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The goal of Extreme Value Theory (EVT) is to make
statistical estimates of the likelihood and severity of ‘ran-
dom’ events which have not been observed, based on
observed data–for example:

What is the loss level on the S&P 500 Index that should
only be exceeded 1 day in 100 and what is the average
of losses in excess of this level?

How likely was a repeat of the worst 20th Century flood
in Manitoba (1955) and what level should have be ex-
pected in Manitoba if that record flood were exceeded?
(As it was in 2011.)
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This is a very ambitious goal but two approaches to this
sort of problem are very tractable due to remarkable limit
theorems analogous to the Central Limit Theorem.

These results can be unified, explained and extended in
terms of geometric invariants which are precisely analo-
gous to the curvature of a surface.

Just as there are only three types of constant curvature
surfaces, the distributions at the heart of Extreme Value
Theory are the exceptional ones with constant invari-
ants.
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Our new invariants provide simple and easy to use char-
acterisations of domains of attraction in EVT and ex-
plain the relationship between the EVT and Generalised
Pareto Distributions.

The invariants also provide an intrinsic measure of the
rate of convergence to the limiting distributions.

This isn’t just of mathematical interest.

It has led us to highly e�cient tail models which produce
excellent results in financial market data.
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First Approach to Extremes: Sample Maxima

Let X1, . . . , XN be a sample of N independent, identically
distributed random variables with distribution function
F . Let XMax be the sample maximum.

If XMax < r then all of the sample draws must be less
than r and the probability of this is FN(r).

Thus the distribution of XMax is FN .
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In 1928 Fisher and Tippett addressed the question:

Does there exist a sequence of ‘location-scale’ transfor-
mations x! aNx + bN and a distribution G such that

FN(aNx + bN)! G(x) (1)

as N tends to 1?

Intuition: Any such G must be the distribution of its
own extremes.
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Fisher and Tippett proved that there are only three fam-
ilies of distributions with this ‘stability property’.

�(x, ↵) = e�(�x)↵
, x 2 (�1,0], ↵ > 0 (2)

 (x, ↵) = e
�1
x↵ , x 2 [0,1), ↵ > 0 (3)

⇤(x) = e�e�x
, x 2 (�1,1). (4)

(Weibull, Fréchet and Gumbel distributions respectively)
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The ‘three types’ of distributions Fisher and Tippett dis-
covered are really a one-parameter family as Richard von
Mises showed in 1936.

They are more conveniently denoted on variable domains
depending on ↵ as follows:

E↵(x) = exp(
�1

(1 + x
↵)↵

), ↵ 6= 0 (5)

This is the Weibull type, defined on [�1,�↵] when ↵ < 0
and is the Fréchet type defined on [�↵,1, ] when ↵ > 0.

As |↵| ! 1, both types have the Gumbel distribution
E1 = e�e�x

as their limit.
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Fisher and Tippett showed that the sample maxima limit
for the Normal distribution was Gumbel type.

They gave no method for determining if a given distri-
bution had a limit, or if it did, what the limit was.

It took 15 years to fill this gap.
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In 1943 Gnedenko provided an independent derivation
of the ‘three types’ theorem as well as necessary and
su�cient conditions for convergence.

Let the distribution F be defined on [↵(F ), !(F )] (where
we may have ↵(F ) = �1 and/or !(F ) =1).

Gnedenko showed that Domains of Attraction (the col-
lection of distributions which converges to a given type)
depends only on the limiting shape of the distribution as
x! !(F ).
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Gnedenko’s necessary and su�cient condition for F to
be in the domain of attraction of the Fréchet distribution
F (x, ↵) is

lim
x!1

1� F (x)

1� F (tx)
= t↵ (6)

for all t > 0.

He gave a similar sort of condition for the Weibull dis-
tribution.

