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Abstract 

High frequency trading (HFT) depends on sophisticated algorithms to closely monitor price 

changes across securities. Theory predicts this technological advantage should translate into 

market-wide liquidity co-variation, by transmitting information-based liquidity shocks. Using a 

dataset of orders and trades from the French stock market, we investigate whether HTF 

algorithms constitute a source of systematic liquidity risk. We demonstrate that, across 

securities, the liquidity offered by high frequency traders is significantly less diverse than that 

of traditional traders; this finding is in line with the cross-asset learning hypothesis. The 

excessive co-movement in liquidity is also partly explained by common market making rules. In 

periods of increased market stress, we find HFT, designated market making, and order size to be 

important sources of liquidity commonality. Our results have policy implications for market 

regulators in Paris, suggesting the inclusion of maximum spread-limit rules in market making 

contracts will reduce the possibility of liquidity drying up when markets are in turmoil.    
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1. Introduction 

A security is considered to be liquid when investors are able to acquire the desired number of 

shares at the minimum cost as fast as possible, without severely affecting the continuity of prices. 

Commonality in liquidity occurs when firm-specific liquidity varies in tandem with that of the 

market as a whole. At such times, portfolio managers are more likely to be exposed to the risk of 

a systematic drying up of liquidity, facing transaction costs that are not diversifiable. The 

dangers of liquidity commonality rise when financial markets are in turmoil, as revealed by such 

events as the 2008 financial crisis (Aragon and Strahan, 2012; Nagel, 2012) and the May 6, 2010 

E-mini S&P 500 Stock Index Futures flash crash of 2:45 (Kirilenko et al., 2017). These events 

reveal, as well, the need to better understand the effects of modern electronic trading platforms 

on liquidity.  

Evidence shows that variations in cross-sectional liquidity are driven by a wide range of 

market parameters. Correlated trading strategies (Corwin and Lipson, 2010; Chaboud et al., 

2014; Boehmer et al., 2018); specialists’ and market-makers’ inventory handling activities 

(Coughenour and Saad, 2004; Comerton-Forde et al., 2010; Anand and Venkataraman, 2016); 

market depth (Domowitz et al., 2005; Kempf and Mayston, 2008); volatility and market 

momentum (Chordia et al., 2000); and industrial, regional, and international cross-listings 

(Chordia et al., 2000; Brockman et al., 2009; Zhang et al., 2009; Karolyi et al., 2012; Dang et al., 

2015a; Dang et al., 2015b; Moshirian et al., 2017) are all well-documented determinants of 

liquidity co-movement.1 This paper investigates an alternative source of liquidity risk: the use of 

high frequency trading (HFT) algorithms.  

We rely on a dataset from the Euronext Paris Exchange for the CAC 40 Index securities, 

which attract both traditional non high frequency traders (NON HFTs) and modern high 

frequency traders (HFTs), the latter comprising designated market markers (DMMs) and other 

high frequency traders (OHFTs). We exploit the data’s granularity to estimate trader-specific 

measures of supply-side liquidity, i.e., immediacy (measured by the number of passively traded 

                                                           
1 Commonality in liquidity has been studied in a wide range of financial markets and asset classes. Chordia et al. 
(2000), Hasbrouck and Seppi (2001), Huberman and Halka (2001), Coughenour and Saad (2004), Kamara et al. 
(2008), Corwin and Lipson (2010), and Comerton-Forde et al. (2010) examine the US stock markets (NYSE and 
AMEX). In the European domain, Foran et al. (2015) investigate the London Stock Exchange, Kempf and Mayston 
(2008) the Frankfurt Stock Exchange, and Anagnostidis et al. (2016) the Athens Stock Exchange. Brockman and 
Chung (2002) and Domowitz et al. (2005) analyze the Hong Kong Stock Exchange and the Australian Stock Exchange 
respectively, while Wang (2013) examines the Asian stock markets. Other empirical studies that report liquidity 
commonality concern the bond and CDS markets (Chordia et al., 2005; Pu, 2009; Gissler, 2017), the derivative 
markets (Cao and Wei, 2010), the foreign exchange markets (Mancini et al., 2013; Karnaukh et al., 2015), and the 
commodity markets (Marshall, 2013). 
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shares) and the ex-ante cost of trade (measured by the ex-ante price impact). We then use 

Principal Components Analysis (PCA) and the liquidity factor model of Chordia et al. (2000) to 

infer and, in turn, compare trader-specific liquidity co-movement over trading days and during 

a trading session.  

The rapid advance of technology has caused a substantial increase in HFT over the past 

two decades, changing the way securities are traded. HFTs optimize their order placement 

strategies, finding the best prices across multiple venues, within milliseconds or microseconds. 

Extensive use of HFT has increased competition for liquidity among investors, significantly 

reducing the average cost of trade (e.g., Hendershott et al., 2011; Hendershott and Riordan, 

2013; Carrion, 2013; Brogaard et al., 2014).  

Despite this beneficial impact at the firm level, HFT may amplify systematic liquidity 

variations, increasing the possibility of liquidity dry-ups during turbulent market periods. On 

the demand side, Chaboud et al. (2014), Benos et al. (2017), and Boehmer et al. (2018) provide 

evidence that HFTs’ trading strategies are highly correlated with each other, to a greater extent 

than those of NON HFTs.2 Chaboud et al. (2014) attribute this feature to the fact that HFT 

algorithms are similarly designed, taking the same actions at the same time and using the same 

sets of information, causing common sharp price adjustments. Using both demand- and supply-

side measures of liquidity, Malceniece et al. (2019) and Klein and Song (2018) demonstrate that 

the staggered entry of Chi-X in twelve European markets has increased HFT activity, leading to 

an increase in systematic liquidity variation. Both studies conclude that the ability of HFTs to 

better monitor price changes across securities, via fast and sophisticated algorithms, is likely the 

main driver of HFT’s impact on liquidity co-movement.3       

Motivated by these documented market-wide effects of HFT on liquidity, we provide new 

empirical evidence from the French market that confirms the impact of HFT on liquidity risk. We 

explore the prospect, however, that the effect of HFT on liquidity co-variation is not as severe as 

is expressed in the literature; rather, it may be partially (or largely) explained by the structure 

of the market. Finally, we document evidence of commonality in HFT liquidity with respect to 

time periods not investigated before, i.e., the time of day and upon announcement of European 

and US macro-economic news.     

                                                           
2 Benos et al. (2017) examine the UK equity market, Chaboud et al. (2014) the foreign exchange market, and 
Boehmer et al. (2018) the Canadian equity market. 
3 Also, Jain et al. (2016) provide evidence that HFT increases the systematic risk of returns in the Japanese market. 
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Existing theories on liquidity co-movement guide our framing of three hypotheses. Using 

the rational expectations framework, Cespa and Foucault (2014) demonstrate that cross-asset 

learning about prices leads to the transmission of information-based liquidity shocks across 

securities, generating liquidity commonality.4 Accordingly, taking HFTs’ increased information 

processing power into account, our first hypothesis can be stated as:  

H1: Across securities, HFTs’ (DMMs and OHFTs) liquidity supply co-moves more than NON 

HFTs’ liquidity supply.  

After controlling for well-known determinants of liquidity (volatility, market momentum, 

asynchronous trading, and order size), as well as for common components across HFTs’ and NON 

HFTs’ quotes, we find strong evidence supporting this hypothesis. Our analysis has similar 

implications to those of Malceniece et al. (2019) and Klein and Song (2018), suggesting that HFT 

constitutes an important source of systematic liquidity variation. Further, by testing the 

magnitude of HFT versus NON HFT liquidity co-movement on the supply side of the market, we 

complement the empirical findings of Chaboud et al. (2014), Benos et al. (2017), and Boehmer 

et al. (2018) on the demand side.  

 Previous studies indicate that designated market makers (DMMs) generate liquidity co-

variation through handling multiple securities, employing shared capital and information (e.g., 

Coughenour and Saad, 2004). In line with this idea, our second hypothesis states:  

H2. Across securities, DMMs employing HFT algorithms are less diverse in their liquidity 

supply, as compared to other HFTs (OHFTs).  

In Euronext Paris, DMMs handling common baskets of securities (including the CAC 40 

Index constituents) must comply with common rules of passive trading (e.g., to be present at the 

best quotes for a certain fraction of the day). An initial order flow analysis reveals that DMM 

liquidity provisions, which account for more than 70% of market liquidity, are exclusively based 

on HFT algorithms. In line with this hypothesis, we find that commonality in DMM liquidity has 

a magnitude twice that of commonality in OHFT liquidity. Our results do imply the existence of 

common components between DMM and OHFT liquidity; however, these components are 

significantly weak. We conclude that the Paris trading framework induces significant cross-

sectional co-variation in HFT liquidity (via the DMM programs) that is not likely due to the HFT 

algorithms alone. Overall, our evidence highlights the importance of considering designated 

                                                           
4 Similarly, in Watanabe (2014), liquidity commonality arises due to the transmission of information-based liquidity 
shocks among assets through increases in the volatility of returns. Also, in Fernando (2003), liquidity commonality 
is linked to the reactions of investors to liquidity shocks which have both systematic (information based) and 
idiosyncratic (non-information based) components. 
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market making when analyzing the impact of HFT on market-wide liquidity, rather than solely 

relying on HFT proxies based on the aggregate message traffic (e.g., Malceniece et al., 2019; Klein 

and Song, 2018). 

Because liquidity commonality varies over time (e.g., Kempf and Mayston, 2008), we 

analyze different market periods. In times of higher price uncertainty, stricter capital 

requirements by lenders and an increased level of information asymmetry make it hard for 

investors and market makers to handle their trading costs. Such conditions, in theory, lead to 

systematic adjustments in liquidity (Gromb and Vayanos, 2002; Garleanu and Pedersen, 2007; 

Brunnermeier and Pedersen, 2009; Gorton and Metrick, 2010; Cespa and Foucault, 2014; Ait-

Sahalia and Saglam, 2017a, 2017b).5 Accordingly, our third hypothesis states:  

H3: Cross-sectional co-movement in DMM, OHFT, and NON HFT liquidity increases with 

market stress.  

To conduct our tests, we follow Anand and Venkataraman (2016) and utilize the daily 

Chicago Board Options Exchange Volatility Index (US CBOE VIX) as an instrument for exogenous 

market volatility. In line with this hypothesis, our results show that on days of high volatility, co-

movement in liquidity supply is higher for all market participants. Co-movement is more 

pronounced in HFT liquidity, especially in DMM liquidity, on days of both high and low volatility, 

further confirming our results regarding our first and second hypotheses (H1 and H2).   

In the last part of our analysis, we examine liquidity co-movement within the trading day. 

While previous studies focus on interday analyses (e.g., Malceniece et al., 2019), there is a 

remarkable dearth of evidence on the co-movement of HFT liquidity during the day. This 

question, however, is vital to portfolio managers with daily (or shorter) investment horizons. 

We first examine the intraday patterns of liquidity co-movement for each trader type. We find 

that intraday commonality in the cost of trade imposed by HFTs (whether DMMs or OHFTs) 

follows a U shape, similar to volatility, whereas co-movement in HFTs’ provision of immediacy 

exhibits an inverted U shape. We report similar patterns for NON HFTs. In line with our third 

hypothesis (H3), the systematic risk of execution cost is higher during the more volatile periods 

of the day (post-opening and pre-closing). Conversely, the systematic risk of immediacy is of 

more concern during the middle of the trading day.  

                                                           
5 Empirical evidence supporting the increase of liquidity co-movement during turbulent market periods is provided 
in Longstaff (2004), Boyson et al. (2010), Hameed et al. (2010), Næs et al. (2011), Cao and Petrasek (2014), Rösch 
and Kaserer (2013), and Qian et al. (2014).  
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Overall, our intraday findings support our first and second hypotheses (H1 and H2). 

Commonality in DMM liquidity is consistently higher than commonality in OHFT liquidity 

throughout the trading day, while HFT (both DMM and OHFT) liquidity co-moves more than NON 

HFT liquidity. Before the announcement of EU and US macro-economic news at 14:30 CET and 

16:00 CET, HFT algorithms (particularly those implemented by DMMs) are programmed to 

reduce the aggressiveness in their liquidity supply by widening their quoted spreads; this 

behavior contributes to the increase of systematic liquidity risk. By contrast, NON HFTs are less 

consistent in this behavior.  

  Although peripheral to our main research question, our analysis points out a critical 

issue concerning the role of DMMs in automated trading. Bessembinder et al. (2015) show how 

imposing a maximum (quoted) spread limit on DMMs may improve market welfare, reducing 

the possibility of liquidity dry-ups. At the empirical level, Anand and Venkataraman (2016) and 

Clark-Joseph et al. (2017), for the Toronto Stock Exchange and the US Exchanges, respectively, 

empirically demonstrate the importance of DMMs in mitigating liquidity evaporation during 

stressful periods. By contrast, our results suggest that during the more volatile periods, although 

DMMs provide investors with immediacy, they systematically widen their spreads, leading to an 

increase in liquidity risk. This finding is of particular importance for policy makers. While the 

Euronext Paris DMM program does not include maximum spread limits, the TSE and the NYSE 

programs do.  

