Discussion:
Endogenous Specialization and Dealer Networks

Artem Neklyudov and Batchimeg Sambalaibat

Maryam Farboodi
Princeton University

December 9, 2016
What Is This Paper About?

A search-based framework of OTC asset markets

- Underlying heterogeneity: rate of change of taste for asset for customers
- Dealer network
 - Core-periphery dealer
 - Intermediation
Nice model: search is a useful trick to model frictions in OTC markets

1. Overview of the model
2. Relation to other work
3. Broader perspective: heterogeneity
4. Model implications
Overview of the Model

- Continuous time, infinite horizon model
- Single asset with flow utility \((\delta, \delta - x)\) when \((h, l)\)
 - Asymmetry between \(h\) and \(l\)
- Agents
 - 3 ex-ante homogeneous dealers
 - Continuum of customers with heterogeneous rate of change in flow value, intensity \(k\)
- Each customer picks one dealer to buy from when \(h\) and sell to when \(l\)
 - Buyer, seller, happy owner
- Matching technology
 - Single dealer: \(\lambda_D \rightarrow \lambda_D \mu^s_i \mu^b_i\)
 - Inter dealer: \(\lambda_{DD} \rightarrow \lambda_{DD} \left[\mu^s_i \left(\sum_j \mu^b_j \right) + \left(\sum_j \mu^s_j \right) \mu^b_i \right]\)
- Bargaining: \(z_D, z_{DD}\) customer share
Symmetric Equilibrium

- All 3 dealers symmetric in measures of their customers in different states
Equilibria

- Symmetric Equilibrium
 - All 3 dealers symmetric in measures of their customers in different states

- Asymmetric equilibrium
 1. Single active-dealer
 2. All dealers active: $\lambda_{DD}z_{DD} > \lambda_Dz_D$
Specialization

Core versus peripheral dealer

- Core dealers specialize in customers who trade often: \textit{liquidity investors}
- Peripheral dealers specialize in customers who don’t: \textit{buy-and-hold investors}

Peripheral customers: lower value for lower price

- Lower option value of search
- At a lower price

Why do liquidity customers get a better value (at a higher price)?

Assumption. Intermediated trades lead to higher expected share: \(\lambda_{DD} z_{DD} > \lambda_{D} z_{D} \)

Endogenous. Intermediated trades more valuable

Farboodi, Jarosch, Shimer (2016)
Specialization

Core versus peripheral dealer

- Core dealers specialize in customers who trade often: *liquidity investors*
- Peripheral dealers specialize in customers who don’t: *buy-and-hold investors*

Peripheral customers: lower value for lower price

- Lower option value of search
- At a lower price

Why do liquidity customers get a *better value* (at a higher price)?

- **Assumption.** Intermediated trades lead to higher expected share: \(\lambda_{DD} z_{DD} > \lambda_D z_D \)
- **Endogenous.** Intermediated trades more valuable
- Farboodi, Jarosch, Shimer (2016)
Efficiency

- Symmetric equilibrium inefficient
- Asymmetric equilibrium inefficient as well
 - Liquidity (core) dealer too large
 - Atkeson, Eisfeldt, Weill (2015)
 - Too much entry to intermediation sector and too little entry to customer sector
Ex-ante dealer heterogeneity

- Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate

- Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate
Ex-ante dealer heterogeneity
- Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate
- Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate

How does this paper related to them?
- Micro-found heterogeneity among dealers using customer heterogeneity
Literature: Ex-post Dealer Heterogeneity

- **Ex-ante dealer heterogeneity**
 - Atkeson, Eisfeldt, Weill (2015)
 - Dealers heterogeneous in exposure to aggregate risk
 - Agents with average exposure intermediate
 - Chang and Zhang (2016)
 - Dealers heterogeneous in taste volatility
 - Agents with lower volatility intermediate

- **How does this paper related to them?**
 - Micro-found heterogeneity among dealers using customer heterogeneity

- **Others**
 - Artem’s jmp, Uslu (2016) jmp
 - Ex-ante heterogeneity in meeting rate: fast agents intermediate
 - Hugonnier, Lester, Weill (2016)
 - Agent with close-to-average taste intermediate
Some ex-ante heterogeneity, no ex-ante designated dealers

- My jmp!
- Rent-seeking versus counterparty risk
- *Wrong* intermediators

No ex-ante heterogeneity at all

- Wang (2016) jmp
- Trade-off: competition among core dealers to give favorable quotes versus ability to offset inventory and avoid cost
- Periphery *too-connected* to the core
- Relation to this paper: $\lambda_{DD}z_{DD} > \lambda_Dz_D$
Literature: Ex-post Dealer Heterogeneity

- Some ex-ante heterogeneity, no ex-ante designated dealers
 - My jmp!
 - Rent-seeking versus counterparty risk
 - *Wrong* intermediators

