1)
t , ..., ✓

(k)
t

⌘T
.

The solution procedure proceeds recursively. It starts with a fixed order of beliefs k � 0 and

postulates that the dynamics of average beliefs ✓(0:k)t are given by the VAR(1)

✓
(0:k)
t = Mk ✓

(0:k)
t�1 +Nk wt (14)

with wt = (ut, "t)T and ✓(n)t = ✓
(k)
t for all n � k.

Institution i’s signal can be expressed in terms of current and past average beliefs, ✓(0:k)t and

✓
(0:k)
t�1 , and the period t shocks wt and ni,t. The private signal can be written as

si,t = e
T
1 ✓

(0:k)
t + �⌘ ⌘i,t

where ej denotes a column vector of conformable length with a 1 in position j, all other elements
being 0. Similarly, we can express the consensus price pt as

pt = ✓
(1)
t�1 + �" "t = e

T
2 ✓

(0:k)
t�1 + �" "t.

Denote the vector of signals by yi,t = (si,t, pt)T. We can now express the signals in terms of
current average beliefs and shocks,

yi,t = Dk,1 ✓
(0:k)
t +Dk,2 ✓

(0:k)
t�1 +Rw wt +R⌘ ⌘i,t (15)

where

Dk,1 =


e
T
1

0Tk+1

�
, Dk,2 =


0Tk+1

e
T
2

�
, R⌘ =


�⌘

0

�
and Rw =


0 0
0 �"

�
.

We thus obtain a state space representation of the system from the perspective of institution

i. Equation (14) describes the dynamics of the latent state variable ✓(0:k)t , equation (15) is the
observation equation that provides the link between the current state and i’s signals. Using a
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Kalman filter that allows for lagged state variables (see Nimark (2015)) allows us to express
institution i’s beliefs conditional on the information contained in ⌦i,t as

✓
(1:k+1)
i,t = Mk ✓

(1:k+1)
i,t�1 +Kk

h
yi,t �D1,k Mk ✓

(1:k+1)
i,t�1 �D2,k ✓

(1:k+1)
i,t�1

i
, (16)

where Kk is the (stationary) Kalman gain. Substituting out the signal vector in terms of current
state and shocks, this can equivalently be written as

✓
(1:k+1)
i,t = [Mk �Kk(D1,kMk +D2,k)] ✓

(1:k+1)
i,t�1

+Kk(D1,kMk +D2,k)✓
(0:k)
t�1 +Kk(D1,kNk +Rw)wt +KkR⌘ ⌘i,t.

Averaging this expression across all submitters, assuming that by a law of large numbers
R 1
0 ⌘i,t di =

0, average beliefs are then given by

✓
(1:k+1)
t = [Mk �Kk(D1,kMk +D2,k)] ✓

(1:k+1)
t�1

+Kk(D1,kMk +D2,k)✓
(0:k)
t�1 +Kk(D1,kNk +Rw)wt.

Combined with the fact that ✓(0)t = ⇢ ✓
(0)
t�1 + �u ut we now obtain a new law of motion for the

state
✓
(0:k+1)
t = Mk+1 ✓

(0:k+1)
t�1 +Nk+1 wt

with

Mk+1 =


⇢ e

T
1 0

Kk(D1,kMk +D2,k) 0k⇥1

�
+


0 01⇥k

0k⇥1 Mk �Kk(D1,kMk +D2,k)

�
(17)

and

Nk+1 =


�u e

T
1

Kk(D1,kNk +Rw)

�
. (18)

Note, however, that now the state space has increased by one dimension from k+1 to k+2. This
is a consequence of the well-known infinite regress problem when filtering endogenous signals.
When filtering average beliefs of order k, institutions have to form beliefs about average beliefs
of order k. But this implies that equilibrium dynamics are influenced by average beliefs of order
k + 1, and so on for all orders k � 0.

In practice, the solution algorithm works as follows. We initialise the iteration at k = 0 with

M0 = ⇢ and N0 = �u, which implies that ✓(1)t = ✓
(0)
t for all t. Consequently, the consensus price

of the first iteration is given by22

p
[1]
t = ✓

(0)
t�1 + �" "t.

This yields a Kalman gain K0 (here a two-dimensional vector) which can then be used to obtain

M1 and N1 via equations (17) and (18) and so on until convergence of the process p[n]t has been
achieved according to a pre-specified convergence criteria after n steps. The highest order belief
that is not trivially defined by lower order beliefs is then of order n.