 

2. Institutional details and data 

2.1 Organization of trading  

Stocks traded on the NYSE Euronext Paris platform follow two main market models: order 

driven and quote driven. The order driven system, examined here, operates as an automated 

continuous double auction, where liquidity is supplied by brokers and DMMs. DMMs are obliged 

to maintain pairs of bid-ask quotes for 95% of the organized trading session and for pre-

specified baskets of securities, but there are no maximum spread restrictions. As a compensation 

for providing the market with immediacy, DMMs receive transaction rebates.6 The time schedule 

of the continuous market is: 

 

                                                           
6 DMM contracts may include maximum spread limits under certain circumstances. In the sample utilized in the 
present study, this is not the case. In an Appendix, we provide a detailed description of the DMM programs in 
Euronext Paris. More information on the Euronext Paris trading platforms and rules can be found at 
https://www.euronext.com/en/regulation/organization-of-trading 

https://www.euronext.com/en/regulation/organization-of-trading
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1) 07:15 to 09:00  Preopening phase - Order accumulation period 

2)                  09:00  Opening call auction (random time after August 2015)  

3) 09:00 to 17:30  Main trading session: Continuous session 

4) 17:30 to 17:35  Pre-closing phase - Order accumulation period 

5)                  17:35  Closing auction 

6) 17:35 to 17:40  Trading at the last phase (at the close) 

7) 17:40 to 07:15  After hours trading 

 

Each trading day starts with an extended pre-opening order accumulation period, followed by 

an opening call auction to determine the opening prices. An auction is conducted for each listed 

security until all securities are open; the main continuous session follows. The trading day closes 

with a call auction that determines the closing price for each security. Trading after hours falls 

out of the scope of the current study. 

During continuous trading, investors are allowed to submit, modify, or cancel their 

orders. The main orders allowed are: a) market orders, which have no price preference and are 

matched with the queuing orders at the prevailing quotes on the spot; b) limit orders, which 

have price preference and are stored in the limit order book (LOB) with price-time priority; c) 

stop market and stop limit orders, which are transformed into market and limit orders, 

respectively, when the trade price of the security reaches the threshold defined by the broker 

who submitted the order; d) pegged orders, which follow the best quotes; and e) market to limit 

orders, which are market orders that can be partially executed, with the remaining part stored 

in the LOB as a new limit order at the price of the partial execution. Limit orders can be 

marketable, depending on the limit price and the best quotes at the time of submission. For 

example, a sell (buy) limit order with a limit price smaller (greater) than the prevailing bid (ask) 

is an aggressive order, executed instantly. Thus, not only are market orders marketable, but 

aggressive limit orders are as well.      

 

2.2 The data sample 

We use an intraday dataset for stocks in the CAC 40 Index, retrieved from the Autorité des 

Marchés Financiers (AMF) BEDOFIH European high frequency database.7 This dataset includes 

details for all order and trade messages for the year 2015 (256 trading days in total). We have 

                                                           
7 More information on the BEDOFIH European High-Frequency financial database can be found at 
https://www.eurofidai.org/en/bedofih-database 

https://www.eurofidai.org/en/bedofih-database
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excluded three trading days from our sample: 29/04/2015, because of a temporary halt of 

trading for several securities, and 24/12/2015 (Christmas Eve) and 31/12/2015 (New Year’s 

Eve), which correspond to half-day trading. From the CAC 40 securities we have excluded seven 

stocks, either because they are not negotiated directly on the Euronext Paris platform (hence 

order data are not available), or because of missing data on specific days (for example, stocks 

that enter/exit the CAC 40 during 2015). Our final sample consists of 33 stocks for which orders 

and transactions are available for 253 trading days. Appendix Table A1 provides information on 

the companies in our stock sample, as well as on those excluded from our analysis.8  

Each message (order or trade) in the dataset bears an HFT flag. The HFT classification, 

provided by AMF, is based on two criteria: a) a trader is classified as a pure high frequence trader 

if the average lifetime of her cancelled orders is less than the average lifetime of all orders in the 

book, and if she has cancelled at least 100,000 orders during the year; and b) the trader must 

have cancelled at least 500,000 orders with a lifetime of less than 0.1 second, with the top 

percentile of the lifetime of her cancelled orders being less than 500 microseconds. Once a trader 

is classified, the flag is immutable. Note, though, that traders’ IDs are not directly available in our 

database. The AMF definition of HFT is in line with the Securities and Exchange Commission’s 

(SEC, 2010) classification of HFTs as traders who frequently implement submit-cancel order 

placement strategies within very short time intervals. Using the HFT flag in the order record file, 

we can divide the LOB into HFT and NON HFT shares and directly test our first hypothesis (H1).   

A second variable in the dataset lets us distinguish between the trading activity of DMMs 

and that of voluntary liquidity providers. After filtering the data using the AMF market making 

flag together with the HFT identification, we find that all DMMs in our sample are HFTs.9 This 

feature lets us test for differences between commonality in DMM liquidity (which is compulsory) 

and OHFT liquidity (which is voluntary), according to our second hypothesis (H2).   

To summarize, using the HFT and DMM indicators, we obtain three groups of order and 

trade messages: a) DMM messages that are associated with designated market makers’ HFT 

order placement activities, b) OHFT messages that are related to (non DMM) HFT order 

placement activities, and c) NON HFT messages stemming from (non-DMM) non-high frequency 

traders.10   

                                                           
8 The daily data for the CAC 40 stock sample are retrieved from the EUROFIDAI database, at 
https://www.eurofidai.org/en/database/stocks-europe 
9 After discussions, this feature was also verified by the AMF (i.e., that market makers apply HFT algorithms to 
supply liquidity). Further, we have found a negligible percentage (<0.05%) of active orders on the LOB that pertain 
to NON HFT market making activity; we excluded these from our analysis.   
10 Appendix Figure A1 graphs the database structure. 

https://www.eurofidai.org/en/database/stocks-europe
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3. Liquidity variables 

3.1 Price impact and immediacy 

As defined above, a market is considered to be liquid when investors are able to acquire the 

desired number of shares (depth) at the minimum cost (tightness) as fast as possible 

(immediacy), without severely affecting the continuity of prices (resiliency). This description 

implies several dimensions of market liquidity and, thus, several ways to quantify it.  

We employ two proxies that together encapsulate all aspects of liquidity. The first, 

introduced in Domowitz et al. (2005), captures the ex-ante cost of trade against each investor 

type as follows: 

𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) = ∫[𝑆𝑖,𝑑,𝑛

𝑗 (𝑄) − 𝐷𝑖,𝑑,𝑛
𝑗

(𝑄)]𝑑𝑄

𝑞

0

,                                                                                                     (1) 

where 𝑗 = {𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇} is the trader type, and 𝑆𝑖,𝑑,𝑛
𝑗 (𝑄) and 𝐷𝑖,𝑑,𝑛

𝑗
(𝑄) are, 

respectively, the submitted supply and demand schedules on the central LOB for stock 𝑖, on day 

𝑑, and at the end of intraday interval 𝑛.11 Equation (1) represents the area between the supply 

and demand schedules, as illustrated by Figure 1. Quantity 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) is a function of 𝑆𝑖,𝑑,𝑛

𝑗 (𝑄) and 

𝐷𝑖,𝑑,𝑛
𝑗 (𝑄); it corresponds to the total round-trip cost (i.e., price impact, or the inverse of liquidity) 

for a hypothetical trade of 𝑞 shares. In other words, 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) represents the cost that an 

impatient trader would have to pay for her order to be executed on the spot, against trader type 

𝑗. Moreover, the greater (smaller) the distance between the supply and demand lines (i.e., market 

tightness), the greater (smaller) the trading cost; that is, the lower (higher) the liquidity of the 

stock.  

 Because the best quotes are typically contaminated with noise from the trading process, 

predicting commonality using the inside spread as a proxy of liquidity is problematic (Kempf 

and Mayston, 2008). Trading against large and potentially informed investors often involves 

increased adverse selection costs; these costs make it hard for market makers to handle their 

positions, particularly in periods of market instability. Naturally, these factors should translate 

to excessive co-movement in liquidity supply deeper in the LOB. For this reason, we investigate 

commonality in liquidity beyond the best limits. Our 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) spans the entire LOB (i.e., market 

                                                           
11 In a similar way, Subrahmanyam and Zheng (2016), in their investigation of the order placement strategies of 
HFTs on the NASDAQ market, extract the slope of the LOB for the sets of limit orders placed by HFTs and NON HFTs. 
Likewise, Næs and Skjeltorp (2006) compute slopes on the visible and the hidden order book for the Norwegian 
stock market. 
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depth), thus improving over spread-related proxies that are limited to the top of the LOB. 

Further, 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) is an ex-ante variable, measuring the price impact of a future transaction. By 

containing valuable information regarding investors’ future trades, 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) is a better proxy 

than the effective spread or the realized spread, both of which are ex-post measures of liquidity 

based on the prices of (sample) realized transactions. 

 Our second measure of liquidity captures market immediacy. For each trader type 𝑗 =

{𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇}, stock 𝑖, day 𝑑, and intraday interval 𝑛, we calculate the total number 

of passively traded shares as follows: 

 𝐼𝑀𝑖,𝑑,𝑛
𝑗

= ∑ 𝑉𝑖,𝑑,𝑛,𝑘
𝑗𝐾

𝑘=1  ,                                                 (2) 

where 𝑘 denotes the 𝑘-th trade in interval 𝑛, and 𝑉𝑖,𝑑,𝑛,𝑘
𝑗

 is the corresponding number of traded 

shares. That is, 𝐼𝑀𝑖,𝑑,𝑛
𝑗

 is an ex-post measure of liquidity that represents the total number of 

passively traded shares conditional on the type of the trader. For the sake of simplicity, we will 

refer to 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) and 𝐼𝑀𝑖,𝑑,𝑛

𝑗
 as 𝐶𝑇 (or 𝐶𝑇(𝑞)) and 𝐼𝑀 in our analysis. 

 

3.2 Preparation of liquidity variables 

To calculate the cost of trade (CT), we use the historical order and trade messages to replicate 

the trading process and re-build the order book. For immediacy (IM), we use the trade files, 

which include a buyer/seller initiated indicator. Thus, we are able to disentangle passive from 

active trading for each trader type.  

 After our initial calculations, according to equations (1) and (2), we follow a two-step 

process to prepare the variables for our analysis of liquidity commonality. In the first step, 

following Chordia et al. (2000), we de-trend the liquidity series through the following 

logarithmic transformation:12  

𝐿𝑖,𝑡
𝑗

= log (
𝑙𝑖,𝑑,𝑛

𝑗

𝑙𝑖,𝑑,𝑛−1
𝑗

),                                                                                                                                           (3) 

where 𝑗 = {𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇} denotes the type of the trader, and 𝑙𝑖,𝑡
𝑗

 is either CT or IM.  

The time index 𝑡 is defined such that 𝑡 ≡ 𝑁(𝑑 − 1) + 𝑛 where 𝑁 is the number of total intraday 

observations with 𝑛 = 1, … , 𝑁. Thus, each liquidity series consists of 𝑇 = 𝑁 × 𝐷 consecutive 

intraday observations, where 𝐷 is the number of total trading days in the sample with 𝑑 =

                                                           
12 Chordia et al. (2000) use percentage changes, whereas we use logarithmic first differences. 
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1, … , 𝐷.13 Chordia et al. (2000) argue that the use of changes in liquidity, instead of liquidity 

levels, is better for two reasons: a) since the aim is to investigate whether liquidity co-moves, it 

is more appropriate to use liquidity changes; and b) the use of liquidity changes reduces biases 

from non-stationarity issues related to the intraday adjustments of liquidity levels.14 We  

standardize the liquidity changes, to remove any remaining periodic intraday components, using 

the following formula: 

(𝐿𝑖,𝑑,𝑛
𝑗

− 𝑚𝑒𝑎𝑛(𝐿𝑖,𝑛
𝑗

)) /𝑠𝑡𝑑(𝐿𝑖,𝑛
𝑗

),                                                                                                                    (4)  

where 𝑚𝑒𝑎𝑛(𝐿𝑖,𝑛
𝑗

) and 𝑠𝑡𝑑(𝐿𝑖,𝑛
𝑗

) correspond to the across-days mean and standard deviation of 

liquidity, respectively, for intraday interval 𝑛 (Hasbrouck and Seppi, 2001).   

 In the second step, we filter our liquidity series for firm-specific volatility and market 

price momentum, as well as for asynchronous trading effects, which are well known 

determinants of liquidity commonality (e.g., Chordia et al., 2000). To do so, we estimate the 

following regression equation: 

𝐿𝑖,𝑡
𝑗

= 𝐴𝑖 + 𝐵1,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡 + 𝐵2,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡−1 + 𝐵3,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡+1 +  𝛤1,𝑖
𝑗

𝑀𝑅𝑡 + 𝛤2,𝑖
𝑗

𝑀𝑅𝑡−1 + 𝛤3,𝑖
𝑗

𝑀𝑅𝑡+1 + 𝜔𝑖,𝑡
𝑗

,       (5) 

where 𝑗 = {𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇} denotes the type of trader. The dependent variable, 𝐿𝑖,𝑡
𝑗

, is 

the firm-specific liquidity (either CT or IM), while the right-hand side of the equation includes 

the lead, concurrent, and lag terms of firm-specific volatility (in the form of standardized squared 

logarithmic returns, to remove time-of-day effects) and market performance (the return of the 

market portfolio is computed as the across-firm capitalization-weighted average logarithmic 

return).15 In the remaining analysis, we employ the residual term 𝜔𝑖,𝑡
𝑗

as a measure of firm-

specific liquidity for trader type 𝑗, filtered for volatility, market price effects, and time-of-day 

effects (e.g., Malceniece et al., 2019).    

