
The Aggregate Effects of Credit Market Frictions: Evidence from Firm-level Default Assessments

Tim Besley, Isabelle Roland, and John Van Reenen

London School of Economics and Political Science

June 2017

MOTIVATION: Causes of global productivity slowdown?

- Weak demand?
- Slowdown of technological change?
- Credit frictions?
 - Credit constraints: Are firms deprived of credit?
 - Allocation: Are the "right" firms getting credit?
- Why should you care?
 Well-functioning credit markets matter for growth!

CASE STUDY: "UK labor productivity puzzle"

• Q4 2015: 16% gap between post-1979 trend and actual labor productivity

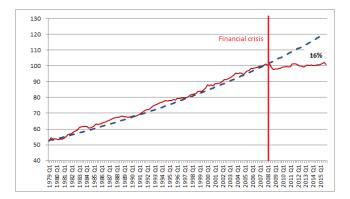


Figure: GDP/hour Q4 2007=100, trend=2.3% p.a.(Q1 1979-Q2 2008 average) Note: Q2 2008=start of recession. Source: ONS

CASE STUDY: "UK labor productivity puzzle"

Slowdown stands out in UK historical <u>and</u> international comparisons

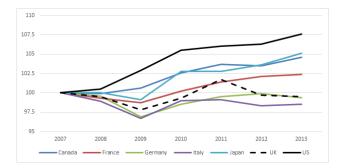


Figure: GDP/hour, 2007=100. Source: OECD and ONS

QUESTION: How much of this gap is related to credit constraints?

Integrated theoretical-empirical framework

• Literature on the aggregate consequences of firm-level distortions (e.g. Hsieh and Klenow, 2009)

$$\Pi_n = P_n Y_n - (1 + \tau_{Ln}) w L_n - (1 + \tau_{Kn}) R K_n$$

- Large number of frictions included in "tax wedges" τ_{Ln} and τ_{Kn}
- Disentangle credit frictions from "black box" au_{Kn}
- Need theoretical framework to
 - Motivate a way of measuring credit frictions at the firm level
 - Measure how this translates into aggregate output losses
- Ensure theoretical concepts can be taken to panel data

OUR ANSWERS: Credit frictions substantially depress output and labor productivity

- On average over 2004-2012 level of UK output was 7% to 9% lower due to credit market frictions (mainly among SMEs)
- Impact worsened during the crisis and lingered thereafter
- Frictions account for between a fourth and third of
 - $\bullet\,$ the 11% productivity gap at the end of 2012
 - the productivity fall in 2008-2009
- Productivity gap mainly driven by deterioration of average default risk as opposed to misallocation of credit

- Theoretical framework
- Data and measurement
- Core results
- SMEs versus large firms
- Misallocation
- Conclusion

THEORETICAL FRAMEWORK: Overview

- STEP 1: Micro-found a (measurable) proxy for firm-level credit conditions
 - Model suggests focusing on *default risk*
 - Can be estimated empirically using a credit scoring algorithm
- STEP 2: Embed this in a model with heterogeneous firms
 - Firm-level implications
 - Aggregate implications: How does default risk translate into aggregate output losses?

Simple model of equilibrium credit contracts with moral hazard FIRMS

- Risk neutral
- Heterogeneous productivities θ_n and collateral A_n
- Produce using labor L_n and capital K_n : $Y_n = \theta_n \left(L_n^{1-\alpha} K_n^{\alpha} \right)^{\eta}$
- Borrow B_n from banks and $K_n = A_n + B_n$
- Output is stochastic Production takes place or fails (0)
- Manager exerts costly effort which determines the probability of success ϕ_n
- Effort is not observed by lenders

LENDERS

- Risk neutral
- Compete and offer credit terms {B_n, R_n} tailored to a firm's characteristics {θ_n, A_n}
- Access funds at cost $\rho > 1$
- Limited liability: Firm does not pay back R_n if output is $0 \rightarrow$ Collateral A_n seized

LENDING CONTRACTS

- Nature assigns each firm to a bank
- Banks offer credit contracts {B_n, R_n} given firm's outside option U (θ_n, A_n)
- Manager chooses effort to maximize expected profits
- **9** Default occurs with probability $(1 \phi_n)$ in which case firm loses A_n
- **③** If there is no default, firm makes labor hiring decisions, produces, and repays R_n

Optimal ϕ (stage 3)

- Choice of default probability maximizes firm's expected profits given any credit contract {*R_n*, *B_n*} offered
- First order condition for optimal effort implies: ϕ_n^* increases in profit and collateral but decreases in interest payment