Both conditions describe the asymptotic scaling behaviour
of the distribution. (It’s not at all clear why that should
have anything to do with FN .)
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Gnedenko gave a variety of necessary and su�cient con-
ditions for F to be in the domain of attraction of the
Gumbel distribution.

He was not satisfied that any of them were either defini-
tive or practical.

As it turns out, the key to the Fréchet and Weibul distri-
butions is invariance under scaling transformations but
in the Gumbel case it is translation invariance .
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Second Approach to Extremes: ‘Peaks over threshold’

Does the distribution of a random variable X, conditional
on X exceeding a threshold T , tend to a limit as T tends
to !(F ) up to location scale transformations?

In this case we say F has a PoT limit.

In 1975 Picklands (and independently Balkema and de
Haan) showed that there was a strong connection be-
tween PoT limits and Domains of Attraction of extreme
value distributions.
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F is in the domain of attraction of E↵ if and only if the
PoT limit of F is, up to a location-scale transformation,
a Generalised Pareto distribution G↵ as x! !(F ) where

G↵(x) = 1�
1

(1 + x
↵)↵

, ↵ 6= 0 (7)

and

G1(x) = 1� e�x (8)

G↵ is defined on [0,�↵] when ↵ < 0 and on [0,1) when
↵ > 0. As |↵| ! 1, both types have the exponential
distribution G1 = 1� e�x as their limit.
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But now we have a real a mystery.

Everything in the Domain of Attraction of E↵ is converg-
ing to everything else in that Domain of Attraction. For
example, it’s easy to check that for each ⌫, the Student
t distribution S(x, ⌫) is in the domain of attraction of E⌫.

So what is special about Generalised Pareto distribu-
tions and what is behind the connection between Ex-
treme Value limits and PoT limits?

Geometry answers these questions.
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The Geometry of Extreme Value Distributions is the in-
formation invariant under what statisticians call the ‘lo-
cation scale’ transformations and mathematicians call
the proper a�ne group on the line A.

These are the transformations of the form

x! ax + b. (9)

where a > 0.

The geometry is all of the information that is invariant
under the group A.

W.F. Shadwick LSE SRC June 2017 18



Analysis

Omega

The most powerful method for discovering this geometry
was produced by Elie Cartan extending the 18th Century
results of Sophus Lie.

Cartan’s Method of Equivalence allows us to construct a
collection of di↵erential invariants (like the curvature of
a surface) which completely characterise the geometry.

The geometry always identifies exceptional cases such
as constant curvature surfaces.
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Let I = log(F ) and J = Ixx/I2
x .

It turns out that all of the geometric information about
F under location scale transformations is determined by
the relation between I and J.

Since we only have one independent variable, J must be
functionally dependent on I.

And all of the geometry is encoded in the functional
relation J = H(I).
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The cases where J is a constant are exceptional (like
surfaces with constant curvature).

For example, the Uniform distribution is completely char-
acterised by J = �1.

So every distribution F on an interval [A, B] for which
J = �1 can be translated and re-scaled to the standard
uniform distribution U(x) = x on [0,1].

We’ll come back to the rest of the exceptional cases.
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The Stability Property is the condition that a distribution
F and FN be in the same equivalence class with respect
to A.

But there’s no need to restrict this question to integer
powers.

It turns out that if we ask what distributions F are in the
same A equivalence class as F� for all positive values of
� the answer is still the Extreme Value distributions.
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We have a new invariant for the 1-parameter family of
equivalence classes [F�] because

IF�JF� = IFJF . (10)

for all � ✏ (0,1).

The exceptional distributions for which K = IJ is con-
stant are precisely the Extreme Value distributions.
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Each value of the constant c determines a distinct equiv-
alence class.

It is easy to see that the Extreme Value distributions
provide normal forms for these equivalence classes.

The equivalence class of E↵ is given by c = 1 + 1
↵ for

↵ 6= 0 and E1 is given by c = 1.
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The Geometry of Domains of Attraction Theorem (Cas-
con and Shadwick)

Let F be a distribution defined on [↵(F ), !(F )].