 

4. Econometric methodology  

In this section, we present the econometric methodology we use to estimate liquidity 

commonality by trader type. We then provide a description of the test statistics computed for 

our three hypotheses (H1, H2, and H3).   

 

                                                           
13 We exclude the opening and the closing sessions, as in Andersen and Bollerslev (1997).  
14 Note that we have applied the Augmented-Dickey-Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) tests for non-stationarity and stationarity, respectively; our results indicate that our liquidity measures are 
free from non-stationarity.  
15 To calculate intraday returns, we use the mid-point price at the top of the LOB (Hasbrouck, 1991). 
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4.1 Estimation of trader type liquidity commonality 

Following Anand and Venkataraman (2016), for each trader type we regress firm-specific 

liquidity on concurrent, lead, and lagged market-wide liquidity as follows: 

𝜔𝑖,𝑡
𝑗

= 𝑏𝑖,𝑗
0 + 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+ 𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝜖𝑖,𝑡
𝑗

,                                                                                  (6)    

where 𝑗 denotes the trader type, 𝑗 ∈ {𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇}, M denotes “Market”, and 𝜔𝑀,𝑡
𝑗

 is 

market-wide liquidity supplied by trader type 𝑗. The adjusted 𝑅𝑖,𝑗
2  obtained from equation (6) 

represents the variation of liquidity offered by trader type 𝑗 for a specific stock 𝑖, in terms of the 

market-wide liquidity offered by the same trader type (𝑗). Following previous studies, we use 

the adjusted 𝑅𝑖,𝑗
2  as a summary measure of liquidity commonality for trader type 𝑗 (e.g., 

Brockman et al., 2009; Karolyi et al., 2012; Malceniece et al., 2019). 

 To estimate equation (6), we need a proxy for market-wide liquidity, 𝜔𝑀,𝑡
𝑗

. Following 

Hasbrouck and Seppi (2001), we use the Principal Component Analysis (PCA). PCA uses the 

singular value decomposition algorithm (SVD) to extract the common (market-wide) liquidity 

factor from the covariance matrix of the constructed liquidity series for trader type 𝑗, [𝜔𝑖,𝑡
𝑗

]
′
, 

where ′ is the transpose operation. After applying the PCA algorithm, we use the first (market-

wide) principal component as a proxy of 𝜔𝑀,𝑡
𝑗

 in equation (6). To avoid additional correlation 

biases, in the regression for stock 𝑖 we exclude that stock from the PCA estimation of 𝜔𝑀,𝑡
𝑗

. 16 

Note that PCA describes common factors without requiring particular distributional 

assumptions (e.g., normality) (Joliffe, 2002). Subsequent statistical inference on the significance 

of the eigenvalues, however, assumes multivariate normality. If the original data are drawn from 

a normal population, then the standard error of the estimated eigenvalue is, asymptotically, of 

the magnitude 𝜆𝑗√2/𝑇, where 𝜆𝑗 is the eigenvalue and 𝑇 the length of the time series at hand 

(Hasbrouck and Seppi, 2001). In our analysis, though, normality of the liquidity data is not 

plausible, and thus standard errors may be understated. Still, 𝜆𝑗√2/𝑇 can be used as an indicator 

of the statistical significance of 𝜆 (Hasbrouck and Seppi, 2001; Corwin and Lipson, 2010).  

Whereas PCA estimates an unknown market-wide liquidity factor, both theoretical and 

empirical findings point toward a market average common liquidity factor. For instance, Acharya 

and Pedersen (2005) propose a liquidity-adjusted CAPM, where the liquidity of the market 

                                                           
16 To infer the components (i.e., the eigenvalues and eigenvectors) of a correlation matrix, one has to standardize 

the input liquidity data, [𝜔𝑖,𝑡
𝑗

]
′
, to avoid biases due to potential differences in the distributional properties of the 

constructed series (i.e., differences in scaling). Our liquidity series are already standardized, according to equation 
(4); therefore, we omit this step.  
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portfolio has explanatory power on returns. When they test their model on a set of NYSE stocks, 

they find evidence that liquidity commonality is priced.17 Accordingly, as a second proxy of 

market liquidity, 𝜔𝑀,𝑡
𝑗

, in equation (6), we use the across-stocks capitalization-weighted average 

of liquidity, restricting the common factor to be equivalent to the liquidity of the market 

portfolio. As with PCA, in each (stock) regression, stock 𝑖 is excluded from the calculation of 

market average liquidity. Our results (untabulated) are highly consistent with those obtained 

using the first principal component.18 

 

4.2 Hypotheses testing   

Our first hypothesis (H1) states that, due to the use of sophisticated technologies, HFTs’ (DMMs’ 

or OHFTs’) liquidity supply co-moves across securities more than NON HFTs’ liquidity supply 

does. To test this hypothesis, we statistically compare the across-stocks average co-movement 

in DMM and OHFT liquidity, measured by 𝑅̅𝐷𝑀𝑀
2  and 𝑅̅𝑂𝐻𝐹𝑇

2 , with the across-stocks average co-

movement in NON HFT liquidity, measured by 𝑅̅𝑁𝑂𝑁 𝐻𝐹𝑇
2 . We compute t-statistics over various 

interday and intraday market periods, as well as for different order sizes (see Section 5).  

Our second hypothesis (H2) asserts that DMMs employing HFT algorithms are less 

diverse in their liquidity supply, compared to voluntary HFTs (OHFTs), across securities. To test 

this hypothesis, we statistically compare the across-stocks average levels of commonality in 

DMM and OHFT liquidity, as measured by 𝑅̅𝐷𝑀𝑀
2  and 𝑅̅𝑂𝐻𝐹𝑇

2 .  

According to our third hypothesis (H3), cross-sectional co-movement in DMM, OHFT, and 

NON HFT liquidity increases with market stress. To test this hypothesis, we evaluate the relation 

between the obtained 𝑅𝑖,𝑗
2 s and market price volatility, assuming that the latter represents the 

overall level of market stress. Following Anand and Venkataraman (2016), we use the US CBOE 

VIX as an instrument for exogenous market volatility and estimate equation (6) over the two 

sub-periods of 25 days that exhibit the highest/lowest volatility. Subsequently, for each trader 

type we statistically compare the average level of co-movement in liquidity, 𝑅̅𝑗
2, between the two 

volatility sub-periods. We conduct similar tests within the trading day, by comparing the across-

stocks average level of liquidity co-movement, 𝑅̅𝑗
2, between the opening, the middle of the 

                                                           
17Similarly, Watanabe and Watanabe (2008) theoretically analyze how liquidity risk affects asset pricing. Empirical 
evidence on the importance of liquidity risk in asset pricing is provided by Pastor and Stambaugh (2003), Gibson 
and Mougeot (2004), Sadka (2006), and Kim and Lee (2014) for the US stock markets; Bongaerts et al. (2011) for 
Credit Default Swaps; and Bao et al. (2011) for the bond market. Lee (2011) analyses the world pricing of liquidity 
commonality.   
18 These results are available upon request. 



14 
 

trading day, and the closing, as well as around the announcement of macroeconomic news at 

certain points in time (see Section 5.3.2). For these tests, our main driver is the intraday pattern 

of endogenous market volatility. 

Because liquidity co-movement can be time varying (e.g., Watanabe and Watanabe, 

2008), we additionally test the validity of our findings by employing a rolling window approach 

over the trading days (Kempf and Mayston, 2008). In this approach, we let 𝑤 be a rolling window 

of 𝑁 days. For each stock and for each rolling window, we estimate equation (6) to obtain the 

magnitude of liquidity co-movement (i.e., the 𝑅𝑖,𝑗,𝑤
2 statistic). Accordingly, we calculate the 

across-days average CBOE VIX, 𝑉𝑤. To test the relation between volatility and liquidity co-

movement, we run the following linear regression: 

 Δ𝐶𝑖,𝑤
𝑗

= 𝛼𝑖
𝑗

+ 𝛽𝑖
𝑗
Δ𝑉𝑤 + 𝑟𝑖,𝑤

𝑗
,                                      (7) 

where Δ is the first difference operator and 𝐶𝑖,𝑤
𝑗

≡ 𝑅𝑖,𝑗,𝑤
2  is the level of liquidity co-movement 

within window 𝑤.19 As with equation (3), we employ first differences instead of levels to avoid 

biases due to potential non-stationarity in the rolling window series. 

 

5. Descriptive analysis and empirical test results 

5.1 Order flow and liquidity in the Paris market 

We begin by presenting a descriptive analysis of the order flow and liquidity for each trader type. 

This exercise gives us insight into the relative contributions of each trader type to the total order 

placement activity. Note, however, that the level of aggressiveness in liquidity supply at the firm 

level does not imply co-movement across securities.     

  Table 1 reports summary statistics on order flow and trading activity for each trader type. 

The vast majority of orders are attributed to DMMs (85.6%), whereas OHFTs and NON HFTs are 

responsible for 13% and 1.3% of total orders, respectively. These percentages indicate the 

significance of DMMs’ liquidity-supplying activity. DMMs are also responsible for a large 

percentage of modifications (77.5%) and cancellations (88.4%). This finding is not surprising, 

                                                           
19 Note that because the 𝑅𝑖,𝑗,𝑤

2  statistic is bounded, it is not meaningful to interpret the magnitude of the estimated 

coefficients in equation (7). However, we can still safely consider the sign and statistical significance of the 

coefficients. We have also conducted the following logit transformation, 𝐶𝑖,𝑤
𝑗

= log (𝑅𝑖,𝑗,𝑤
2 /(1 − 𝑅𝑖,𝑗,𝑤

2 )), which 

renders 𝑅𝑖,𝑗,𝑤
2  unbounded (Karolyi et al., 2012). Results using the logit transformation, 𝐶𝑖,𝑤

𝑗
,  are qualitatively very 

similar to those reported. We attribute this result to the fact that the commonality values (𝑅𝑖,𝑗,𝑤
2 ) in our analysis are 

not extreme (i.e., close to 0 or 1).  
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as all DMMs in our sample are HFTs; i.e., they frequently implement submit-cancel strategies to 

minimize the risk of being picked off by other HFTs.  

 DMMs are the major traders in the Paris market. On average, 60.1% of total marketable 

orders stem from their accounts. We postulate that DMMs submit aggressive quotes to adjust 

their inventories and to eliminate market imbalances and stale quotes, or to profit from their 

ability to predict future order flows and price trends (see, also, the analysis in Malinova and Park 

(2015)). A significant percentage of marketable orders is associated with OHFTs (29.3%), 

whereas NON HFTs are responsible for the remaining 10.6%. Regarding trade size, the average 

marketable order size is 200 shares, whereas the average trade is 109 shares. These figures 

suggest that traders apply “slice and dice” techniques to avoid revealing their information 

and/or to better handle their execution costs.       

 Table 2 summarizes the liquidity supplying activity on the central LOB.20 In particular, 

we report: a) the distribution of the LOB depth up to the best ten limits, and b) the percentage of 

available shares due to OHFTs, DMMs, or NON HFTs. To obtain this percentage, for each limit we 

calculate the sum of available shares associated with trader type 𝑗, divided by the sum of total 

outstanding shares. The top of the LOB is relatively thin, as the median depth is only 931 shares 

on both the buy and sell sides. Therefore, relatively small transactions (e.g., just over 1,000 

shares) can consume liquidity deeper in the LOB, resulting in higher transaction costs for 

investors. Nonetheless, the small average trade size reported in Table 1 suggests that the 

majority of trades do not consume liquidity beyond the first limit; trades that do consume 

liquidity deeper in the LOB are less frequent. Notice also that the two sides of the LOB are almost 

symmetrical in depth up to the 10th best limit, hinting at the absence of significant 

supply/demand imbalances.          

 Looking at the percentage of shares offered by each trader category in Table 2, we see 

that the vast majority of queuing shares are associated with DMMs’ and OHFTs’ quotes. For 

example, at the top of the LOB, the percentage of immediacy offered by OHFTs and DMMs is 

23.7% and 71.3%, respectively, on the buy side. The corresponding percentages on the sell side 

are 23.9% and 71.2%. We can readily infer that this provision of liquidity stems mostly from the 

implementation of HFT algorithms. Note, however, that deeper in the LOB (e.g., up to the 10th 

limit), the percentage of liquidity supplied by NON HFTs is relatively higher. 

                                                           
20 The opening and closing sessions are excluded from the order flow analysis. 
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   Table 3 compares liquidity by trader type, calculated according to equations (1) and (2). 

We report the average 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) across stocks, days, and intraday intervals for 𝑞 = 1 and 𝑞 =

200 shares: 𝑞 = 1 represents the most competitive quotes submitted by each trader category 

(i.e., the bid-ask spread); 𝑞 = 200 is based on the distribution of the trade size. As reported in 

Table 1, the average transaction does not exceed 200 shares. For purposes of comparison, we 

divide 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) by 𝑞 to convert the unit to Euros-per-share-price impact. For immediacy, 𝐼𝑀𝑖,𝑑,𝑛

𝑗
, 

we report the across-stocks, days, and intraday intervals percentages of passively traded shares 

for each trader type; that is, [𝐼𝑀𝑗/(𝐼𝑀𝑂𝐻𝐹𝑇 + 𝐼𝑀𝐷𝑀𝑀 + 𝐼𝑀𝑁𝑂𝑁 𝐻𝐹𝑇)] × 100. Notice, first, that 

HFTs’ quotes are more competitive than NON HFTs’, offering a lower cost of trade. This evidence 

is consistent with existing empirical findings on the positive effect of HFT on liquidity (e.g., 

Hendershott et al., 2011). Second, the cost of trade is higher for larger investors, indicating that 

market depth is an important parameter of market liquidity. Regarding immediacy, the most 

aggressive traders are DMMs (52% of total passively traded shares), followed by OHFTs (38%). 