Optimal contracts (stage 2)

- Credit contract maximizes bank's expected profits s.t. IC effort
- Focus on case where firm's outside option $U(A_n, \theta_n)$ binds
- This pins down R_n^* and $\phi_n^*(A_n, \theta_n) = f(g(U(A_n, \theta_n) + A_n))$

- Repayment probability ϕ^* can fall because of:
 - Factors affecting function $f(\cdot)$, e.g. more challenging business conditions
 - Balance sheet deterioration, e.g. a fall in A_n
 - Higher switching costs as lenders are less keen for new business, i.e. lower $U(A_n, \theta_n)$

- Plugging this into the bank's profit function gives an expression which depends only on *B_n*
- Maximizing with respect to B_n yields

$$\Pi_{K}\left(\theta_{n}, w, A_{n} + B_{n}^{*}\left(A_{n}, \theta_{n}\right)\right) = \frac{\rho}{\phi_{n}^{*}\left(A_{n}, \theta_{n}\right)}$$

- MPK = Lender's risk-adjusted cost of funds
- Lower default risk means more capital, all else equal
- Model yields a simple micro-foundation for "tax wedge" in Hsieh and Klenow (2009)

$$\tau\left(A_{n},\theta_{n}\right)=\frac{1-\phi_{n}^{*}\left(A_{n},\theta_{n}\right)}{\phi_{n}^{*}\left(A_{n},\theta_{n}\right)}$$

Closing the model: Outside option

- Suppose there is a switching cost, κ , from moving to an alternative bank
- Equilibrium outside option offered by lender is the best possible terms another bank can offer κ
- Higher switching cost implies worse outside option
- Firms with worse outside options are more prone to default
- This lowers the amount of capital they are allocated

Outside option

THEORETICAL FRAMEWORK STEP 2: Embed this in a model with heterogeneous firms

Firm-level decisions

- Production: $Y_{nt} = \theta_{nt} \left(L_{nt}^{1-\alpha} K_{nt}^{\alpha} \right)^{\eta}$ with $\eta < 1$
- Fully flexible labor while loans are determined as above
- Factor demands maximize

$$\left\{\theta_{nt}\left(L_{nt}^{1-\alpha}K_{nt}^{\alpha}\right)^{\eta}-w_{t}L_{nt}-\frac{\rho_{t}}{\phi_{nt}^{*}}K_{nt}\right\}$$

• FOCs for *L* and *K* imply

$$Y_{nt}^* = \theta_{nt}^{\frac{1}{1-\eta}} \psi(w_t, \rho_t) (\phi_{nt}^*)^{\frac{\eta\alpha}{1-\eta}}$$

- Similar equations can be derived for K_{nt} and L_{nt}
- Factors which decrease PD increase output, employment, and the use of capital
- Firm level TFP also matters alongside macro effects

Aggregate implications

- ρ_t is determined in global capital markets
- Exogenously fixed aggregate labor supply L
- Aggregate expected output is:

$$Y_{t} = \hat{\theta}_{t}^{\frac{1}{1-\eta}} \psi\left(w_{t}, \rho_{t}\right) \sum_{n=1}^{N} \left(\frac{\theta_{nt}}{\hat{\theta}_{t}}\right)^{\frac{1}{1-\eta}} \phi_{nt}^{1+\frac{\eta\alpha}{1-\eta}}$$

• where $\hat{\theta}_t = \left(\sum_{n=1}^{N_t} (\theta_{nt})^{\frac{1}{1-\eta}}\right)^{1-\eta}$ is aggregate *TFP*, and • $\omega(\theta_{nt}) = \left(\frac{\theta_{nt}}{\hat{\theta}_t}\right)^{\frac{1}{1-\eta}}$ are productivity weights s.t. $\sum_{n=1}^{N} \omega(\theta_{nt}) = 1$

Aggregate implications

• Key magnitude for the efficiency loss due to credit frictions

$$\Theta_t(\sigma_t,\rho_t) = \sum_{n=1}^{N_t} \omega(\theta_{nt}) \phi_{nt}^{1 + \frac{\eta \alpha}{1 - \eta}}$$

- Weighted average of probabilities of repayment where weights = relative TFP
- $0 \leq \Theta_t \leq 1$ scales output up and down
- No default $ightarrow \Theta_t = 1$ and output is at first-best Y_t^*
- Output loss due to credit frictions is

$$\frac{Y_t^* - Y_t}{Y_t^*} = 1 - \Theta_t \left(\sigma_t, \rho_t\right)^{\frac{1 - \eta}{1 - \alpha \eta}}$$