- No ex-ante heterogeneity at all
 - Wang (2016) jmp
 - Trade-off: competition among core dealers to give favorable quotes versus ability to offset inventory and avoid cost
 - Periphery *too-connected* to the core
 - Relation to this paper: $\lambda_{DD} z_{DD} > \lambda_{D} z_{D}$

- **Common theme in all search-based models**
 - Agents with *moderate* taste are central dealers
 - How to generate moderate taste?
Where Does the Heterogeneity come from?
Farboodi, Jarosch, Shimer (2016)

- Plain-vanilla DGP (Eca’05), with a twist!
- Measure one of risk-neutral investors, discount rate $r \to 0$
- Two preference states, $\{l, h\}$
 - Switch at homogeneous, exogenous rate $\gamma > 0$
- A single type of asset, supply $\frac{1}{2}$
 - Asset holding restricted to $\{0, 1\}$
 - Trading opportunities at endogenous rate λ
- Twist! λ chosen irrevocably at time 0, cost $c(\lambda)$ per meeting
 - $G(\lambda)$: population distribution of λ
 - Λ: average contact rate
- Payoffs
 - Well-aligned $(h, 1), (l, 0)$: higher average flow payoff
 - Misaligned $(h, 0), (l, 1)$: lower average flow payoff
 - (symmetric) Nash bargaining
Proposition

Pattern of Trade given $G(\lambda)$: core-periphery with fast agents at the core

Proposition

Assume $c(\lambda)$ is continuously differentiable. Then the equilibrium distribution of search efficiency $G(\lambda)$ has no mass points, except possibly at $\lambda = 0$.

Proposition

Assume $\lambda c(\lambda)$ is weakly convex. Then the equilibrium distribution of search efficiency $G(\lambda)$ has a convex support. Moreover, if there are middlemen ($\Lambda > \int_0^\infty \lambda dG(\lambda)$), the support of $G(\lambda)$ is unbounded above.

Proposition

Assume $\lambda c(\lambda)$ is weakly convex and continuously differentiable. Then the equilibrium misalignment rate $m(\lambda)$ is strictly increasing on the support of $G(\lambda)$.
Results. Linear Cost Function

Proposition
Assume $c(\lambda) = c$. If $c \geq \Delta/16\gamma$, $\Lambda = 0$ in equilibrium; while if $c < \Delta/16\gamma$, the equilibrium distribution of contact rates $G(\lambda)$ exists and is unique. It has a strictly positive lower bound λ and has a Pareto tail with tail parameter two. A strictly positive fraction of meetings accrues to a zero measure of middlemen who are in continuous contact with the market, $\Lambda > \int_0^\infty \lambda' dG(\lambda')$.

Proposition
Assume $c(\lambda) = c < \Delta/16\gamma$. The equilibrium distribution of trading rates inherits the tail properties of the contact rate distribution, i.e. it has a Pareto tail with tail parameter two.
Why Does Heterogeneity Arise Endogenously?

- To leverage gains from intermediation!
 - The current paper!

Proposition

Everything I said, qualitatively hold for the planner as well!

Proposition

If you shut down intermediation, equilibrium and planner distribution are both homogeneous.

- Inefficiency
 - Over-investment
 - Too few fast agents and too few slow agents
 - Different from this model, and AEW (Eca’15)
This model: symmetric equilibrium exists

- Farboodi, Jarosch and Shimer (2016)
- No symmetric equilibrium!

\[
\Lambda \lambda V
\]
Model Implications

- This model: symmetric equilibrium exists
 - Farboodi, Jarosch and Shimer (2016)
 - No symmetric equilibrium!

- This model: $\lambda \to \infty$: no dealer heterogeneity
 - Farboodi, Jarosch and Menzio (2016)
 - Agents can invest in bargaining ability
 - Even at the limit, both heterogeneity and inefficiency persists
Model Implications

► This model: symmetric equilibrium exists
 ▶ Farboodi, Jarosch and Shimer (2016)
 ▶ No symmetric equilibrium!

► This model: \(\lambda \to \infty \): no dealer heterogeneity
 ▶ Farboodi, Jarosch and Menzio (2016)
 ▶ Agents can invest in bargaining ability
 ▶ Even at the limit, both heterogeneity and inefficiency persists

► Why the difference?
 ▶ It is important to recognize agents’ ability to *invest* in *comparative advantage*
 ▶ Heterogeneity is not only in equilibrium “dependent” outcomes, but also in equilibrium fundamentals
Final Comments

- Proof of asymmetric equilibrium is for 2 dealers, does it really generalize to more?
- Asymmetric mixed strategy equilibria?
- \(\lambda_{D^Dz^D} > \lambda_{Dz^D} \)
- Single core outcome: full dry-out?
 - Uninteresting?
 - Babus and Parlatore (2016)