NON HFTs are the least aggressive in providing the market with immediacy (10%).   

 

5.2 Trader type liquidity commonality 

We have shown that HFTs (both DMMs and OHFTs) play a critical role in firm-specific liquidity, 

representing, on average, almost 90% of available shares at the best quotes. In this section, we 

conduct our main empirical tests concerning the co-movement of trader-type liquidity.   

Our findings are summarized in Table 4. We begin by presenting the results obtained 

from the PCA. To avoid biases due to missing observations and/or microstructure noise, we 

aggregate the 1-minute liquidity observations into 15-minute intervals, using the simple 

arithmetic average.21 For each trader type, we report the first and second eigenvalues (𝜆1
𝑗
 and 

𝜆2
𝑗

), together with the explained variance (%) for the first eigenvalue. Moreover, we present the 

across-stocks average adjusted 𝑅𝑖,𝑗
2  statistic (𝑅̅𝑗

2), obtained from the estimation of equation (6); 

this statistic is the summary measure of liquidity co-movement in our analysis. Alongside it we 

                                                           
21 Ait-Sahalia and Xiu (2017) show that sampling at too high of a frequency (e.g., 1 second) contaminates the data 
with microstructure noise, whereas using too low of a frequency (e.g., hourly) increases the ratio of the cross-
sectional dimension against the number of observations (see also Osborne and Costello (2004) and de Souza et al. 
(2018)). In both cases, the PCA estimates may be less accurate. Ait-Sahalia and Xiu (2017) suggest an optimal 
sampling frequency of between 15 and 30 minutes. Thus, our use of a 15-minute interval has theoretical support. 
Note that originally sampling at a 1-minute frequency lets us examine the dynamics of liquidity co-movement 
around certain times during the trading day (e.g., around macroeconomic news announcements). We do not exclude 
the possibility of microstructure noise induced in our 1-minute liquidity series. Nonetheless, we are able to clearly 
identify the dynamics of co-movement around these events. 
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present the percentage of positive and significant (at the 5% probability level) 𝑏̂𝑖,𝑗
1  coefficient 

estimates, also from equation (6); these estimates represent the contemporaneous sensitivity of 

firm-specific liquidity to market liquidity (Chordia et al., 2000).     

 All first eigenvalues are well above unity. By contrast, all second eigenvalues are close to 

unity, indicating that trader type liquidity is primarily driven by market-wide factors. 

Additionally, all explained variances are higher than (𝜆1
𝑗

= 1)/ 33 ≈ 3.03% (where 33 is the 

number of stocks in our sample); this result also implies significant cross-sectional liquidity co-

variation for all trader types. Recall that, under normality, the standard error for 𝜆1
𝑗
 should equal 

approximately 𝜆1
𝑗
√2/𝑇. For example, for DMMs and 𝐶𝑇(𝑞 = 1), the standard error is 

9.96√2/(8,349) = 0.1542, where 𝑇 = 8,349 is the total number of sampled intraday differences. 

Therefore, the first eigenvalue estimate is almost 65 times higher the magnitude of the standard 

error, implying that the eigenvalue is highly significant. Similar conclusions hold for the 

remaining eigenvalues. Notice also that the 𝑏̂𝑖,𝑗
1  coefficient estimates are statistically significant 

in all cases, further suggesting the presence of trader type liquidity commonality.22 

Looking at the estimated 𝑅̅𝑗
2𝑠 in Table 4, we find plenty of evidence to support our first 

hypothesis (H1). For 𝐶𝑇(𝑞 = 1), the first principal component explains almost 30.18% (16.90%) 

of total variation in DMM (OHFT) liquidity; the corresponding percentage for NON HFT liquidity 

is 11.38%. More importantly, the across-stocks average liquidity co-movement, 𝑅̅𝐷𝑀𝑀
2  (𝑅̅𝑂𝐻𝐹𝑇

2 ), 

obtained from the estimation of equation (6) for DMM (OHFT) liquidity, is equal to 26.06% 

(12.19%), whereas that for NON HFT liquidity, 𝑅̅𝑁𝑂𝑁 𝐻𝐹𝑇
2 , is only 6.61%; this difference is 

statistically significant at the 5% probability level. Similar results hold for 𝐶𝑇(𝑞 = 200) and 

market immediacy (IM). Thus, HFT (DMM or OHFT) liquidity is associated with excessive co-

movement, when compared to NON HFT liquidity.       

                                                           
22 Chordia et al. (2000), using spread related measures of liquidity report, weak commonality for the NYSE. In 
particular, they find a low percentage of significant and positive contemporaneous 𝑏 coefficient estimates, ranging 

from 14.29% to 34.65% depending on the liquidity measure, whereas we find 100% significant 𝑏̂𝑖,𝑗
1  coefficients. For 

each trader type, we have additionally estimated equation (6) in a single panel regression, using two-way clustered 

errors that account for cross-sectional correlations. Our results indicate, again, a highly significant 𝑏̂𝑖,𝑗
1  coefficient 

estimate. The difference in our results likely stems from the fact that Chordia et al. (2000) use a daily liquidity series 
of 254 days, whereas we use intraday data with thousands of observations. Thus, we obtain tighter confidence 

bounds and the null hypothesis 𝑏̂𝑖,𝑗
1 = 0 is frequently rejected. In other words, we are able to accurately detect 

deviations of 𝑏𝑖,𝑗
1  from zero. Note, however, that to infer and, in turn, compare trader type liquidity commonality, 

we focus on the adjusted 𝑅2 statistic, following Karolyi et al. (2012) and Malceniece et al. (2019). Further, Brockman 
et al. (2009) point out that one of the benefits of analyzing the adjusted 𝑅2 statistic is that it is less subject to scaling 
effects compared to the 𝑏𝑖,𝑗

1  coefficient. 
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 Regarding our second hypothesis (H2), for our measure of immediacy the across-stocks 

average co-movement for OHFT, 𝑅̅𝑂𝐻𝐹𝑇
2 , is 11.79%, whereas that for DMM, 𝑅̅𝐷𝑀𝑀

2 ,  is almost twice 

its magnitude at 23.3%. Similarly, for 𝐶𝑇(𝑞 = 1) and 𝐶𝑇(𝑞 = 200), the average commonality for 

OHFT, expressed by 𝑅̅𝑂𝐻𝐹𝑇,
2  is equal to 12.19% and 14.02%, respectively, while the 

corresponding values for DMM, shown by 𝑅̅𝐷𝑀𝑀
2 , are 26.06% and 32.52%. These differences are 

statistically significant at the 5% level. In support of this hypothesis, our findings indicate the 

importance of isolating compulsory (DMM) from voluntary (OHFT) liquidity supply when 

investigating the role of aggregate HFT activity in liquidity co-movement. This conclusion 

becomes even more relevant when we consider the fact that DMM liquidity accounts for more 

than 70% of total market liquidity (Table 2).  

Concerning order size, our findings indicate that co-movement is higher deeper in the 

book for all types of traders. In the case of 𝐶𝑇(𝑞 = 200), the across-stocks averages 𝑅̅𝐷𝑀𝑀
2 , 𝑅̅𝑂𝐻𝐹𝑇

2 , 

and 𝑅̅𝑁𝑂𝑁 𝐻𝐹𝑇
2  are 32.52%, 14.02%, and 11.16%, respectively, whereas in the case of 𝐶𝑇(𝑞 = 1) 

the corresponding percentages are 26.06%, 12.19%, and 6.61%. For all trader types, t-tests 

confirm that the increase in the average 𝑅𝑖,𝑗
2  for larger orders is significant at the 5% probability 

level. These results are consistent with previous empirical findings that market depth is an 

important source of liquidity co-movement (e.g., Kempf and Mayston, 2008). Notice, also, that 

our findings concerning our first and second hypotheses (H1 and H2) are robust with respect to 

order size. That is, for both  𝐶𝑇(𝑞 = 1) and 𝐶𝑇(𝑞 = 200), co-movement in HFT liquidity is higher 

compared to co-movement in NON HFT liquidity, while DMM liquidity is less diverse compared 

to OHFT liquidity.   

 

5.2.1 A robustness test 

Our results demonstrate that the magnitude of liquidity co-variation varies across the groups of 

traders. This finding implies that trader-type liquidity commonality is driven by different, albeit 

not necessarily mutually exclusive, sets of information. Calculated pairwise correlation 

coefficients, 𝜌𝜔𝑀,𝑡
𝐷𝑀𝑀,𝜔𝑀,𝑡

𝑂𝐻𝐹𝑇 , 𝜌𝜔𝑀,𝑡
𝐷𝑀𝑀,𝜔𝑀,𝑡

𝑁𝑂𝑁 𝐻𝐹𝑇 , and 𝜌𝜔𝑀,𝑡
𝑂𝐻𝐹𝑇,𝜔𝑀,𝑡

𝑁𝑂𝑁 𝐻𝐹𝑇 , are equal to 0.76, 0.42, and 0.46, 

respectively, implying that there are common cross-sectional liquidity variations across the 

groups of traders. To further explore this possibility, we perform a second set of regressions. 

Following Coughenour and Saad (2004), for each trader type 𝑗 we relate liquidity 𝜔𝑖,𝑡
𝑗

 to all 

trader-type principal components in a joint estimation:  
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𝜔𝑖,𝑡
𝑗

= 𝑐𝑖,𝑗
0 + 𝑐𝑖,𝑗

1 𝜔𝑀,𝑡
𝐷𝑀𝑀 + 𝑐𝑖,𝑗

2 𝜔𝑀,𝑡−1
𝐷𝑀𝑀 + 𝑐𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝐷𝑀𝑀 + 𝑐𝑖,𝑗

4 𝜔𝑀,𝑡
𝑂𝐻𝐹𝑇 + 𝑐𝑖,𝑗

5 𝜔𝑀,𝑡−1
𝑂𝐻𝐹𝑇 + 𝑐𝑖,𝑗

6 𝜔𝑀,𝑡+1
𝑂𝐻𝐹𝑇 +

                       𝑐𝑖,𝑗
7 𝜔𝑀,𝑡

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑐𝑖,𝑗
8 𝜔𝑀,𝑡−1

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑐𝑖,𝑗
9 𝜔𝑀,𝑡+1

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑒𝑖,𝑡
𝑗

.                                                        (8) 

Note that the effect of near-multicollinearity on the accuracy of the coefficient estimates should 

be marginal, as long as the 𝑅𝑖,𝑗
2  obtained from equation (8), as in our analysis, is not less than the 

𝑅𝑖,𝑗
2  obtained from separately regressing trader-type liquidity, 𝜔𝑖,𝑡

𝑗
, on each individual 

component (Green, 1990; Coughenour and Saad, 2004); these results are available upon request. 

 Table 5 summarizes the results of estimating equation (8). For DMMs (i.e., 𝑗 = 𝐷𝑀𝑀) and 

for 𝐶𝑇(𝑞 = 1), the percentages of statistically significant 𝑐̂𝑖,𝑗
4  and 𝑐̂𝑖,𝑗

7  coefficient estimates are 

27.3% and 10%, respectively. Thus, the contemporaneous sensitivity of firm-specific DMM 

liquidity to the OHFT and NON HFT market-wide liquidity factors is not significant for the 

majority of securities in our sample. Conversely, 100% of 𝑐̂𝑖,𝑗
1  coefficient estimates, which 

represent the concurrent sensitivity of DMM firm-specific liquidity to the DMM common 

liquidity factor, are significant (at the 5% level). Further, the magnitudes of 𝑐̂𝑖,𝑗
4  and 𝑐̂𝑖,𝑗

7  coefficient 

estimates are, on average, equal to 0.008 and 0.004, respectively, whereas the average 𝑐̂𝑖,𝑗
1  is 

considerably higher (≈ 0.157).23 Notice, additionally, that the average 𝑐̂𝑖,𝑗
1  (≈ 0.157) is slightly 

less than the level of concurrent sensitivity of DMM firm-specific liquidity to the DMM common 

liquidity factor, as reported in Table 4 (𝑏̅𝑖,𝑗
1 = 0.164). Similar conclusions can be drawn for the 

remaining trader types and measures of liquidity. Therefore, we infer that the firm-specific 

liquidity offered by trader type 𝑗 is more likely to correlate with the market-wide liquidity 

offered by the same trader type (i.e., with 𝜔𝑀,𝑡
𝑗

).24           

 Overall, the results shown in Table 5 suggest the presence of statistically significant, 

albeit rather weak, liquidity commonality across the groups of traders. This finding provides 

further support for our results on our first and second hypotheses (H1 and H2), as presented in 

Table 4.      

 

 

                                                           
23 In line with Coughenour and Saad (2004), for 𝑗 = 𝐷𝑀𝑀 we have tested the following restrictions: 𝑐̂𝑖,𝑗

1 = 𝑐̂𝑖,𝑗
4  and 

𝑐̂𝑖,𝑗
1 = 𝑐̂𝑖,𝑗

7 . Our results reject the restriction in both cases at the 5% probability level, indicating that the differences 

between the coefficient estimates are statistically significant. We obtain similar findings for 𝑗 = 𝑂𝐻𝐹𝑇 and 𝑗 =
𝑁𝑂𝑁 𝐻𝐹𝑇. 
24 A limitation in our analysis is that we cannot observe traders’ IDs. Thus, we cannot directly distinguish the firms 
that provide liquidity across the securities, within each trader type.  
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5.3 Time varying liquidity commonality 

In this section, we present our test results regarding our third hypothesis (H3), examining 

whether our findings on our first and second hypotheses (H1 and H2) are robust with respect to 

liquidity variation over time. 