• Θ_t estimated using TFP and PD estimates (or employment data)

DATA: Value added, employment, and TFP

- Annual Business Inquiry and Annual Business Survey
 - Establishment level administrative surveys (ONS)
 - Census of large businesses and stratified random sample of Small and Medium Sized Enterprises (SMEs) (under 250 employees)
- Measure productivity as real gross value added per employee
- Estimate capital stock (PIM) and TFP as Solow residual
- Focus on "market sector, excluding financial services, education, health, social work, agriculture, mining and quarrying, utilities, real estate, and non-profit organizations
- Use sampling weights to measure *aggregate* productivity developments

- Estimate default risk using credit scoring model (S&P's)
 - Inputs: BvD company accounts, industry, and macroeconomic factors
 - Output: risk score (aaa, bbb, etc.)
- Match risk score to *historical* default rates to capture historical information set of lenders

	ABI/ABS market sector	Sample market sector			
	All firms	All firms	%	SMEs	Large firms
2004	38,670	26,155	68%	21,819	4,336
2005	37,762	25,358	67%	21,192	4,166
2006	31,804	21,989	69%	18,149	3,840
2007	35,361	24,363	69%	20,052	4,311
2008	38,333	23,614	62%	18,729	4,885
2009	36,872	23,283	63%	18,603	4,680
2010	36,919	23,010	62%	18,626	4,384
2011	36,378	24,048	66%	19,449	4,599
2012	36,513	24,720	68%	20,058	4,662

Figure: Annual number of firms

• On average 24K firms per year

Annual productivity changes in our sample Sample representativeness

DATA: Default probabilities

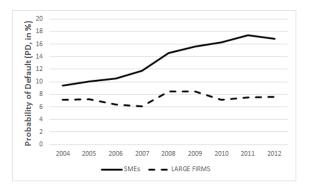


Figure: Aggregate probability of default at the 1-year horizon (in %)

- Probability of default (PD) systematically larger for SMEs
- Increase after 2007 is significant for both types of firms
- Aggregate developments largely driven by SMEs

DATA: Default probabilities

• Model predicts following *correlations*: Factors which decrease PD increase output, employment, and investment

Figure: OLS with year and firm fixed effects

	In(Labor)	ln(GVA)	In(Capex)
Lagged default risk	-0.102***	-0.610***	-0.912***
Ν	60,816	60,816	60,816
R2	0.980	0.941	0.825
	In(Capital)	In(Fixed assets)	In(Capex/labor)
Lagged default risk	-0.083***	-0.390***	-0.814***
Ν	60,816	60,816	60,816
R2	0.992	0.968	0.693

- Default risk is significant indicator of firm performance
- Non-trivial coefficients: e.g. 10pp increase in PD associated with a 9% fall in investment

	(1)	(2)	(3)	(4)
	Estimated using Solow residual		Estimated using employment data	
	Credit Friction	Percentage Output loss	Credit Friction	Percentage Output loss
2004	0.819	6.5	0.823	6.3
2005	0.842	5.6	0.815	6.6
2006	0.805	7	0.82	6.4
2007	0.795	7.4	0.819	6.4
2008	0.764	8.6	0.773	8.2
2009	0.734	9.8	0.753	9
2010	0.729	10	0.754	9
2011	0.702	11.1	0.74	9.5
2012	0.704	11.1	0.732	9.9
Average	0.766	8.6	0.781	7.9

All results assume labor share = 2/3. Credit friction = O. Percentage output loss= 1 ____ (

$$-\Theta_t^{\frac{1-\eta}{1-\alpha\eta}}$$

- On average 7.9% to 8.6% output loss per annum btw 2004 and 2012
- Increasing losses from 2006 onwards
- Impact worsens during the crisis and lingers thereafter

How much of the productivity gap can we explain?

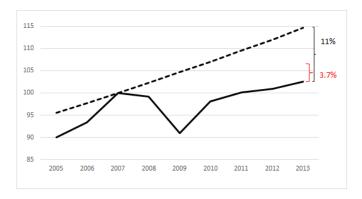


Figure: Real GVA per worker - actual versus trend, 2007=100. Source: ABI & ABS surveys, authors' calculations.