22Superscripts in square brackets denote iterations of the algorithm.
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7.5 Kalman Filter for Estimation

For a given contract, that is a given time-to-expiration, moneyness, and option type (put or
call), our data consists of two time series. Let S be the total number of institutions that have
submitted to Totem over the course of our sample and let ◆t ⇢ {1, 2, .., S} be the set of institutions
active in t.23 Our sample of submissions is then given by (mt)Tt=1, where mt = (mj,t)j2◆t is a
|◆t|-dimensional vector consisting of the individual period t consensus price submissions. We
assume that consensus price submissions are institution i’s best estimate of ✓t plus uncorrelated
measurement error24

mi,t = ✓
(1)
i,t + �  i,t with  i,t ⇠ N(0, 1). (19)

Following our model, we assume that the consensus price of period t�1, which we call pt, equals
the average first-order belief of period t� 1 plus aggregate noise, that is

pt = ✓
(1)
t�1 + �" "t.

Our data set for a given contract, (y)Tt=1, then consists of the time-series of institutions’ price
submissions for this contract and the corresponding consensus price, i.e. yt = (pt ,mt)T.25

To estimate the model, we fix the maximum order of beliefs at k̄ = 4 and assume that the
system has reached its stationary limit.26 Average beliefs then evolve according to (14), namely

✓
(0:k̄)
t = Mk̄ ✓

(0:k̄)
t�1 +Nk̄ wt,

where Mk̄ and Nk̄ are functions of the parameters � defined recursively by equations (17) and

(18) and wt = (ut , "t)T ⇠ N(02, I2).27 The dynamics of institutions i’s conditional beliefs ✓(1:k̄)i,t

can be expressed in terms of deviations from average beliefs, ✓̂(1:k̄)i,t ⌘ ✓
(1:k̄)
i,t � ✓

(1:k̄)
t , as

✓̂
(1:k̄)
i,t = Qk̄ ✓̂

(1:k̄)
i,t�1 + Vk̄ ⌘i,t,

where
Qk̄ =

⇥
Mk̄ �Kk̄(D1,k̄Mk̄ +D2,k̄)

⇤
and Vk̄ = Kk̄ R⌘.

Given the linearity of the above system and the assumed normality of shocks the likelihood func-
tion for the observed data (y)Tt=1 with yt = (pt ,mt)T can be derived using the Kalman filter.

We define ↵t = (✓(0:k̄)t , ✓̂
(1:k̄)
1,t , ..., ✓̂

(1:k̄)
S,t , "t)T to be the state of the system in t.

The transition equation of the system in state space form is then given by

↵t = T↵t�1 +R ✏t

23If an institution does not submit a price in t, we treat this as a missing value. However, it
is assumed that this institution received both the consensus price and the private signal about
the fundamental in that period.

24In our main specification we assume that there is not measurement error, i.e. � = 0.
25To be precise, mj,t is the (demeaned) natural logarithm of the Black-Scholes implied volatil-

ity of submitter j’s time t price submission, and pt is the (demeaned) natural logarithm of the
consensus Black-Scholes implied volatility calculated by Totem for the corresponding contract.

26Allowing k̄ greater than 4 does not change the estimates noticeably.
27We use 0n⇥m to denote a n⇥m matrix of zeros, 1n is a (column) vector containing n ones,

and In is an n-dimensional identity matrix.
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where

T =

0

@
Mk̄ , 0k̄+1⇥Sk̄+1

0S k̄⇥k̄+1 , IS ⌦Qk̄ , 0S k̄⇥1

02⇥k̄+1+Sk̄+1

1

A , R =

0

@
Nk̄ , 0k̄+1⇥S

0Sk̄⇥2 , IS ⌦ �⌘ Vk̄

I2 , 02⇥S

1

A

and ✏t = (ut , "t , ⌘1,t , ..., ⌘S,t)T ⇠ N (02+S , I2+S).

We now derive the observation equation for the system given by

yt = Z1,t ↵t + Z2,t ↵t�1 + �t.

First note that the consensus price pt can be expressed in terms of the past state vector ↵t as

pt = e
T
2 ✓

(1)
t�1 + �" "t.