 

5.3.1 Interday evidence  

Table 6 presents the estimation results from our tests of trader-type liquidity co-movement and 

market volatility. As explained in Section 4.2, we initially estimate equation (6) over the two sub-

periods of 25 days that exhibit the highest/lowest volatility. For all trader types, co-movement 

in the cost of trade (CT) is elevated on days of high volatility compared to normal trading days. 

Additionally, for these two periods the across-stocks average 𝑅𝑖,𝑗
2  (𝑅̅𝑗

2) significantly differs (at the 

5% probability level). In terms of supplying immediacy (IM), DMM and OHFT commonality rises 

on days of high volatility. By contrast, co-movement in the NON HFTs’ supply of immediacy 

remains unaltered with respect to volatility. In line with our third hypothesis (H3), the evidence 

indicates that liquidity commonality increases during periods of higher price uncertainty. 

 At this point, it is useful to statistically compare commonality in liquidity among the three 

types of traders within the two volatility sub-periods. As shown in Table 6, co-movement in DMM 

and OHFT liquidity is consistently higher, compared to co-movement in NON HFT liquidity; the 

corresponding differences in the across-stocks average 𝑅𝑖,𝑗
2  are statistically significant (at the 5% 

probability level) for both CT and IM.  Similarly, we find that co-movement is higher in DMM 

liquidity when compared to that of OHFT liquidity. Thus, our central findings, regarding our first 

and second hypotheses (H1 and H2), hold both in less turbulent periods and in periods of 

increased market stress. 

In Figure 2, we present the results from our rolling window analysis tests (see Section 

4.2). A visual inspection of the evolution of 𝑅̅𝑗,𝑤
2  (i.e., rolling window liquidity commonality) 

against volatility 𝑉𝑤 (represented by the CBOE VIX) reveals: a) that the two variables are highly 

correlated, and b) the time-varying nature of liquidity co-movement. For space issues, we 

suppress the 𝐶𝑇(𝑞 = 200) variable, which is also highly correlated with volatility. Notice that 

co-movement in HFT (either DMM or OHFT) liquidity is consistently higher, compared to co-

movement in NON HFT liquidity, for both CT and IM. Similarly, DMM liquidity exhibits higher co-

variation, compared to OHFT liquidity. These findings further verify the robustness of our results 

regarding our first and second hypotheses (H1 and H2).     
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Our estimation results for equation (7) are presented in Table 6. With a rolling window 

of 𝑁 = 25 days, these results verify the positive relation between co-movement in the cost of 

trade (CT) and volatility, for all trader types. For immediacy (IM), the positive relation is verified 

only in the case of HFTs (both DMMs and OHFTs), further indicating the importance of HFT as a 

source of liquidity commonality.     

In addition to equation (7), which reveals the effect of exogenous market volatility on 

trader-type liquidity co-variation, we regress firm-specific liquidity on volatility, for each trader 

type, using the following equation: 

Δ𝐿𝑖,𝑤
𝑗

= 𝛾𝑖
𝑗

+ 𝛿𝑖
𝑗
Δ𝑉𝑤 + 𝑦𝑖,𝑤

𝑗
,                                     (9) 

where 𝐿𝑖,𝑤
𝑗

 is the daily average liquidity in window 𝑤 and, as before, 𝑉𝑤 is volatility represented 

by the CBOE VIX. Our results, reported in Table 6, show that firm-specific liquidity (CT or IM) is 

positively related to volatility for all types of traders. This evidence corroborates our central 

results, that systematic liquidity risk significantly increases during turbulent market periods and 

that this risk is higher with respect to the liquidity offered by DMMs and OHFTs.       

 

5.3.2 Intraday evidence  

Figure 3 depicts the intraday evolution of the cost of trade 𝐶𝑇(𝑞 = 1) and immediacy (IM), 

aggregated in 15-minute intervals. Again, for space issues, we suppress the case for 

𝐶𝑇(𝑞 = 200), which has a very similar pattern with 𝐶𝑇(𝑞 = 1). Additionally, we plot 

endogenous intraday volatility (in the form of squared logarithmic returns) in 1-minute 

frequencies. Volatility is significantly high at the beginning of the continuous session, reflecting 

the intensity of price adjustments after the market’s opening. During the middle of the day, 

volatility drops, then it slightly increases at the closing, creating an inverse J-shaped pattern for 

the full day. The cost of trade exhibits a similar pattern, whereas intraday immediacy is U-

shaped, indicating the intensity of trading during the post-open and pre-close market periods.  

Driven by the visual evidence of Figure 3, we split our 15-minute liquidity data into three 

intraday periods to test for time-of-day effects on liquidity co-movement. The three periods are: 

a) the post-opening period, from 09:00 CET to 12:00 CET; b) the midday period, starting at 12:00 

CET and ending at 14:45 CET; and c) the pre-closing period, from 14:45 CET to 17:30 CET. For 

each period, we estimate equation (6) to infer the level of trader type co-movement in liquidity.  

Figure 4 presents our results for the cost of trade 𝐶𝑇(𝑞 = 1, 200) and for immediacy (IM), 

for each trader type. Notice, first, that co-movement (for both 𝐶𝑇 and IM) is higher in DMM 
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liquidity compared to that of OHFT. NON HFT liquidity exhibits the lowest cross-sectional co-

variation. Results of t-tests for the equality of the across-stocks average 𝑅𝑖,𝑗 
2  among the trader 

groups indicate that these differences are significant at the 5% level. Thus, our main comparison 

results hold at the intraday level, supporting our first and second hypotheses (H1 and H2). 

Intraday co-movement in the cost of trade 𝐶𝑇(𝑞 = 1) is U-shaped, while immediacy 

follows an upside-down U-shape, for all market participants. Hence, during the more volatile 

intraday periods (opening and closing), the systematic risk of trading cost is relatively increased. 

Conversely, the systematic risk of immediacy is of less concern during the opening and the 

closing periods, but increases during the midday period. Again, we have tested the differences 

in the average 𝑅𝑖,𝑗 
2 among the three intraday periods and our results reject the null hypothesis of 

equality for all types of traders, supporting our third hypothesis (H3). Altogether, our findings 

point out the importance of market timing as a source of liquidity risk in organized trading.  

Figure 3 illustrates two distinct volatility spikes at 14:30 CET and 16:00 CET, 

corresponding to the announcement of European and US macroeconomic news (Kurov et al., 

2016; Megarbane et al., 2017). To examine co-movement in trader-type liquidity around such 

deterministic events, we randomly select to focus on 14:30 CET.  We first estimate an extended 

version of equation (6) over the full sample period (using the 1–minute liquidity data), including 

1-minute dummy variables, 𝐷𝜏, with 𝜏 = {−4, −3, … , +5, +6}, from 14:25 CET to 14:36 CET (that 

is, around 14:30 CET). Results from these regression estimations, as presented in Table 7, 

suggest that one minute before the event, the spread 𝐶𝑇(𝑞 = 1) imposed by DMMs and OHFTs 

increases sharply (𝐷̅0
𝐷𝑀𝑀 and 𝐷̅0

𝑂𝐻𝐹𝑇 are 0.49 and 0.25, respectively, and both significant at the 

5% level), whereas this is not the case for NON HFTs’ quotes (𝐷̅0
𝑁𝑂𝑁 𝐻𝐹𝑇 is 0.03 and not 

significant). By contrast, 𝐶𝑇(𝑞 = 200) significantly increases for all market participants, further 

suggesting that order size is an important parameter in the assessment of liquidity risk. Notice, 

however, that in the case of 𝐶𝑇(𝑞 = 200), NON HFTs’ reactions take place two minutes before 

the event (𝐷̅−1
𝑁𝑂𝑁 𝐻𝐹𝑇 is 0.20 and significant at the 5% level), whereas DMMs and OHFTs react, on 

average, one minute before the event (𝐷̅0
𝐷𝑀𝑀 and 𝐷̅0

𝑂𝐻𝐹𝑇 are 0.40 and 0.36, respectively; both 

significant at the 5% level). For immediacy offered by DMMs and OHFTs, we find consecutive 

decreases minutes before the event (𝐷̅−4
𝐷𝑀𝑀,𝑂𝐻𝐹𝑇 , 𝐷̅−3

𝐷𝑀𝑀,𝑂𝐻𝐹𝑇 , … , 𝐷̅0
𝐷𝑀𝑀,𝑂𝐻𝐹𝑇 are found to be 

negative and significant at the 5% level), whereas there are no particular changes in NON HFTs’ 

supply of immediacy. Lastly, we observe an increase in DMMs’ supply of immediacy minutes 

after the announcement time (𝐷̅+3
𝐷𝑀𝑀 and 𝐷̅+4

𝐷𝑀𝑀 are 0.22 and 0.15, respectively; both significant 
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at the 5% level).            

 We next assess liquidity co-movement. To this end, we fix the 1-minute interval and 

estimate equation (6) over the trading days. We repeat this procedure minute by minute from 

14:25 CET to 14:36 CET, in line with the firm-specific liquidity analysis presenting above (see 

Table 7). Figure 6 plots the across-stocks average 𝑅𝑖,𝑗
2  (𝑅̅𝑗

2) for 𝐶𝑇(𝑞 = 1), 𝐶𝑇(𝑞 = 200), and IM. 

Our findings are revealing: One minute before the event time, DMMs sharply increase their 

spreads, raising the cost of trade 𝐶𝑇(𝑞 = 1, 200) in a systematic manner which, in turn, elevates 

the level of liquidity risk. The same result holds true for OHFTs, but the magnitude of liquidity 

co-movement is significantly lower. For NON HFTs and for 𝐶𝑇(𝑞 = 1), this feature is almost 

negligible.25 For the same trader type, however, 𝐶𝑇(𝑞 = 200) systematically increases two 

minutes before as well as two minutes after the event, again suggesting that order size plays an 

important role in liquidity commonality. Conversely, there are no significant changes in the co-

movement of NON HFT liquidity a minute around the event time for 𝐶𝑇(𝑞 = 1, 200).  

 Looking at immediacy (IM), co-movement substantially increases just after the 

announcement time for all market participants. Notice, also, that co-movement in the supply of 

immediacy by DMMs and OHFTs is higher, compared to that of NON HFTs; this finding is 

consistent with our first hypothesis (H1). Confirming our results on our second hypothesis (H2), 

we find co-movement in DMMs’ supply of immediacy to be considerably higher, compared to 

that of OHFTs. Computed t-statistics verify that these differences are significant at the 5% 

probability level, on average across the securities.   

To sum up, our findings demonstrate that HFT (whether DMM or OHFT) is a significant 

source of liquidity risk around scheduled announcements of macroeconomic news. Nonetheless, 

the substantial level of commonality in DMM liquidity implies that co-movement in aggregate 

HFT liquidity is likely to be associated with market makers’ common inventory handling 

activities.   

  

6. Conclusions 

In this paper we investigate the role of high-frequency traders (HFTs) in liquidity commonality 

for the CAC 40 Index constituents listed on the Euronext Paris Exchange. The literature on 

microstructure theory has focused more on the impact of HFT on firm-specific liquidity, whereas 

                                                           
25 t-tests corroborate the visual evidence that for 𝐶𝑇(𝑞 = 1), co-movement in NON HFTs’ liquidity supply remains 
at the same level, on average across securities, around 14:30 CET. In contrast, the increase of co-movement in HFTs’ 
(DMMs’ or OHFTs’) liquidity supply is found to be statistically significant at the 5% level, on average. 
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liquidity co-movement has received less attention thus far.      

 Our analysis shows that HFTs exhibit higher co-variation in their liquidity supply 

compared to NON HFTs, in line with existing evidence that the use of sophisticated algorithms 

enhances the diffusion of information across securities. Nonetheless, we demonstrate that a 

certain fraction of the excessive co-variation in HFT liquidity is likely to be related to the 

activities of DMMs (e.g., through common inventory handling strategies). Our results indicate, 

also, that order size and market timing are important sources of liquidity co-movement. 

 Our analysis has implications for both investors and policy makers. First, investors face 

increased costs of trade when willing to execute orders that consume liquidity deeper in the LOB. 

Therefore, “slice and dice” techniques are more suitable for handling large orders. Second, 

securities that are heavily traded by HFTs are likely to be associated with elevated levels of 

systematic risk, particularly when market stress is higher. Indeed, liquidity commonality is a 

dynamic process and, thus, timing should be considered in risk assessment by portfolio 

managers. Third, policy makers in the Paris market should consider new regulations that will 

enhance the liquidity provision process when price uncertainty is higher. For example, imposing 

a maximum quoted spread limit on DMMs may improve market welfare, reducing the risk of 

liquidity dry-ups during turbulent trading periods (Bessembinder et al., 2015).  
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TABLES 

 

 

 HFT  NON HFT 

 
 

OHFT 
 

DMM 
 

NON HFT 
ORDER FLOW  (%)   (%)   (%) 
Non-marketable orders 13.0  85.6  1.3 
Cancelled by member 11.2  88.4  0.5 
Modified by member 18.9  77.5  3.6 
Marketable orders 29.3  60.1  10.6 
      
TRADE SIZE Minimum  Median (50%)  90% 
Marketable order size (shares) 1  200  764 
Trade size (shares) 1  109  268 

 

 

 

 

 

 

 

 

 

Note: This table summarizes order flow and trade statistics. For order flow, for each stock 

we calculate the total number (across days) of submitted non-marketable orders by 

OHFTs, DMMs, and NON HFTs. In our calculations we include limit orders that are not 

aggressive (i.e., not triggering a trade), pegged orders, and stop orders. Then, we calculate 

the percentage (%) of trader-type submissions relative to total submitted orders and 

report the across-stocks mean percentage. Accordingly, we calculate and report the 

across-stocks mean percentage for modifications, cancellations, and submissions of 

marketable orders (i.e., aggressive market and limit orders triggering trades). For trade 

size, for each stock we aggregate across days all marketable order sizes and all trade sizes. 