- LP would be 3.5-3.7% higher in 2012 had the level of credit frictions stayed at their level in 2007
- Approx. 33-34% of the productivity shortfall at the end of 2012

EXTENSION: SMEs versus large firms

	(1)	(2)	(3)	(4)
	SMEs		Large firms	
	Credit Friction	Percentage Output loss	Credit Friction	Percentage Output loss
2004	0.822	6.3	0.887	3.9
2005	0.84	5.6	0.89	3.8
2006	0.799	7.2	0.898	3.5
2007	0.802	7.1	0.892	3.7
2008	0.769	8.4	0.863	4.8
2009	0.733	9.8	0.861	4.9
2010	0.735	9.8	0.869	4.6
2011	0.707	10.9	0.866	4.7
2012	0.705	11	0.869	4.6
Average	0.768	8.5	0.877	4.3

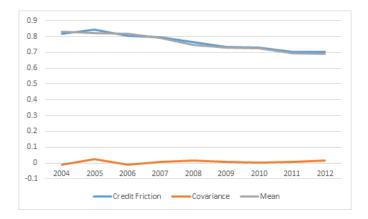
All results estimated using Solow residuals and assuming labor share = 2/3.

- Default risk systematically higher among SMEs
 - Higher output losses among SMEs
 - Aggregate deterioration driven by SMEs

- Output loss could come from two sources:
 - Average deterioration of default risk given the joint distribution of default risk and TFP
 - Changes in the joint distribution of default risk and TFP given average default risk
 - Credit is misallocated if it flows to low-productivity firms
- Decompose Θ into MEAN (1) and COVARIANCE (2) components

• Θ can be written as

$$\Theta_t = \sum_{n=1}^{N_t} \left[\omega_{nt} - \frac{1}{N_t} \right] (\phi_{nt})^{\mu} + \frac{1}{N_t} \sum_{n=1}^{N_t} (\phi_{nt})^{\mu}$$
$$= \text{COVARIANCE}(\omega_{nt}, \phi_{nt}^{\mu}) + \text{MEAN}(\phi_{nt}^{\mu})$$


- where $\mu = 1 + rac{\eta lpha}{1-\eta}$
- COVARIANCE=0 in the absence of default
- In a world with default, COVARIANCE can be positive or negative
- A higher COVARIANCE signals better allocational efficiency

	(1)	(2)	(3)
	Credit Friction	Covariance	Mean
2004	0.819	-0.012	0.83
2005	0.842	0.022	0.82
2006	0.805	-0.011	0.817
2007	0.795	0.006	0.789
2008	0.764	0.015	0.748
2009	0.734	0.005	0.729
2010	0.729	0.004	0.725
2011	0.702	0.006	0.696
2012	0.704	0.014	0.69
Average	0.766	0.005	0.76

All results estimated using Solow residuals and assuming labor share = 2/3.

- COVARIANCE mostly positive and small
- Most of the action is in the MEAN

EXTENSION: Misallocation versus average default risk

- COVARIANCE mostly positive and small
- Most of the action is in the MEAN

- Do credit frictions play a role in productivity slowdown?
- Developed a theoretical-empirical framework to motivate a way of measuring the impact of credit frictions on the real economy
- UK Case Study with rich administrative firm-level panel data
 - Substantial output and productivity losses from generalized increase in default risk
 - Worsening since 2007 mainly due to frictions on SME credit markets
 - Little evidence of worsening allocational efficiency

CASE STUDY: "UK productivity puzzle"

• Slowdown stands out in historical perspective

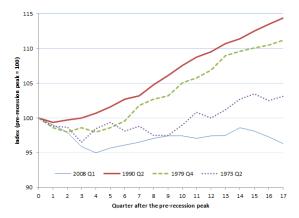


Figure: Output per worker, 2008-09 recession and previous 3 UK recessions. Pre-recession peak=100. Source: ONS.

Closing the model: Outside option

- Suppose there is a switching cost, κ , from moving to an alternative bank
- Define the maximized profit of a lender facing an outside option U as β (A_n, θ_n : U)
- Define the outside option which generates zero profits for an alternative bank as $\tilde{U}(A_n, \theta_n)$ from $\beta \left(A_n, \theta_n : \tilde{U}(A_n, \theta_n)\right) = 0$
- This is the best possible terms that another bank would offer
- Equilibrium outside option is

$$U(\theta, A) = \tilde{U}(A, \theta) - \kappa$$

Outside option

- This is a "Lucas span of control model" where profits are a return to ownership of technological/managerial capital θ
- The model could also be interpreted as a model with monopolistic competition where

$$\eta = 1 - \frac{1}{\varepsilon}$$

and ε is the elasticity of demand, e.g.