Next, note that we can write institution i’s submission mi,t as

mi,t = ✓
(1)
i,t + �  i,t = ✓

(1)
t + x

(1)
i,t + �  i,t.

The above derivations allow us to write ct, Z1,t and Z2,t in terms of the parameters of the model.
We start by defining an auxiliary matrix Jt that allows us to deal with missing submissions by
some institutions in period t. Recall that ◆t ⇢ {1, 2, .., S} is the set of institutions submitting in
t. Let ◆k,t designate the k-th element of the index ◆t. Jt is a (|◆t| ⇥ S) matrix whose k-th row
has a 1 in position ◆k,t and zeros otherwise.

We thus have

�t =

✓
0

� Jt ( 1,t, ..., N,t)T

◆
with �t = E

�
�t �

T
t

�
=

✓
0 0T

|◆t|
0|◆t| �

2
 I|◆t|

◆
.

Furthermore, we have Z1,t = Jt Z1 and Z2,t = Jt Z2 where

Z1 =

0

BBBBB@

01⇥1+k̄+Sk̄ , �"

0 , 1 , eT1
0 , 1 , eT

k̄+1
...

0 , 1 , eT
(S�1)k̄+1

1

CCCCCA
, and Z2 =

0

BBB@

0, 1, 01⇥(k̄�2)+Sk̄+1

01⇥1+k̄+Sk̄+1
...

01⇥1+k̄+Sk̄+1

1

CCCA
.

Given a prior for the state of the system at t = 1, ↵1 ⇠ N(a1, P1), we can now apply the usual
Kalman filter recursion to derive the likelihood function for our data (yt)Tt=1 given the parameter
vector � denoted L

�
(yt)Tt=1 | �

�
.
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7.6 Proof of identification

Strategy of proof The proof of identification proceeds in two steps. First, we establish
identification for the model under the assumption that submitting institutions take the consensus
price to be an exogenous signal of the past state, i.e. pt = ✓t�1 + "t. This is the model of the
first step in Nimark’s (2017) solution algorithm. Second, once we have established identification
of the first-step model, we proceed by induction. In particular, we argue that if the model is
identified at step n of the algorithm, it is also identified at step n + 1. This then establishes
identificiation of the model at all steps of the algorithm.

A. Identification with exogenous consensus price signal

If submitters assume that the consensus price is an exogenous signal of the (past) state, then
individual submitters’ first-order beliefs are updated according to

✓i,t = ⇢ ✓i,t�1 + (k11 k12)

✓
✓t + ⌘i,t � ⇢ ✓i,t�1

✓t�1 + "t � ✓i,t�1

◆
.

We can write this as

✓i,t = (1� k)⇢ ✓i,t�1 + k ⇢ ✓t�1 + k11 ut + k12 "t + k11 ⌘i,t, (20)

where the Kalman gains k11 and k12 are given by

k11 =
⇣ + ⇢

2
k

⇣ + ⇢2 +  /(1�  )
and k12 = ⇢(k � k11) with

k =
1

2
+

1

2⇢2

n⇥
(1� ⇢)2 + ⇠

⇤ 1
2
⇥
(1 + ⇢)2 + ⇠

⇤ 1
2 � (1 + ⇠)

o
,

⇠ =
⇣

 
,  =

�
2
⌘

�2
" + �2

⌘

and ⇣ =
�
2
u

�2
"

.

The average first-order belief is then

✓̄t = (1� k)⇢ ✓̄t�1 + k ⇢ ✓t�1 + k11 ut + k12 "t,

with corresponding (step 2) consensus price process

pt = ✓̄t�1 + "t.

This implies the following dynamics for the consensus price,

pt = (1� k)⇢ pt�1 + k ⇢ ✓t�2 + k11 ut�1 + (k12 � (1� k)⇢)"t�1 + "t. (21)

Observed data We assume that our observed data consists of a panel of individual first-
order beliefs for N submitting institutions {{✓i,t}Ni=1}Tt=1 that evolve according to (20), and the
corresponding time-series of consensus prices {pt}Tt=1 generated by the process specified in (21).

We now show how the distribution of the above data identifies the model parameters of interest,
namely {⇢,�2

" ,�
2
⌘,�

2
u}.
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1. Deviations of the consensus price from average expectations identify �2
" .

We obtain estimates for the error "t from the di↵erence between the current consensus price and
the past mean submission as

"t = pt � ✓̄t�1.