Then, we report the across-stocks minimum, median, and 90% percentile. 

  

 

We report the cross-sectional average percentage of order submissions, modifications and 

cancellations, attributed to each type of trader (OHFT, DMM, and NON HFT). 

Table 1: Order flow and trade summary 
statistics 
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Depth sell Min 10% 20% 30% 40% Median 60% 70% 80% 90% Max 

Level 1 1 186 338 505 700 931 1,233 1,684 2,514 5,165 818,620 
Level 2 1 400 659 929 1,247 1,631 2,107 2,772 4,137 9,561 824,424 
Level 3 1 646 993 1327 1,709 2,162 2,719 3,535 5,203 12,368 826,000 
Level 4 1 788 1,166 1,531 1,935 2,384 2,944 3,819 5,640 12,731 824,377 
Level 5 1 852 1,239 1,620 2,042 2,515 3,124 4,050 5,906 12,889 820,341 
Level 6 1 712 1,052 1,385 1,758 2,194 2,746 3,581 5,316 12,168 818,435 
Level 7 1 554 845 1,131 1,461 1,864 2,379 3,138 4,665 10,039 819,622 
Level 8 1 365 595 822 1,089 1,425 1,888 2,588 3,957 8,367 817,848 
Level 9 1 252 437 622 834 1,104 1,477 2,067 3,221 6,423 814,229 
Level 10 1 193 345 500 679 906 1,223 1,745 2,782 5,559 826,228 

            

Depth buy Min 10% 20% 30% 40% Median 60% 70% 80% 90% Max 

Level 1 1 182 333 500 698 931 1,238 1,698 2,528 5,154 1,290,496 
Level 2 1 400 669 949 1,277 1,676 2,178 2,880 4,335 9,820 1,177,613 
Level 3 1 648 1,007 1,350 1,736 2,192 2,754 3,595 5,372 12,414 1,299,336 
Level 4 1 797 1,182 1,548 1,946 2,401 2,957 3,812 5,660 12,647 1,299,449 
Level 5 1 854 1,244 1,622 2,026 2,491 3,084 3,994 5,875 12,695 1,296,033 
Level 6 1 714 1,058 1,393 1,758 2,186 2,737 3,549 5,282 11,961 1,295,198 
Level 7 1 557 851 1,138 1,465 1,864 2,376 3,110 4,595 9,854 1,294,451 
Level 8 1 370 600 828 1,093 1,426 1,885 2,570 3,884 8,157 1,294,155 
Level 9 1 254 439 621 830 1,097 1,462 2,039 3,133 6,196 1,293,893 
Level 10 1 195 345 500 674 896 1,205 1,706 2,706 5,363 614,445 
            

 Sell side  Buy side 
 HFT NON HFT  HFT NON HFT 
LOB  
depth 

OHFT  
(%) 

DMM  
(%) 

NON HFT 
(%)  

OHFT  
(%) 

DMM 
(%) 

NON HFT 
(%) 

Level 1 23.9 71.2 5.0  23.7 71.3 5.1 
Level 2 13.3 84.9 1.8  12.9 85.4 1.7 
Level 3 13.0 85.6 1.4  12.6 86.1 1.3 
Level 4 13.0 85.4 1.6  12.6 86.0 1.4 
Level 5 13.1 84.6 2.3  12.7 85.3 2.1 
Level 6 13.9 82.6 3.5  13.5 83.3 3.2 
Level 7 13.8 81.6 4.7  13.4 82.4 4.2 
Level 8 13.9 80.7 5.4  13.6 81.6 4.9 
Level 9 13.7 79.5 6.8  13.3 80.5 6.2 
Level 10 13.2 78.5 8.4  12.9 79.5 7.6 

Note: This table reports the distribution of depth (hidden plus visible) in shares up to the best 10 limit levels of 

the LOB (for each limit we aggregate shares across days and stocks), on the buy and the sell side. Additionally, 

we present the available liquidity on the LOB (for each level-limit) offered by OHFTs, DMMs, and NON HFTs. 

Liquidity is calculated as the across days and stocks average percentage of total outstanding shares for each 

trader category, relative to the total number of outstanding shares on the LOB, for each limit. Statistics are 

reported for both the buy and the sell side and up to the 10 best limits of the constructed LOB. The LOB is 

constructed in 1-minute frequencies. The total number of CAC 40 sample stocks is 33, and the total number of 

trading days is 253 for year 2015, excluding 2015/04/29, 2015/12/24, and 2015/12/31.   

Table 2: Limit order book (LOB) summary statistics   
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 HFT NON HFT 

 DMM OHFT NON HFT 

CT (q=1) 0.025* 0.039* 0.210 

CT(q=200) 0.026*, **  0.049*, ** 0.265** 

IM 52% 38% 10% 

Note: This table presents aggregate liquidity statistics for each trader type (DMM, OHFT, 

and NON HFT). For the cost of trade, 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) = ∫ [𝑆𝑖,𝑑,𝑛

𝑗 (𝑄) − 𝐷𝑖,𝑑,𝑛
𝑗

(𝑄)]𝑑𝑄
𝑞

0
, we report 

the average across stocks, days, and intraday intervals (1 min frequency), for each trading 

category and for depths (i.e., order sizes) q=1 and q=200 shares. Additionally, for purposes 

of comparison, we divide 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞) by 𝑞 to convert the unit in Euros per share price 

impact. For immediacy, 𝐼𝑀𝑖,𝑑,𝑛 = ∑ 𝑉𝑖,𝑑,𝑛,𝑘
𝐾
𝑘=1  , we calculate the total number of passively 

traded shares for each trader type across stocks, days, and intraday intervals (1 min 

frequency). Then we calculate and report the percentage of passively traded shares for 

each investor type, relative to the total trading volume. Single asterisks denote rejection 

of the null hypothesis, at the 5% probability level, that the average cost of trade offered by 

HFTs (DMMs or OHFTs) is equal to the average cost of trade offered by NON HFTs. Double 

asterisks denote rejection of the null hypothesis, at the 5% probability level, that the 

average 𝐶𝑇𝑖,𝑑,𝑛
𝑗 (𝑞 = 1) is equal to the average 𝐶𝑇𝑖,𝑑,𝑛

𝑗 (𝑞 = 200). 

Table 3: Summary of liquidity measures 
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1st eigenvalue 

(𝜆1
𝑗
) 

2nd eigenvalue 

(𝜆2
𝑗

) 

Explained 

variance (𝜆1
𝑗
) 

Average 𝑅𝑖,𝑗
2 : 

𝑅𝑗̅
2

  

Positive and 

significant 𝑏𝑖,𝑗
1  

Average 𝑏𝑖,𝑗
1 : 

𝑏̅𝑖,𝑗
1  

CT (q=1)       

𝒋 = DMM 9.96 0.92 30.18% 26.06%*, **  100% 0.164 

𝒋 = OHFT 5.58 1.11 16.90% 12.19%* 100% 0.148 

𝒋 = NON HFT 3.76 1.29 11.38% 6.61% 100% 0.131 

CT (q=200)  

 

  

  

𝒋 = DMM 11.98 0.88 36.30% 32.52%*, ** 100% 0.167 

𝒋 = OHFT 6.16 1.15 18.66% 14.02%* 100% 0.151 

𝒋 = NON HFT 5.23 1.54 15.84% 11.16% 100% 0.144 

IM  

 

  

  

𝒋 = DMM 8.95 1.15 27.43% 23.30%*, ** 100% 0.160 

𝒋 = OHFT 5.39 1.13 16.50% 11.79%* 100% 0.148 

𝒋 = NON HFT 2.90 1.09 10.00% 5.97% 100% 0.131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Trader type liquidity commonality 

Note: This table reports the results for trader type liquidity commonality. We first filter the 15-minute liquidity 

series (CT or IM) for volatility (Vol) and market performance (Market Return), for each stock and for each trader 

type (DMM, OHFT, and NON HFT), by estimating equation (5):  

𝐿𝑖,𝑡
𝑗

= 𝐴𝑖 + Β1,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡 + Β2,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡−1 + Β3,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡+1 +  Γ1,𝑖
𝑗

𝑀𝑅𝑡 + Γ2,𝑖
𝑗

𝑀𝑅𝑡−1 + Γ3,𝑖
𝑗

𝑀𝑅𝑡+1 + 𝜔𝑖,𝑡
𝑗

. Then, we use the 

filtered liquidity series (𝜔𝑖,𝑡
𝑗

) as input in the PCA algorithm, to obtain the first (market-wide) principal 

component (𝜔𝑀,𝑡
𝑗

 , where 𝑀 denotes “Market”). Finally, for each trader type we regress firm-specific liquidity on 

the obtained lead, lag, and concurrent first principal component in equation (6): 𝜔𝑖,𝑡
𝑗

= 𝑏𝑖,𝑗
0 + 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+

𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝜖𝑖,𝑗,𝑡. Regarding the PCA, we report the first eigenvalue and the corresponding 

explained variance (%), as well as the second eigenvalue, for each trader type. Next, we present the across-stocks 

average adjusted 𝑅𝑖,𝑗
2  statistic as a summary measure of liquidity co-movement for each trader type. Single 

asterisks denote rejection of the null hypothesis that between HFT (DMM or OHFT) and NON HFT, the across-

stocks average difference in the adjusted 𝑅𝑖,𝑗
2  is equal to zero. Double asterisks denote rejection of the null 

hypothesis that between DMM and OHFT, the across-stocks average difference in the adjusted 𝑅𝑖,𝑗
2  is equal to 

zero. We additionally present the percentage of positive and significant 𝑏𝑖,𝑗
1  coefficient estimates (representing 

contemporaneous liquidity co-movement) out of the 33 regression equations, along with the average coefficient 

estimates. Standard errors are Newey-West adjusted for serial correlation and heteroskedasticity. 
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 CT (q=1)   CT (q=200)   IM  

𝒋 = 𝑫𝑴𝑴 𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%)  𝑅𝑗̅

2
  𝑐𝑖̅,𝑗

1  (%) 𝑐𝑖̅,𝑗
4  (%) 𝑐𝑖̅,𝑗

7  (%)  𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%) 

 26.13 0.157 100 0.008 27.3 0.004 10  32.59 0.162 100 0.005 33.3 0.004 24.2  24.60 0.155 33 0.005 15.2 0.005 6.1 

𝒋 = 𝑶𝑯𝑭𝑻 𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%)  𝑅𝑗̅

2
  𝑐𝑖̅,𝑗

1  (%) 𝑐𝑖̅,𝑗
4  (%) 𝑐𝑖̅,𝑗

7  (%)  𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%) 

 12.53 0.024 78.8 0.120 100 0.011 39.4  14.32 0.018 63.6 0.130 100 0.006 21.2  13.21 0.019 27.3 0.118 100 0.027 30.3 

𝒋 = 𝑵𝑶𝑵 𝑯𝑭𝑻 𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%)  𝑅𝑗̅

2
  𝑐𝑖̅,𝑗

1  (%) 𝑐𝑖̅,𝑗
4  (%) 𝑐𝑖̅,𝑗

7  (%)  𝑅𝑗̅
2

  𝑐𝑖̅,𝑗
1  (%) 𝑐𝑖̅,𝑗

4  (%) 𝑐𝑖̅,𝑗
7  (%) 

 6.86 0.006 27.3 0.013 48.5 0.118 100  32.59 0.006 36.4 0.007 39.4 0.135 100  24.60 0.005 12.1 0.031 51.5 0.096 100 

 

 

 

Table 5:  Liquidity co-movement across groups of traders 

Note: For each trader type 𝑗, we relate liquidity, 𝜔𝑖,𝑡
𝑗

, to all trader-type principal components (concurrent lead and lag) in the joint estimation equation (8): 𝜔𝑖,𝑡
𝑗

= 𝑐𝑖,𝑗
0 +

𝑐𝑖,𝑗
1 𝜔𝑀,𝑡

𝐷𝑀𝑀 + 𝑐𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝐷𝑀𝑀 + 𝑐𝑖,𝑗
3 𝜔𝑀,𝑡+1

𝐷𝑀𝑀 + 𝑐𝑖,𝑗
4 𝜔𝑀,𝑡

𝑂𝐻𝐹𝑇 + 𝑐𝑖,𝑗
5 𝜔𝑀,𝑡−1

𝑂𝐻𝐹𝑇 + 𝑐𝑖,𝑗
6 𝜔𝑀,𝑡+1

𝑂𝐻𝐹𝑇 + 𝑐𝑖,𝑗
7 𝜔𝑀,𝑡

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑐𝑖,𝑗
8 𝜔𝑀,𝑡−1

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑐𝑖,𝑗
9 𝜔𝑀,𝑡+1

𝑁𝑂𝑁 𝐻𝐹𝑇 + 𝑒𝑖,𝑡
𝑗

. For each trader type, we report the across-

stocks average adjusted 𝑅𝑖,𝑗
2  and the across-stocks average concurrent coefficient estimates (time t), together with the corresponding percentages of statistically significant 

coefficient estimates (at the 5% probability level). Standard errors are Newey-West adjusted for serial correlation and heteroskedasticity.     