F is in the domain of attraction of an Extreme Value dis-
tribution if and only if the limit of KF as x approaches
!(F ) is the constant invariant of the Extreme Value dis-
tribution.
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It is easy to use our result for any of the standard prob-
ability distributions to determine which of the Extreme
Value distributions E↵ and E1 they have as their limits.

Unlike Gnedenko’s theorem, there’s only one test and
it’s just as simple for the Gumbel attractor as it is for
Weibull or Fréchet cases.

It is also easy to verify that for each ↵ the Generalised
Pareto distribution G↵ is in the Domain of Attraction of
E↵ and that G1 is in the Domain of Attraction of E1.
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Richard Von Mises gave an example of a real-analytic
distribution which has no EVT limit. See Appendix 1.
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The Picklands Mystery Again

The utility of the Generalised Pareto distributions is that
they converge rapidly to their Extreme Value limits. This
means that less data is required to make a reasonable
fit.

But why the Generalised Pareto distributions and not
others in the same Domain of Convergence?
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Another Approach to Extremes: ‘Peaks under threshold’

If F is defined on [↵(F ), !(F )] and T 2 (↵(F ), !(F )] the
distribution conditional on x < T is FT = F

F (T ). If [FT ]
tends to a limiting distribution as T ! ↵(F )� then F is
said to have a PuT limit.

Such distributions must be their own PuT limits so we
have the question of PuT stability:

When is [FT ] = [F ]?
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It turns out that once again, geometry answers this ques-
tion.

The PuT stable distributions are the exceptional ones
for which J is constant.

Each constant determines an equivalence class of distri-
butions and all constants are possible.
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It is easy to integrate J = c to produce normal forms,
where ↵ = 1

c :

Ĝ↵(x) =
1

(1� x
↵)↵

, ↵ 6= 0 (11)

and

Ĝ1(x) = ex (12)

Ĝ↵ is defined on [↵,0] when ↵ < 0 and on (�1,0] when
↵ > 0.

As |↵|!1, both types have the exponential distribution
Ĝ1 = ex, on (�1,0] as their limit.
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For any probability density function f defined on [A, B]
there’s a ‘mirror image’ probability density f̂ on [�B,�A]
defined by f̂(x) = f(�x).

x
K6 K4 K2 0 2 4 6

0.1

0.2

0.3

A Gumbel density (blue) and its mirror image
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If F is the distribution with density f then we will refer
to the distribution F̂ whose density is f̂ as the ‘mirror
image’ of F .

It’s easy to check (just di↵erentiate) that F̂ is given on
[�B,�A] by

F̂ (x) = 1� F (�x). (13)
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The Generalised Pareto distributions introduced by Pick-
lands are precisely the mirror images of the exceptional
distributions corresponding to constant di↵erential in-
variant J.

Nature only makes so many exceptional, ‘constant cur-
vature’ objects. The Extreme Value distributions and
the (mirror image) Generalised Pareto distributions both
have this property, but for di↵erent ‘curvatures’.

Here’s the relationship between them.
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Duality of Domains of Attraction Theorem (Cascon and
Shadwick)

If F is a distribution on [↵(F ), !(F )] and F̂ is the mirror
image distribution on [�!(F ),�↵(F )] then

lim
x!!(F )�

IFJF = 1 + c. (14)

if and only if

lim
x!�!(F )+

JF̂ = c. (15)
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The geometry we have uncovered unifies and explains
70 years worth of discoveries in Extreme Value Theory.

But it does much more than that.

It provides an intrinsic scale on which we can measure
the rate of convergence of a distribution to its EVT or
PuT attractor.
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The values of the invariants J and K at quantiles are
also invariants.

The di↵erence between one of these values and the EVT
constant is an intrinsic measure of convergence.

The more rapidly a distribution converges to its EVT
limit, the less data is necessary to discover that limit.