We can thus identify �2
" from the time-series variance of the estimated errors.

2. Individual deviations from average expectations identify (1� k)⇢.
Individual deviations from the consensus, ✓̂i,t = ✓i,t � ✓̄t are given by

✓̂i,t = (1� k)⇢ ✓̂i,t�1 + k11 ⌘i,t.

Individual deviations follow an AR(1) process. Deviations from consensus mean-revert more
quickly if submitters put less weight on past information (higher k), or if the fundamental value
process is less persistent (low ⇢). We can therefore identify (1 � k)⇢ from the auto-covariances
of individual deviations from the current mean submission.

3. Persistence in consensus price updates identify ⇢ and hence k via (1� k)⇢.
Having identified (1� k)⇢ we can obtain !t = pt � (1� k)⇢ pt�1 from our data, where

!t = k11 ut�1 + k ⇢

✓
ut�2

1� ⇢L

◆
+ (k12 � (1� k)⇢)"t�1 + "t.

!t is a noisy measure of the fundamental news submitters receive in period t. By subtracting (1�
k)⇢ pt�1 from pt it “cleans out” their prior beliefs. For su�ciently long lags, !t’s auto-correlation
exclusively comes from its dependence on the fundamental process and not the aggregate noise,
"t. Its auto-covariances thus allow us to identify the persistence in the process of ✓t. In particular,
we can see that the auto-covariances of !t have to satisfy

Cov(!t,!t�3) = ⇢Cov(!t,!t�2).

The ratio of these auto-covariances thus identify ⇢,

⇢ = Cov(!t,!t�3)/Cov(!t,!t�2),

which together with (1 � k)⇢ then allow us to identify 1 � k, i.e. the persistence in individual
expectations due to informational frictions.

4. The weight submitters put on the consensus price when updating expectations identifies �2
⌘

and hence �2
u via k.

k determines how much weight submitters put on new information as opposed to their priors. It
is given by

k =
1

2
+

1

2⇢2

n⇥
(1� ⇢)2 + ⇠

⇤ 1
2
⇥
(1 + ⇢)2 + ⇠

⇤ 1
2 � (1 + ⇠)

o
,

where ⇠ =
⇣

 
with  =

�
2
⌘

�2
" + �2

⌘

and ⇣ =
�
2
u

�2
"

.

It is a function of ⇠, which is a ratio of the variance of the shocks to the fundamental value to
the variance of the signal noises and can thus be seen as a measure of the signal to noise ratio. k
is monotonically increasing in ⇠; a higher signal to noise ratio implies a higher weight on current
signals. Hence, having already identified k, we can also identify ⇠.
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In turn, the weights submitters put on the private signal and the consensus price can be expressed
in terms of k, ⇠, and  , namely

k11 =
⇠  + ⇢

2
k

⇠  + ⇢2 +  /(1�  )
and k12 = ⇢(k � k11).

It can be shown that, for a given k, the weight on the private signal, k11, is monotonically de-
creasing and the weight on the consensus price, k12, monotonically increasing in  for  2 (0, 1);
a relatively more noisy private signal will lead submitters to shift weight from the private signal
to the consensus price (given k). As we have already identify k and ⇠, knowing either k11 or k12
will allow us to identify  . Given  we can then back out �2

⌘ and ⇣, which yields �2
u.

We now proceed to show identification of k12, which by the previous argument establishes iden-
tification of the model. To do so, we return to the individual expectation updating equation,

✓i,t = (1� k)⇢ ✓i,t�1 + k11 ⇢ ✓t�1 + k12 pt + k11 ⌘i,t + k11 ut.

We also have
✓i,t�1 = (1� k)⇢ ✓i,t�2 + k11 ✓t�1 + k12 pt�1 + k11 ⌘i,t�1.

Multiplying the latter expression by ⇢ and subtracting from the former eliminates the unobserv-
able ✓t�1. We obtain an expression in terms of observables and shocks,

✓i,t � ⇢ ✓i,t�1 = (1� k)⇢(✓i,t�1 � ⇢ ✓i,t�2) + k12 (pt � ⇢ pt�1) + k11(⌘i,t � ⇢ ⌘i,t�1) + k11 ut.

Note that we have already identified (1� k)⇢. Define

yi,t = ✓i,t � ⇢ ✓i,t�1 � (1� k)⇢(✓i,t�1 � ⇢ ✓i,t�2).