            .  
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 CT (q=1) CT (q=200) IM 

VOLATILITY LOW    

𝑅̅𝐷𝑀𝑀
2  25.91% b, c 33.33% b, c 21.80% b, c 

𝑅̅𝑂𝐻𝐹𝑇
2  9.83% b 10.73% b 11.60% b 

𝑅̅𝑁𝑂𝑁 𝐻𝐹𝑇
2  5.21% 8.87% 7.49% 

 

VOLATILITY HIGH  
   

𝑅̅𝐷𝑀𝑀
2  29.79% a, b, c 36.04% a, b, c 26.16% a, b, c 

𝑅̅𝑂𝐻𝐹𝑇
2  14.72% a, b 18.16% a, b 13.77% a, b 

𝑅̅𝑁𝑂𝑁 𝐻𝐹𝑇
2  9.54% a 13.56% a 7.67% 

    

EQUATION (7)    

DMM: 𝛽̅ 
(𝑡̅-statistic) 

0.469* 
(2.888) 

0.361* 
(2.525) 

0.766* 
(3.019) 

OHFT: 𝛽̅ 
(𝑡̅-statistic) 

0.830* 
(2.539) 

0.915* 
(2.876) 

0.802* 
(2.336) 

NON HFT: 𝛽̅ 
(𝑡̅-statistic) 

1.096* 
(2.023) 

0.850** 
(1.766) 

0.244 
(0.260) 

    
EQUATION (9)    

DMM: 𝛿̅ 
(𝑡̅-statistic) 

0.159* 
(4.597) 

0.152* 
(4.438) 

0.745* 
(3.925) 

OHFT: 𝛿̅ 
(𝑡̅-statistic) 

0.160* 
(2.530) 

0.107** 
(1.836) 

0.535* 
(3.108) 

NON HFT: 𝛿̅ 
(𝑡̅-statistic) 

0.305* 
(3.275) 

0.272* 
(2.873) 

0.460** 
(1.683) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table 6: Liquidity co-movement and volatility 

Note: This table reports the results from the principal component analysis with respect to market volatility. We 

initially select two 25-day subsamples of highest/lowest volatility to estimate equation (6), 𝜔𝑖,𝑡
𝑗

= 𝑏𝑖,𝑗
0 + 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+

𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝜖𝑖,𝑗,𝑡, for each stock and for each trader type (OHFT, DMM, and NON HFT.). We report the 

across-stocks average adjusted 𝑅𝑖,𝑗
2  as a measure of liquidity co-movement. “a” denotes rejection of the null hypothesis 

(at the 5% probability level) that, for trader type 𝑗 ∈ {𝐷𝑀𝑀, 𝑂𝐻𝐹𝑇, 𝑁𝑂𝑁 𝐻𝐹𝑇}, the across-stocks average 𝑅𝑖,𝑗
2 s 

between the high and the low volatility periods are equal. “b” denotes rejection of the null hypothesis (at the 5% 

probability level) that the across stocks average 𝑅𝑖,𝑗
2 s  between HFT (DMM or OHFT) and NON HFT are equal (within 

the volatility period). “c” denotes rejection of the null hypothesis (at the 5% probability level) that the across-stocks 

average 𝑅𝑖,𝑗
2 s between DMM and OHFT are equal (within the volatility period). Then, for rolling windows (𝑤) of N=25 

days, we estimate equation (6) to obtain 𝑅𝑖,𝑗,𝑤
2 . We also calculate the average CBOE VIX (across the 25 days) as an 

instrument for exogenous market volatility, 𝑉𝑤 . Using the rolling window estimates, for each stock and for each trader 

type, we regress changes in the level of co-movement on changes in the level of volatility in equation (7): Δ𝐶𝑤,𝑖
𝑗

= 𝛼𝑖
𝑗

+

𝛽𝑖
𝑗
Δ𝑉𝑤 + 𝑟𝑤,𝑖

𝑗
, where 𝐶𝑤,𝑖

𝑗
≡ 𝑅𝑖,𝑗,𝑤

2 . Moreover, we regress changes in the level of firm-specific liquidity (calculated as the 

average liquidity across the 25 days for each trader type) on changes in volatility, in equation (9): Δ𝐿𝑤
𝑖,𝑗

= 𝛾𝑖
𝑗

+ 𝛿𝑖
𝑗
Δ𝑉𝑤 +

𝑦𝑤
𝑖,𝑗

. We report the across-stocks average coefficient estimates, 𝛽̅ and 𝛿̅, for equations (7) and (9), respectively, together 

with the corresponding average t-statistics for the significance of the coefficient estimates. Asterisks denote 

significance at the 5% probability level, whereas double asterisks denote significance at the 10% probability level. 

Standard errors are Newey-West adjusted for serial correlation and heteroscedasticity.     
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1-min  
Interval 

14:25- 
14:26 

14:26- 
14:27 

14:27- 
14:28 

14:28- 
14:29 

14:29- 
14:30 

14:30- 
14:31 

14:31-
14:32 

14:32- 
14:33 

14:33- 
14:34 

14:34- 
14:35 

14:35- 
14:36 

CT (q=1) 

Dummy 𝐷̅−4
𝑗

 𝐷̅−3
𝑗

 𝐷̅−2
𝑗

 𝐷̅−1
𝑗

 𝐷̅0
𝑗
 𝐷̅+1

𝑗
 𝐷̅+2

𝑗
 𝐷̅+3

𝑗
 𝐷̅+4

𝑗
 𝐷̅+5

𝑗
 𝐷̅+6

𝑗
 

𝑗 = DMM  0.02 -0.01 0.01 0.04 0.49* -0.28* -0.12** -0.06 0.03 0.00 -0.01 
𝑗 = OHFT 0.01 -0.02 0.00 0.02 0.25* -0.08 -0.08 0.00 0.01 0.00 -0.01 
𝑗 = NON HFT 0.00 -0.01 -0.01 0.08 0.03 0.08 -0.03 -0.05 0.00 -0.01 0.00 
            

t-statistic 𝑡−̅4
𝑗

 𝑡−̅3
𝑗

 𝑡−̅2
𝑗

 𝑡−̅1
𝑗

 𝑡0̅
𝑗
 𝑡+̅1

𝑗
 𝑡+̅2

𝑗
 𝑡+̅3

𝑗
 𝑡+̅4

𝑗
 𝑡+̅5

𝑗
 𝑡+̅6

𝑗
 

𝑗 = DMM 0.32 -0.18 0.19 0.70 7.69 -4.44 -1.90 -0.94 0.46 -0.07 -0.15 
𝑗 = OHFT 0.18 -0.29 -0.03 0.37 3.94 -1.32 -1.24 0.04 0.16 -0.04 -0.14 
𝑗 = NON HFT 0.00 -0.20 -0.12 1.26 0.50 1.26 -0.43 -0.75 0.05 -0.24 -0.05 
            

CT (q=200) 

Dummy 𝐷̅−4
𝑗

 𝐷̅−3
𝑗

 𝐷̅−2
𝑗

 𝐷̅−1
𝑗

 𝐷̅0
𝑗
 𝐷̅+1

𝑗
 𝐷̅+2

𝑗
 𝐷̅+3

𝑗
 𝐷̅+4

𝑗
 𝐷̅+5

𝑗
 𝐷̅+6

𝑗
 

𝑗 = DMM  0.02 0.00 0.03 0.05 0.40* -0.22* -0.13* -0.08 0.03 0.00 -0.01 
𝑗 = OHFT 0.01 -0.01 0.00 0.03 0.36* -0.17* -0.11** 0.00 0.01 0.00 -0.01 
𝑗 = NON HFT 0.01 -0.01 0.00 0.20* 0.03 0.06 -0.01 -0.16* 0.00 -0.01 0.00 
            

t-statistic 𝑡−̅4
𝑗

 𝑡−̅3
𝑗

 𝑡−̅2
𝑗

 𝑡−̅1
𝑗

 𝑡0̅
𝑗
 𝑡+̅1

𝑗
 𝑡+̅2

𝑗
 𝑡+̅3

𝑗
 𝑡+̅4

𝑗
 𝑡+̅5

𝑗
 𝑡+̅6

𝑗
 

𝑗 = DMM 0.28 -0.06 0.48 0.83 6.03 -3.33 -2.16 -1.28 0.41 -0.03 -0.18 
𝑗 = OHFT 0.16 -0.19 0.07 0.47 5.75 -2.73 -1.83 -0.06 0.08 -0.04 -0.17 
𝑗 = NON HFT 0.18 -0.18 -0.03 3.18 0.46 0.96 -0.24 -2.51 -0.03 -0.24 -0.02 

 
IM 

Dummy 𝐷̅−4
𝑗

 𝐷̅−3
𝑗

 𝐷̅−2
𝑗

 𝐷̅−1
𝑗

 𝐷̅0
𝑗
 𝐷̅+1

𝑗
 𝐷̅+2

𝑗
 𝐷̅+3

𝑗
 𝐷̅+4

𝑗
 𝐷̅+5

𝑗
 𝐷̅+6

𝑗
 

𝑗 = DMM  -0.18* -0.23* -0.22* -0.27* -0.29* -0.08 -0.08 0.22* 0.15* 0.04 0.05 
𝑗 = OHFT -0.16* -0.20* -0.19* -0.21* -0.16* 0.08 -0.06 0.01 -0.06 -0.08 -0.06 
𝑗 = NON HFT -0.08 -0.09 -0.08 -0.09 -0.06 0.01 -0.02 -0.01 -0.01 -0.02 -0.01 
            

t-statistic 𝑡̅𝑗−4 𝑡̅𝑗−3 𝑡̅𝑗−2 𝑡̅𝑗−1 𝑡̅𝑗0 𝑡̅𝑗+1 𝑡̅𝑗+2 𝑡̅𝑗+3 𝑡̅𝑗+4 𝑡̅𝑗+5 𝑡̅𝑗+6 
𝑗 = DMM -2.87 -3.69 -3.52 -4.35 -4.54 -1.34 -1.31 3.45 2.43 0.63 0.81 
𝑗 = OHFT -2.62 -3.22 -3.06 -3.29 -2.47 1.24 -0.98 0.23 -0.91 -1.29 -0.99 
𝑗 = NON HFT -1.20 -1.38 -1.32 -1.37 -0.97 0.20 -0.37 -0.16 -0.14 -0.34 -0.18 

 

 

 

 

 

 

 

 

 

 

 

Note: This table reports our results for the evolution of trader type liquidity, at the firm level, around the announcement of 

European and US macroeconomic news at 14:30 CET. We calculate liquidity every 1 minute and, subsequently, we use the full 

sample to estimate equation (5): 𝐿𝑖,𝑡
𝑗

= 𝐴𝑖 + Β1,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡 + Β2,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡−1 + Β3,𝑖
𝑗

𝑉𝑜𝑙𝑖,𝑡+1 + Γ1,𝑖
𝑗

𝑀𝑅𝑡 + Γ2,𝑖
𝑗

𝑀𝑅𝑡−1 + Γ3,𝑖
𝑗

𝑀𝑅𝑡+1 + 𝜔𝑖,𝑡
𝑗

. In 

turn, we employ the filtered liquidity series, 𝜔𝑖,𝑡
𝑗

, to estimate an extended version of equation (6), 𝜔𝑖,𝑡
𝑗

= 𝑏𝑖,𝑗
0 + 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+

𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝐷𝑢𝑚𝑚𝑖𝑒𝑠 + 𝜖𝑖,𝑗,𝑡 , where we include 1-minute dummy variables, 𝐷𝜏 , with 𝜏 = {−4, −3, … , +5, +6}, from 

14:25 CET to 14:36 CET (that is, around 14:30 CET). We report the across-stock average estimated coefficients for the dummy 

variables, together with the corresponding average t-statistics, for each trader type and each liquidity measure (CT or IM). 

Asterisks denote significance at the 5% probability level. Double asterisks denote significance at the 10% probability level.  

Standard errors are Newey-West adjusted for serial correlation and heteroskedasticity. 

Table 7: Liquidity around macroeconomic news announcements 
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FIGURES 
 

 

Figure 1: Calculation of (il)liquidity for a hypothetical order size of 𝑞 shares and for a hypothetical order 

book state: 𝐴1, 𝐴2, and 𝐴3 are the best three ask limits, and 𝑆1, 𝑆2, and 𝑆3 are the corresponding quantities. 

Similarly, on the buy side, 𝐵1 and 𝐵2 are the two best bids, while 𝐷1 and 𝐷2 are the corresponding quantities. 