• Cobb-Douglas production function

$$Y = \theta K^{1-\alpha} L^{\alpha}$$

• With iso-elastic demand curve

$$Q = P^{-\varepsilon}$$

Estimation of Θ with employment data

- Less measurement error (no need for TFP estimation)
- Purely based on the model
- From FOC for *L*, employment solves $L_{nt} = \frac{\alpha \eta Y_{nt}}{w_t}$
- Can show that

$$\hat{\omega}_{nt} = \frac{\tilde{\gamma}_{nt}\hat{\Theta}_t}{\phi_{nt}^{1+\frac{\eta\alpha}{1-\eta}}}$$

- where $\tilde{\gamma}_{nt}$ is the employment share of firm n at date t in total employment
- Solve for $\hat{\Theta}_t$ using the fact that $\sum_{n=1}^N \hat{\omega}_{nt} = 1$

Table: Growth of aggregate real GVA per worker - based on ABI/ABS sample

	Growth of real GVA/worker (%)
2005	4.8
2006	3.7
2007	6.9
2008	-0.6
2009	-8.1
2010	7.7
2011	2
2012	0.9

DATA: Sample

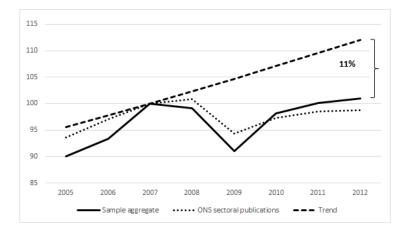


Figure: Representativeness of productivity developments in the sample

Robust patterns across estimation methods

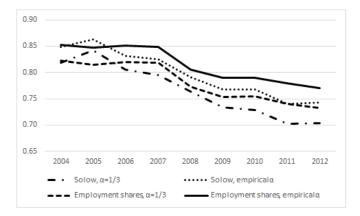
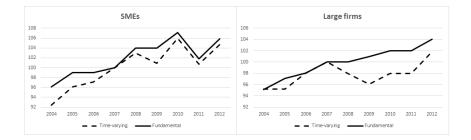


Figure: Estimates of Θ based on four estimation methods

CORE RESULTS: Application to UK productivity slowdown


$$\Delta \log w_t = \frac{1 - \eta}{1 - \alpha \eta} \left[\ln \Theta_t - \ln \Theta_{t-1} \right]$$

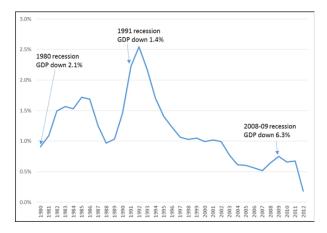
• Comparison with actual real wage gives a sense of what fraction of the observed labor productivity change is due to credit frictions

	Estimated using Solow residual, α=1/3		
Credit Friction Contribution to produc		Contribution to productivity growth	
2004	0.819		
2005	0.842	0.9	
2006	0.805	-1.5	
2007	0.795	-0.4	
2008	0.764	-1.4	
2009	0.734	-1.3	
2010	0.729	-0.2	
2011	0.702	-1.2	
2012	0.704	0.1	
Average	0.766	-0.6	

SMEs versus large firms: Role of demand effects?

- Credit frictions as measured by default risk matter mainly for SMEs
- Have large firms suffered larger demand shocks? (exports etc.)
- Difference between fundamental and time-varying TFP suggests so

Core results: SMEs versus large firms


EXTENSION: Misallocation - between firm effects Counterfactual: Each firm gets its industry average default probability

	(1)	(2)	(3)
	Contribution to	Contribution to	Contribution of allocational
	productivity	productivity	efficiency to productivity
	growth	growth (Baseline)	growth
	(Counterfactual)		
2005	-0.4	0.9	1.3
2006	-0.1	-1.5	-1.4
2007	-0.9	-0.4	0.5
2008	-2.1	-1.4	0.7
2009	-0.4	-1.3	-0.9
2010	-0.6	-0.2	0.4
2011	-0.8	-1.2	-0.4
2012	0.4	0.1	-0.3
Average	-0.6	-0.6	-0.01

• On average between-firm effects depressed labor productivity by only 0.01% over 2005-12

- Allocational deterioration in 2009: -0.9%
- $\bullet\,$ Continued deterioration after 2010 rebound: -0.7 % in 2011-2012
- Generalized increase in default risk matters more

Surprisingly low liquidations given the size of output loss

• The rate of liquidations has been very low given the size of the output loss compared to previous recessions