We can then identify the coe�cient k12 from the covariance of yi,t and pt � ⇢ pt�1 noting that

yi,t = k12 (pt � ⇢ pt�1) + k11(⌘i,t � ⇢ ⌘i,t�1) + k11 ut.

This is possible as pt is a signal based on information available in t�1 plus "t. It is not correlated
with the shock ut. Furthermore, the idiosyncratic noise terms ⌘i,t and ⌘i,t�1 are uncorrelated
with the consensus price process by construction.

B. Establishing identification by induction

Suppose we have established identification of the model parameters by our observed data for
step n of the algorithm. That is, any two distinct sets of parameters �1 and �2 imply distinct
distributions of the observable data. In particular, the step n consensus price process that
submitters will assume in step n + 1 di↵ers across the two parameter sets. This necessarily
implies that that the distribution of individual expectations will di↵er across the two parameter
sets in step n + 1. But this then establishes identification of the model at step n + 1 of the
algorithm. ⌅
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7.7 Valuation submission process

IHS Markit Client

Spread Sheet
Valuation +

Parameters

Individual

Submissions

Create Consensus Client Consensus

IHS Markit Cleaning

Figure 7: Diagram - Submission process

Figure 7 depicts a diagram of the submission process to IHS Markit’s Totem service for plain
vanilla index options.28 Totem issues on the last trading day of each month a spread sheet to
NK,T submitters. Here K is the moneyness of the contract defined as the strike price divided
by the spot price multiplied by 100 and T is the time-to-expiration of the contract in months.
Participating submitters are required to submit their mid-price estimate for a range of put op-
tions with a moneyness between 80 and 100 and a range of call option with a moneyness ranging
from 100 to 120 with a time-to-expiration of 6 months. Submitters which want to submit to
any other contracts with a di↵erent maturity or/and di↵erent moneyness are required to submit
to all the available strike price and time-to-expiration combinations which lie in between the
required contracts and the additionally demanded contracts.

Submitter i submits its mid-price estimate for di↵erent out of the money put and call options,

28Data provided by IHS MarkitTM - Nothing in this publication is sponsored, endorsed, sold
or promoted by IHS Markit or its a�liates. Neither IHS Markit nor its a�liates make any
representations or warranties, express or implied, to you or any other person regarding the
advisability of investing in the financial products described in this report or as to the results
obtained from the use of the IHS Markit Data. Neither IHS Markit nor any of its a�liates have
any obligation or liability in connection with the operation, marketing, trading or sale of any
financial product described in this report or use of the IHS Markit Data. IHS Markit and its
a�liates shall not be liable (whether in negligence or otherwise) to any person for any error in
the IHS Markit Data and shall not be under any obligation to advise any person of any error
therein.
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P
i
t (p,K, T ) and P

i
t (c,K, T ) respectively. The inputs which are required in addition to the mid-

price estimates are:

• Their discount factor �i
t (T ).

• Reference level Ri
t (This is the price of a futures contract with maturity date closest to

the valuation date, i.e t.)

• Implied spot level Si
t (K,T ) (Implied level of the underlying index of the futures contract)

There are strict instructions on the timing of the valuation of the contract and the reference
level used. To address any issues which might still arise with respect to valuation timing and the
e↵ect it could have on the comparability of the prices, the various prices are aligned according
to the following mechanism.

1. Basisi = R
i
t � S

i
t (K = 100, T = 6)

2. S
i⇤
t (K,T ) = mode

i

⇥
R

i
t

⇤
� Basisi

3. Remove from S
i⇤
t (K,T ) the lowest, highest and erroneous adjusted spot levels.

4. S̄t (K,T ) = mode
i

⇥
R

i
t

⇤
� 1

N⇤(K,T )

PN⇤(K,T )
i=1 S

i
t (K,T )

This consensus implied spot from the at-the-money 6 month option is used for all other combina-
tions ofK and T . The submitted prices are restated in terms of S̄t (K,T ), giving: bpit ({c, p},K, T ) =
P i

t ({c,p},K,T )/S̄t(K,T ).