The shaded area between the supply-demand schedule represents the total round-trip cost for an order of 𝑞 

shares at time 𝑡, 𝑙𝑡(𝑞), which is represented by equation 𝑙𝑡(𝑞) = ∫ [𝑆𝑡(𝑄) − 𝐷𝑡(𝑄)]𝑑𝑄
𝑞

0
 in integral form. 
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Figure 2: Dynamics of trader type liquidity co-movement and volatility through time. For rolling windows 

of 25 days, we estimate equation (6), 𝜔𝑖,𝑡
𝑗

= 𝑏𝑖,𝑗
1 𝜔𝑀,𝑡

𝑗
+ 𝑏𝑖,𝑗

2 𝜔𝑀,𝑡−1
𝑗

+ 𝑏𝑖,𝑗
3 𝜔𝑀,𝑡+1

𝑗
+ 𝜖𝑖,𝑗,𝑡, for each trader type and 

for each stock, to obtain the level of co-movement 𝑅𝑖,𝑗,𝑤
2 . Rolling window volatility is calculated as the average 

CBOE VIX across the 25 days. 

 

 

Cost of trade: CT (q=1) 

Immediacy: IM 
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Figure 3: Top left graph: The across-stocks and days average immediacy, IM, in 15-minute intervals, for each 

trader type. Top right graph: The across-stocks and days average cost of trade, CT (q=1) in 15-minute 

intervals, for each trader type. Bottom graph: The across-stocks and days average volatility pattern in 1-

minute frequency, in the form of squared 1-minute logarithmic returns. CET denotes Central European Time. 

ECB denotes Central European Bank.  
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Cost of trade: CT (q=1) 

Immediacy: IM 

Cost of trade: CT (q=200) 
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Figure 4: The across-stocks average 𝑅𝑖,𝑗
2 , obtained by estimating equation (6), 𝜔𝑖,𝑡

𝑗
= 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+

𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝜖𝑖,𝑗,𝑡, for each trader type and for three intraday sub‐periods: the post-

opening period, extending from 09:00 to 12:00, the midday period, from 12:00 to 14:45, and the 

pre-closing period from 14:45 to 17:30. 
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Cost of trade: CT (q=1) 

Cost of trade: CT (q=200) 

Immediacy: IM 
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Figure 5: The across-stocks average 𝑅𝑖,𝑗
2  obtained from the estimation of equation (6), 𝜔𝑖,𝑡

𝑗
= 𝑏𝑖,𝑗

1 𝜔𝑀,𝑡
𝑗

+

𝑏𝑖,𝑗
2 𝜔𝑀,𝑡−1

𝑗
+ 𝑏𝑖,𝑗

3 𝜔𝑀,𝑡+1
𝑗

+ 𝜖𝑖,𝑗,𝑡, for each trader type and in 1-minute intervals around 14:30 CET. Results are 

reported for the two measures of liquidity, CT and IM. In each plot, the left grey bar corresponds to one 

minute before the announcement time, whereas the right grey bar corresponds to one minute after the 

announcement time.  
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Appendix A 

Market making on the Euronext platform 

In January 2011, Euronext Paris announced the introduction of a designated market making scheme 

(“Supplementary Liquidity Provision” or SLP), meant to enhance the provision of liquidity for 

specific baskets of blue chip stocks (including, for example, stocks from the Amsterdam Exchange 

and the CAC 40 Indices). The program was officially launched on April 1, 2011. According to the 

original market making scheme, the main obligations for SLPs are: a) to be present at least 95% of 

the time on both sides of the market during the continuous trading session, b) to be present at the 

best limits of the LOB for a minimum of 10% of total continuous trading session time, and c) to 

display a minimum volume of at least 5,000 Euros at the best limit (on average). Moreover, in 

compensation for providing liquidity to the market, SLPs are allowed to raise profits from 

transaction rebates that are fixed by market authorities. In May 2013, Euronext Paris announced a 

new round of applications for a revised version of the SLP program, inviting existing SLPs to renew 

their contracts, as well as recruiting new firms interested in participating in the market making 

process. In the revised version of the program, the percentage of minimum time presence at the 

best limits was increased from 10% to 25%, and a fourth rule was added: d) SLPs shall deliver a 

minimum passive execution level of 0.70% of the value of the executed volume, expressed in 

percentages of the aggregate monthly volume traded on Chi-X, BATs, Turquoise, and NYSE 

Euronext. This percentage was increased from 0.70% to 1% in December 2013. Further, the CAC 40 

stocks were merged into a single basket (basket C), together with 20 other blue chip stocks, whereas 

smaller (i.e., midcap) stocks were included in a second basket (basket A). The revised SLP program 

started operating in June 2013. 

On November 1, 2015, the SLP program was revised to include three different market making 

profiles. The first market making profile is the standard SLP profile, described above, with a 20-35% 

minimum time presence at the best limits, depending on the contract. The second and third profiles 

are based on the standard profile, but include additional requirements. Specifically, the second 

profile requires a market making ratio of at least 90% across the two baskets, and a minimum of 

35% time presence at the best limits during the continuous session. The third profile includes a BBO 

(Best Bid Offer) setting counter fixed at 5%, together with an additional constraint imposing an 

average lifetime of 2 seconds for all canceled/replaced orders. It is worth noting that the rebates 
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offered to market makers in the SLP program have  been revised several times since it was launched 

in 2011.  

In parallel with the SLP program, on January 2, 2015, Euronext Paris launched a second 

market making scheme to further enhance the liquidity provision process, the Market Making 

Program (MMP). The MMP concerns only registered members of Euronext markets who trade solely 

on their own account. It also includes a wide variety of securities, such as the Euronext 100 

components and the LP Next 150 components. As in the SLP program, the MMP requirements focus 

on the minimum time presence on both sides of the book, which is set at 80%, and the minimum 

passive share volume, which depends on the securities for which the market maker is responsible 

(e.g., 5,000 Euros for the Euronext 100 components). However, the MMP members are obliged to 

maintain a maximum quoted spread of 2%, in contrast to SLPs, who have no maximum spread 

obligations. A second notable difference between the SLP and the MMP schemes is that the MMP 

does not offer rebates. However, for a member who actively participates in the MMP program, the 

Exchange considers his total MMP activity in the determination of his trading fees in the cash market 

(i.e., similar to a discount).26 

It is important to stress that in our data sample, designated market makers (DMMs) are 

exclusively SLPs (see also the analysis in Megarbane et al. (2017) for year 2015). Therefore, DMMs 

are free from maximum spread restrictions, much like voluntary liquidity providers.  

 

 

 

 

                                                           
26 Information on the details of the liquidity providing programs is retrieved from the following documents: 
- Info flash 13 January 2011: Launch of the SLP program on European blue chips. 
- Info flash 26 March 2012: Annual renewal of the SLP program on European blue chips. 
- Info flash 9 May 2013: Call for applications for the revised SLP program. 
- Info flash 1 October 2013: The maximum rebate for SLPs is reduced by 0.02bps to 0.20 bps. 
- Info flash 2 December 2013: The minimum passive executed volume for SLPs is increased to 1.0% per basket. 
- Info flash 31 October 2014: Revision of maker/taker fees for SLPs. 
- Info flash 18 December 2014: Announcement of the MMP program that will be launched on January 2, 2015. 
- Info flash 1 September 2015: Announcement of the termination of the SLP program on October 30, 2015. 
- Info flash 16 October 2015: Announcement of the new SLP program that will start on November 1, 2015. 
- Info flash 23 October 2015: Announcement of the rebates in the new SLP scheme. 
The abovementioned documents are available on the NYSE Euronext Paris site, on the page Cash-Info Flash news: 
https://www.euronext.com/fr/membership/info-flashes 
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The CAC 40 sample 

 

 
Company name ISIN code Shares Trading Volume 

Capitalization 
(Euros) 

Capitalization  
(Euros) on 

02/01/2015 

Credit Agricole  FR0000045072 2,614,015,740.1 7,253,113.1 32,179,328,647.3 28,082,386,937.0 

SAFRAN  FR0000073272 417,029,585.0 1,187,796.6 27,024,469,380.3 21,289,360,314.0 

Air Liquide  FR0000120073 344,372,956.7 950,001.2 39,132,905,650.5 34,956,260,921.0 

Carrefour  FR0000120172 736,860,393.3 3,028,299.2 21,550,130,363.2 18,427,966,268.0 

Total  FR0000120271 2,408,583,095.4 7,405,730.4 107,880,345,890.5 101,139,109,856.0 

LOreal  FR0000120321 560,066,598.4 736,015.3 91,284,227,421.3 76,750,474,024.0 

Accor  FR0000120404 233,125,442.6 1,149,155.6 10,462,977,234.1 8,580,318,982.9 

Bouygues  FR0000120503 337,174,703.4 1,144,818.1 11,657,165,999.8 10,085,488,296.0 

Sanofi  FR0000120578 1,313,980,317.7 3,202,467.7 115,781,819,701.8 100,107,021,686.0 

Axa  FR0000120628 2,445,553,285.5 7,874,472.1 56,147,002,314.0 46,642,141,535.0 

Danone  FR0000120644 651,083,803.9 1,784,504.2 39,505,389,736.4 34,674,637,120.0 

Pernod Ricard  FR0000120693 265,421,592.0 563,973.6 27,755,041,828.4 24,177,252,815.0 

Lvmh  FR0000121014 507,917,338.3 992,864.1 80,122,790,709.2 66,434,077,646.0 

Michelin Nom.  FR0000121261 186,017,212.4 704,988.3 16,796,446,091.3 13,798,103,216.0 

Kering  FR0000121485 126,262,610.1 348,524.0 20,972,659,766.6 19,912,754,263.0 

Essilor Intl  FR0000121667 216,010,991.2 569,859.2 23,633,015,914.1 19,604,490,724.0 

Schneider Electric  FR0000121972 586,002,513.4 2,077,114.3 36,544,401,082.7 35,042,511,032.0 

Veolia Environn.  FR0000124141 562,335,282.0 2,382,231.7 10,763,676,172.5 8,257,401,947.7 

Saint Gobain  FR0000125007 565,675,835.9 2,288,403.5 22,764,684,960.0 19,758,776,153.0 

Cap Gemini  FR0000125338 168,392,927.1 718,881.9 13,188,217,528.1 9,835,208,093.9 

Vinci  FR0000125486 595,543,297.5 1,865,040.3 33,014,792,098.9 26,800,901,356.0 

Vivendi  FR0000127771 1,361,815,505.8 5,568,525.9 29,874,128,039.4 27,718,846,175.0 

Publicis Groupe  FR0000130577 221,890,999.2 866,904.9 14,771,493,128.1 13,105,260,584.0 

Societe Generale  FR0000130809 805,762,502.0 4,376,110.2 34,114,044,313.4 28,471,578,300.0 

BNP Paribas  FR0000131104 1,246,061,221.8 4,263,113.8 67,410,498,828.3 61,580,723,485.0 

Technip  FR0000131708 115,825,682.4 941,479.8 6,098,156,742.1 5,611,962,346.9 

Renault  FR0000131906 295,722,284.0 1,296,214.3 24,867,112,222.4 17,713,764,812.0 

Orange  FR0000133308 2,648,885,383.0 9,153,648.1 39,613,715,898.9 37,243,328,485.0 

Engie  FR0010208488 2,435,285,011.0 6,347,321.6 42,178,513,187.7 47,025,353,562.0 

Alstom  FR0010220475 309,983,344.8 1,298,851.1 8,696,642,885.0 8,323,201,770.6 

Legrand  FR0010307819 265,976,503.8 698,700.3 13,405,312,620.4 11,507,795,869.0 

Airbus Group  NL0000235190 786,797,085.4 2,770,421.8 46,316,736,124.9 32,585,990,902.0 

Valeo FR0000130338 79,462,540.0 436,004.0 10,559,820,738.9 8,212,453,509.0 

 
 
 
      

Table A1: The stock sample 
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Table A1 (continued) 
      

Securities listed constantly on CAC 
40 during 2015 but not negotiated 
directly on the Euronext platform      

Company name ISIN code 
Platform of 
negotiation 

   

Solvay BE0003470755 Belgium    

Uniball-Rodamco FR0000124711 the Netherlands    

ArcelorMittal Reg LU0323134006 Luxembourg    

      
Securities not listed constantly on 
CAC 40 during 2015  

 
     

Company name ISIN code 

Number of days 
listed on CAC 40 

during 2015    

LafargeHolcim Ltd CH0012214059 122    

Lafarge FR0000120537 131    

Peugeot FR0000121501 199    

Klepierre FR0000121964 8    

Alcatel-lucent FR0000130007 250    

Electricite de France FR0010242511 248    

Lafarge FR0012750396 5    

Alcatel-lucent FR0013046646 7    

Gemalto NL0000400653 57    

 

 

 

 

 

 

 

 

 

 

 

Note: The final sample of 33 stocks from the CAC 40. Reported are the daily average number of company shares, trading 
volume (in shares), and market capitalization for the period: 01/01/2015 to 31/12/2015 (256 trading days). The last 
column reports the market capitalization for each company on the starting day of the intraday sample period examined in 
this analysis (02/01/2015). Securities that are constantly listed on CAC 40 during 2015, but are not negotiated on the Paris 
platform (and thus LOB data are not available), as well as securities that are not listed on CAC 40 during all of 2015, are 
also reported. These securities are excluded from the analysis. 
 

 

https://www.boerse-berlin.com/index.php/Shares?isin=CH0012214059
https://www.euronext.com/products/equities/FR0000130007-XPAR/alcatel-lucent-quotes
https://www.euronext.com/products/equities/FR0000130007-XPAR/alcatel-lucent-quotes
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THE AMF-BEDOFIH Euronext Paris database structure  

 

 

 

Figure A1: The AMF-BEDOFIH Euronext Paris database structure. The Level 2 classification, employed here, 

is based on the HFT and DMM flags. 

 

 

 

 

 

 