So being able to compare rates of convergence has a
very important statistical application.
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Rapid convergence is a key reason for the utility of Gen-
eralised Pareto distributions in fitting tails.

Generalised Pareto distributions converge to their EVT
limits incredibly quickly.

But this is a result that’s asymptotic and is no guarantee
that there’s an advantage over all quantiles as we’ll also
see by using these new invariants.
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The EVT limit for the Normal distribution is the Gum-
bel distribution. Its PoT limit is the exponential distribu-
tion (which is the Generalised Pareto distribution G1) so
both of these distributions are converging to the Gumbel
distribution. And the Gumbel distribution has K = 1.

The invariant K = IJ provides us with an intrinsic means
of comparison the rates at which the other distributinos
approach this limit.

We simply compare values of K at the same quantiles.
This shows that there’s no contest.
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q = 0.75 q = 0.85 q = 0.995

0.8

0.9

1.0

1.1

  

KNormal in green, KG1 in blue and the Gumbel constant

The graph shows that G1 converges to E1 much more
rapidly than the Normal distribution does

W.F. Shadwick LSE SRC June 2017 40



Analysis

Omega

Fisher and Tippett developed their ‘Penultimate Approx-
imation’ to deal with this slow convergence.

They observed that there was always a distribution in the
Weibull family E�↵ which was a better approximation to
the Normal tail that the ‘ultimate’ Gumbel distribution
limit E�1 below any given quantile. See Appendix 2.
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It’s easy to check using our invariant that in ‘head to
head’ competitions, i.e. in quantile to quantile compar-
isons, the convergence of the Generalised Pareto distri-
butions to their EVT limits is faster than that of any of
the textbook distributions.

For example, both the Student(x,3) distribution and G(x,3)
have the same EVT limit E3.
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If you were to ask about convergence near a quantile
of interest such as the 99% level where you could want
to use either distribution to estimate VaR and Expected
Shortfall from financial data, you would see that G(x,3)
was much closer to its limit than Student(x,3).

But tail fitting with a Generalised Pareto distribution is
not going to put its 99% level up against the 99% level
of the Student(x,3) distribution.
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That’s because you don’t model the entire distribution
by the Generalised Pareto–you only use it to model the
tail.

You may only be fitting, for example, the top 5% of the
data using the Generalised Pareto distribution.

In this case you’re putting the convergence at only its
q = 0.8 level up against the q = 0.99 for the Student(x,3)
distribution. And in that contest the Student(x,3) dis-
tribution wins, hands down.
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To see this, suppose we want to find the VaR at the
0.99% quantile. The model for the distribution is

D =
19

20
Empirical +

1

20
G(x� u,3) (16)

where u is the point at which the Empirical distribution
reaches q = 0.95.
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x
2 3 4 5 6 7 8 9

0.94

0.95

0.96

0.97

0.98

0.99

1

1
20GP (x� u,3) attached at q = .95.

The q = 0.99 level for the tail plus empirical distribution
is the solution to 19

20 + 1
20G(x� u,3) = 99

100.
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For x > u the distribution is D = 19
20+ 1

20G(x�u,3) so the
answer to the to the question “When is D(x) = 0.99?”
is the answer to the question

“When is 19
20 + 1

20G(x� u,3) = 99
100?”.

The answer to that is the value at which 1
20G(x�u,3) =

4
100 or G(x� u,3) = 0.8.
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If instead, the model for the distribution is

D = Student(x,3), (17)

the question is “When is Student(x,3) = 0.99?”.

So we’re comparing the e�ciency of G(x,3) at q = 0.8
with Student(x,3) at q = 0.99.
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Note that the value of the invariant K at the q = 0.8
level is the same for every one of the family of Gener-
alised Pareto distributions GP (x�b

a ,3). (In the example,
I’ve just set the scale parameter a equal to 1 for conve-
nience.)