Given the submitted quantities a security analyst calculates various implied quantities to vali-
date the individual submissions. The security analyst utilizes put-call parity on ATM options to
retrieve the relative forward, i.e

f
i
t (K,T ) =

bpit (c,K, T )� bpit (p,K, T )

�i
t (T )

+ 1

The above inputs are then used in the Black-Scholes model,

bpit (c,K, T ) = �
i
t (T )

⇥
f
i
t (K,T )N (d1)�KN (d2)

⇤

d1 =
ln

⇣
f
K

⌘
+
⇣
�2

2

⌘
�Tt

�
p
�Tt

,where �Tt =
days(T)

365.25

d2 = d1 � �

p
�Tt

to back-out the implied volatility, �i(K,T ).

When reviewing submissions, security analysts compare the implied volatilities against other
submitted prices and market conditions by taking the following points into consideration:

• The number of contributors

• Market activity & news

• Frequency of change of variables

• Market conventions
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• In a one way market, is the concept of a mid-market price clearly understood?

• The distribution and spread of contributed data

In addition to these criteria security analyst also visually inspect the ATM implied volatility term
structure and the implied volatility along the moneyness for a given term.29 After the vetting
process the security analyst proceeds to the aggregation of the individual submissions into the
consensus data.

Given the Black-Scholes model they back out �i(K,T ) and aggregate it into the consensus
implied volatility.

�̄ (K,T ) =
1

n(K,T ) � nr

nK,T�nr

X

i=1

�i (K,T )

Here n
r are the number of excluded prices. The exclusions consist of the lowest, highest and

rejected prices. The highest and lowest acceptable �i (K,T ) are consistent and reasonable IV’s,
but are excluded to safeguard the stability of the consensus IV.30 The same process takes place
for the submitted prices.31

The submitters of which the pricing information is not rejected receive from the security analyst
the consensus information.32,33 The consensus data includes the average, standard deviation,
skewness and kurtosis of the distribution of accepted prices and implied volatilities. They also
include the number of submitters to the consensus data.

29Also referred to as the skew or smile.
30If the number of acceptable prices is 6 or below the highest and lowest submissions are

included in the consensus price calculations.
31The feedback also includes the number of accepted prices, distance between the largest and

smallest price, the second, third and fourth moment of the cross-sectional distribution. In our
setup the contributers are only uncertain about the mean of the cross-sectional distribution.

32The security analysis of totem aim to return the consensus price to the eligiable contributers
within 5 hours of the submission deadline.

33Submitters who consistently submit accepted prices, might receive a wild card for a rejected
submission. Submitters who received a wild card will receive the consensus data even though
their submission got rejected.
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7.8 Welfare Analysis

Considering a dealer’s uncertainty about ✓̄t in addition to uncertainty about the fundamental
value ✓t itself is motivated by strategic complementarities among dealers in the OTC options
market. A key source of such complementarities is risk sharing among dealers. When an individ-
ual dealer enters into a trade with a client, an important consideration in its pricing decision is
to what extent it can share this risk by entering into o↵-setting trades with other dealers.34 This
creates a coordination incentive among dealers. Lower uncertainty about the average valuation
✓̄t corresponds to a better ability to forecast other dealers’ actions which facilitates coordination.
Here, we employ a “reduced-form” model of market behaviour to evaluate the welfare conse-
quences of di↵erent information structures for the OTC derivatives market. We derive a dealer’s
ex-ante expected steady state utility and show how it depends on the covariance matrix of his
beliefs.

We assume that in every period each dealer i 2 [0, 1] undertakes a payo↵-relevant action ai,t.
Dealer i’s expected per-period payo↵ given information set ⌦i,t is

u (ai,t, ✓t, at) = � (✓t � ai,t)
2 � � (at � ai,t)

2

where � > �1/2 and at =
R
ai,t di is the average action in t. A first-order condition wrt ai,t

yields the optimal action for i in period t, namely

ai,t = (1� �)Ei,t (✓t) + � Ei,t (at) ,

where � = �/(1 + �). As � > �1/2 we have |�| < 1 and we can solve the above expression
“forward” iteratively substituting out at (see Morris and Shin (2002) or Woodford (2003)) to get

ai,t = (1� �)
1X

k=0

�
k
✓
(k+1)
i,t

and

at = (1� �)
1X

k=0

�
k
✓
(k+1)
t .

We substitute these expressions for the optimal action back into the utility function to obtain

�
"
(1� �)

1X

k=0

�
k
⇣
✓t � ✓

(k+1)
i,t

⌘#2

�
✓

�

1� �

◆"
(1� �)

1X

k=0

�
k
⇣
✓
(k+1)
t � ✓

(k+1)
i,t

⌘#2

.

Now note that

Ei,t

" 1X

k=0

�
k
⇣
✓t � ✓

(k+1)
i,t

⌘#2

=

✓
1

1� �

◆2

Ei,t

⇣
✓t � ✓

(1)
i,t

⌘2
+

1X

k=1

�
2k

⇣
✓
(1)
i,t � ✓

(k+1)
i,t

⌘2
+ 2

1X

k=1

1X

l=k+1

�
k+l

⇣
✓
(1)
i,t � ✓

(k+1)
i,t

⌘⇣
✓
(1)
i,t � ✓

(l+1)
i,t

⌘
,

34The aggregate dealer sector typically holds a non-zero net position in S&P500 index options,
that is the client demands for index options do not net to zero. For empirical evidence on the net
dealer exposure in the index options market and its pricing implications, see Gârleanu, Pedersen,
and Poteshman (2009).
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and

Ei,t

" 1X
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�
k
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(k+1)
i,t

⌘#2

=
1X

k=1

�
2(k�1) Ei,t

⇣
✓
(k)
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(k+1)
i,t

⌘2
+

2
1X

k=1

1X
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�
k+l�2 Ei,t

⇣
✓
(k)
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(k+1)
i,t
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✓
(l)
t � ✓

(l+1)
i,t

⌘
+

1X
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�
2(k�1)

⇣
✓
(k+1)
i,t � ✓

(k)
i,t

⌘2
+ 2

1X

k=1

1X

l=k+1

�
k+l�2

⇣
✓
(k+1)
i,t � ✓

(k)
i,t

⌘⇣
✓
(l+1)
i,t � ✓

(l)
i,t

⌘
.

Expected utility in period t can then be expressed as

U(⌦i,t) ⌘ max
ai,t

E [u(ai,t, ✓t, at)|⌦i,t] = �V ar(✓t|⌦i,t)� � (1� �)
1X

k=1

�
2(k�1)

V ar

⇣
✓
(k)
t |⌦i,t

⌘
�

2� (1� �)
1X

k=1

1X

l=k+1

�
k+l�2

Cov

⇣
✓
(k)
t , ✓

(l)
t |⌦i,t

⌘
�G(⌦i,t)

where

G(⌦i,t) = (1� �)2
1X

k=1

�
2k

h
E
⇣
✓t � ✓

(k)
t |⌦i,t

⌘i2
+

+ 2(1� �)2
1X

k=1

1X

l=k+1

�
k+l E

⇣
✓t � ✓

(k)
t |⌦i,t

⌘
E
⇣
✓t � ✓

(l)
t |⌦i,t

⌘
+

� (1� �)
1X

k=1

�
2(k�1)

h
E
⇣
✓
(k)
t � ✓

(k�1)
t |⌦i,t

⌘i2
+

2� (1� �)
1X

k=1

1X

l=k+1

�
k+l�2 E

⇣
✓
(k)
t � ✓

(k�1)
t |⌦i,t

⌘
E
⇣
✓
(l)
t � ✓

(l�1)
t |⌦i,t

⌘
.

We now calculate the ex-ante expectation of steady-state utility under a common prior. The
steady state covariance matrix is constant. Let ⌃k+1,l+1 denote submitter i’s steady-state co-

variance between ✓(k)t and ✓(l)t for all k, l � 0. Furthermore, under the common prior assumption

we have E
h
E(✓(k)t � ✓

(l)
t |⌦i,t)

i
= E(✓(k)t � ✓

(l)
t ) = 0. The ex-ante expectation of steady-state

utility is then given by

U = �⌃1,1 � � (1� �)
1X

k=1

�
2(k�1) ⌃k+1,k+1 � 2� (1� �)

1X

k=1

1X

l=k+1

�
k+l�2 ⌃k+1,l+1 �G.
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where

G = (1� �)2
1X

k=1

�
2k (⌃1,1 � 2⌃1,k+1 + ⌃k+1,k+1)+

+ 2(1� �)2
1X

k=1

1X

l=k+1

�
k+l(⌃1,1 � ⌃1,k+1 � ⌃1,l+1 + ⌃k+1,l+1)+

� (1� �)
1X

k=1

�
2(k�1)(⌃k+1,k+1 � 2⌃k+1,k + ⌃k,k)+

2� (1� �)
1X

k=1

1X

l=k+1

�
k+l�2(⌃k+1,l+1 � ⌃k+1,l � ⌃k,l+1 + ⌃k,l).