So we can make the comparison with the value of the
invariant for the distribution Student(x,3) at q = 0.99 us-
ing the standard Generalised Pareto distribution GP (x,3).
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At those values the Generalised Pareto distribution’s K

is twice as far from its EVT limit of 4/3 as the Student
distribution’s K is.

This is a handicap that not even the Generalised Pareto
distribution can overcome.

(But there’s no way to know that without our invariant
measure of convergence.)
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This is not a recommendation to fit tails with Student

distributions rather than Generalised Paretos.

It’s just an illustration that in spite of their remarkable
convergence properties, it’s easy to find examples of dis-
tributions that are closer to their EVT limits over the
quantile range that matters in practice.

Such distributions are more e�cient in use with short
data sets.
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This is a tremendous advantage in financial market data.

The ability to make good estimates of VaR and ES using
short data windows allows you to observe and respond to
changes in risk while there’s still time to take advantage
of the information.
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Omega Analysis has developed proprietary tail fits that
converge more rapidly to their attractors than the Gener-
alized Pareto Distributions do, over a range of quantiles
of practical significance–even though the latter eventu-
ally converge more rapidly.

Our distributions are very e�cient models of tails in fi-
nancial market returns and in other fields where decisions
must be based on short data sets.
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One example was provided by the dramatic slump in
U.S. and European bank share prices following the U.K.
referendum.

Our tail models allow us to make very good VaR and
ES estimates for 5-day returns at the 99% level. (As
judged by comparing the number of VaR breaches over
long histories with the number that should have been
observed.)

Here’s what we predicted the prospects for drawdowns
were prior to the UK referendum compared with what
happened by 6 July 2016.
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Instrument Value at Risk (VaR) Expected Shortfall (ES) Worst 5-day Loss
99% 5-day 99% 5-day (since 23 June 2016)

KBW Nasdaq Bank Index -10.9% -16.8% -9.3%
Stoxx® Europe 600 Banks -14.3% -21.8% -16.8%
Banca Monte dei Paschi -31.8% -47.4% -32.5%
Barclays -14.2% -21.3% -27.1%
Deutsche Bank -19.4% -28.4% -21.5%
HSBC -10.8% -15.7% N/A
JPMorgan -10.9% -17.8% -7.6%
UniCredit -21.5% -31.3% -27.7%

As of 6 July 2016
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With the right technology, the losses were entirely pre-
dictable as our measured risk levels for banks had dou-
bled in the previous year.

This also showed the information gap between market
prices and CDS spreads. Our risk measure showed that
the tails of the distribution of JP Morgan returns were
significantly fatter than those of HSBC’s returns.

But the CDS rate for JP Morgan was only about two
thirds that of HSBC at the time.
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Our tail models also expose the failure of volatility to
accurately reflect risk. Low volatility does not mean low
risk.

The volatility of daily returns in the FTSE 100 Index is
currently at a two year low. But the tails of the distribu-
tion of returns have been fattening dramatically for the
past 6 months.
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It’s easy to see how this can happen. Imagine taking a
sample of 250 points from a Cauchy distribution. The
sample mean and variance are finite and by re-scaling
you can make the volatility as low as you like.

But the tails are still fat. The tail parameter is (by
definition) invariant under re-scaling.

This is completely invisible if you only look at the volatil-
ity. You can only see it if you have a much more e�cient
statistic.
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Flash crashes and Jamie Dimon’s statistics

In April 2015 Jamie Dimon’s shareholder letter was head-
line news but not for the right reason. He was trying to
make important points about liquidity in the U.S. Trea-
sury market and the Swiss National Bank’s impact on
the Euro Swiss Franc exchange rate.

But his message was swamped by the reaction to his
ridiculous observation that the October 2014 ‘flash crash’
in U.S. Treasuries was “...supposed to happen once in
every 3 billion years or so...”
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Of course you can only generate a claim like that by
using a Normal distribution to turn a number of standard
deviations into a probability estimate. Not a very smart
thing to do.