Assuming |�| is “small” and ignoring terms of order O(�2), ex-ante expected steady-state utility
is approximately

U ⇡ �(1 + �)⌃1,1 � 2� ⌃2,2 + 2� ⌃1,2.

This illustrates how strategic uncertainty, as measured by the variance of second-order beliefs,
translates a↵ects dealers’ welfare. Di↵erent information structures for the market imply dif-
ferent covariance matrices ⌃. The above expected utility can then be used to perform welfare
comparisons across information structures.
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7.9 Covariance Matrices for Counterfactual Scenarios

7.9.1 Consensus price perfectly reveals past state

If the consensus price perfectly aggregates dispersed information we have

pt = ✓t�1.

In this case all submitters start period t with a common prior about ✓t, namely ⇢ ✓t�1, and there
is no higher-order uncertainty before receiving new signals. This is because every submitter
knows that every submitter knows that ... the average expected value of ✓t before receiving
period t signals is ⇢ ✓t�1.

Submitter i’s expectations about the fundamental given signal si,t = ✓t + ⌘i,t can be obtained
by the standard updating formula as state ✓t and signal si,t given ✓t�1 are jointly normally
distributed:

Ei,t (✓t) = ✓i,t = ⇢ ✓t�1 + k1 (si,t � ⇢ ✓t�1) = ⇢ ✓t�1 + k1(ut + ⌘i,t) ,

where k1 is the Kalman gain

k1 =
�
2
u

�2
u + �2

⌘

.

It follows that the average expectation is

✓̄t = ⇢ ✓t�1 + k1 ut.

Now define the random vector

Xt =
⇥
✓t � ⇢ ✓t�1 , ✓̄t � ⇢ ✓t�1

⇤
= [ut , k1 ut] ,

and
yi,t = si,t � ⇢ ✓t�1 = ut + ⌘i,t.

Xt and yi,t are jointly normally distributed. Thus, the covariance of Xt given yi,t is

V ar (Xt|yi,t) = ⌃xx � ⌃xy

�
�
2
y

��1
⌃T

xy,

where ⌃xx is the variance of Xt and ⌃xy is the covariance of Xt and yi,t, namely

⌃xx =


�
2
u k1�

2
u

k1�
2
u k

2
1 �

2
u,

�
, ⌃xy =

⇥
�
2
u , k1 �

2
u

⇤T
.

As ⇢ ✓t�1 is known in t, V ar((✓t, ✓̄t)T|⌦i,t) = V ar((✓t, ✓̄t)T|✓t�1, yi,t) = V ar (Xt|yi,t). It follows
that

V ar((✓t, ✓̄t)
T|⌦i,t) =

2

4
�2
u �

2
⌘

�2
u+�

2
⌘

�4
u�

2
⌘

(�2
u+�

2
⌘)

2

�4
u�

2
⌘

(�2
u+�

2
⌘)

2

�6
u�

2
⌘

(�2
u+�

2
⌘)

3

3

5 .
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7.9.2 No consensus price feedback

Without consensus price feedback the stationary expectation dynamics of submitter i are given
by

✓i,t = ⇢ ✓i,t�1 + k1 (si,t � ⇢ ✓i,t�1) ,

where k1 is the stationary Kalman gain. k1 is the solution to the system of two equations in two
unknowns, k1 and �2,

k1 =
�
2

�2 + �2
⌘

, �
2 = ⇢

2(1� k1)�
2 + �

2
u.

The average stationary expectation then evolves according to

✓̄t = (1� k1)⇢ ✓̄t�1 + k1⇢ ✓t�1 + k1 ut.

We can now write the dynamics for (✓t, ✓̄t)T in state space form, with transition equation

✓
✓t

✓̄t

◆
=


⇢ 0
k1⇢ (1� k1)⇢

�✓
✓t�1

✓̄t�1

◆
+


1
k1

�
ut

and measurement equation

yi,t = (1 , 0)

✓
✓t

✓̄t

◆
+ ⌘i,t.

The stationary covariance matrix for the state given the history of signals up to t, V ar((✓t, ✓̄t)T|{si,t�j}1j=0)
can now be derived with a standard Kalman filter.
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