Our tail model showed that the 40 basis point move was,
in fact, a daily high-low that should be expected every
two to three years.

The really important point was that the sort of move
which an entire day’s trading should produce only a few
times per decade occurred in less than 15 minutes
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I sent our analysis of this to Jamie Dimon but he hasn’t
gotten back to me yet.

The other important point he hinted at without being
explicit was pretty obviously aimed at what some market
participants would call the Swiss National Bank’s market
vandalism.

When they pulled the plug in January 2015, there was
a 38 standard deviation move in the Euro Swiss Franc
exchange rate.
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Central bankers I have talked to seem to think this all
worked out just fine.

But there were a lot of losers. If you weren’t big enough
for threats of legal action to be e↵ective you probably
had your guaranteed stops blown out.

There were fund managers who were just on the right
side of that line while other market participants, for ex-
ample IG Index, took major losses.
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To see just how outrageous that 38 sigma move was,
we can ask a really ridiculous question.

What was the 1 day in 10 year VaR and ES before the
Swiss National Bank’s action?

Our model provides an answer that’s perfectly reason-
able. The VaR was 4.6% and the ES conditional on a
VaR breach was 7.9%. In the 15 year history of the Euro
there was in fact one prior move of almost 8% (in the
opposite direction to January 2015)
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This shows why some people think the term market van-
dalism is appropriate.

Even if you had the best current risk technology and even
if you were willing to believe and act on a prediction at
the 1 day in 10 year level, you could not possibly have
been prepared for the 14.4% move the SNB precipitated.

Imagine what the FCA’s reaction would have been if
a non-Central Bank market participant in London had
pulled this o↵!
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Important Notice 
LEGAL NOTICE
Please read this notice carefully: 

The contents of this document are for illustrative and informational purposes only. No information 
in this document should be considered a solicitation or offer to buy or sell any financial instrument 
or to offer any investment advice or opinion as to the suitability of any security in any jurisdiction. 
All information is subject to change and correction due to market conditions and other factors. This 
document has been created without any regard to the specific investment needs and objectives of 
any party in any jurisdiction. Specific instruments are mentioned in this document but this should 
not be construed in any way as a recommendation to invest in them or in funds or other 
instruments based on them. They are used for informational purposes only. 

Omega Analysis Limited provides statistical analysis services. Omega Analysis Limited does not 
provide investment advice. Investors need to seek advice regarding suitability of investing in any 
securities or investment strategies. Any decisions made on the basis of information contained 
herein are at your sole discretion and should be made with your independent investment advisor. 
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Appendix 1. Not every smooth distribution has an EVT
limit

The following example, due to Richard Von Mises, shows
that smooth distributions need not have an Extreme
Value limit.

If F is defined on [0,1] by

F (x) = 1� exp(�x�
sin(x)

2
). (18)

then IFJF has no limit as x!1.
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IFJF has no limit as x!1

The invariant quickly becomes periodic and clearly has
no limit. By x = 20, the di↵erence between F and 1 is
less than one part in 109.
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Appendix 2. Fisher and Tippett’s ‘Penultimate Approx-
imation’

The very slow convergence of the Normal distribution to
its EVT limit was noted by Fisher and Tippett.

In terms of our invariants we can see that the Normal
distribution remains closer to E�20 for which K = 0.95
than it is to E1 for all quantiles that are realistic for
actual applications.

You have to care about values with a probability of less
than 1 in 1 billion for the actual limit to be a better
approximation than E�20, for example.

W.F. Shadwick LSE SRC June 2017 70



Analysis

Omega

1 2 3 4 5 6 7

0.80

0.85

0.90

0.95

1.00

E�20 is a better approximation than E1 for all x < 6.09

For x > 6.09 the Normal distribution di↵ers from 1 by
only one part in 109.
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