
 

  

Longterm decision 
making under the threat 
of earthquakes? 

Carmen Camacho  
Yu Sun 
 
 
 
SRC Discussion Paper No 91 
November 2019 



ISSN 2054-538X 

Abstract  
Under the threat of earthquakes, long-term policy makers need tools to optimally 
decide on the economic trajectories that will maximize the society welfare. Tools 
should be flexible and account for the consequences of earthquakes, incorporating the 
best estimate of their frequency and intensity. In this regard, this paper presents a 
modeling strategy that combines optimal control techniques and Bayesian learning: 
after an earthquake occurs, policy makers can improve their knowledge and adjust 
policies optimally. Some numerical examples illustrate the advantages of our modeling 
strategy along different dimensions. While Japan symbolizes the policy maker who has 
learned from earthquakes protecting the economy accordingly; Italy underlines the 
importance of prevention capital. China shows the hidden dangers of its extraordinary 
economic growth. Finally, the Chinese region of Yunan puts forward the roles of 
learning and of political independence. 
 
JEL Classification Numbers: C6, O13, O21, O44, Q54. 
 
Keywords: Bayesian Learning, Earthquakes, Prevention, Policy Making, Economic 
Growth. 
 
This paper is published as part of the Systemic Risk Centre’s Discussion Paper Series. 
The support of the Economic and Social Research Council (ESRC) in funding the SRC 
is gratefully acknowledged [grant number ES/R009724/1]. 
 
Carmen Camacho, PSE and CNRS 
 
Yu Sun, LSE and The Université catholique de Louvain 
 
 
Published by 
Systemic Risk Centre 
The London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means without the prior permission in 
writing of the publisher nor be issued to the public or circulated in any form other than 
that in which it is published. 
 
 
Requests for permission to reproduce any article or part of the Working Paper should 
be sent to the editor at the above address. 
 
 
© Carmen Camacho and Yu Sun, submitted 2019 



Longterm decision making under the threat of

earthquakes

Carmen Camacho

PSE and CNRS

Yu Sun∗

LSE and U. Louvain

September 20, 2019

Abstract

Under the threat of earthquakes, long-term policy makers need tools to opti-

mally decide on the economic trajectories that will maximize the society welfare.

Tools should be �exible and account for the consequences of earthquakes, incor-

porating the best estimate of their frequency and intensity. In this regard, this

paper presents a modeling strategy that combines optimal control techniques and

Bayesian learning: after an earthquake occurs, policy makers can improve their

knowledge and adjust policies optimally. Some numerical examples illustrate the

advantages of our modeling strategy along di�erent dimensions. While Japan sym-

bolizes the policy maker who has learned from earthquakes protecting the economy

accordingly; Italy underlines the importance of prevention capital. China shows

the hidden dangers of its extraordinary economic growth. Finally, the Chinese

region of Yunan puts forward the roles of learning and of political independence.
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1 Introduction

Major natural catastrophes like tsunamis, volcano eruptions or earthquakes entail sig-

ni�cant human and economic losses that modify national budget constraints, productive

endowments and as a consequence, economic decisions. On the 26th December 2004,

10 countries along the Indian Ocean coast were hit by an earthquake of intensity 9.3 on

the Richter scale and by a subsequent tsunami. There was no warning system to inform

villagers that a tsunami was approaching and 270,000 people were killed, more than

500,000 were injured and 1,8 million people were left homeless (Davis, 2008). According

to the CGI (2006), main infrastructures remained largely intact but small constructions

like houses, clinics, schools were destroyed explaining the high death-toll. Damage is

usually explained by the poor building techniques, unadapted to earthquake activity

and the low quality of the materials. We believe that another key reason is the lack

of tools to build optimal economic policies in time, which would take into account the

arrival and consequences of earthquakes in a wide framework. For this reason, this pa-

per aims to enable policy makers with a tool to maximize the society well-being while

optimally preparing the economy with adequate investment. Our modeling encompasses

features from classic models in economic growth, together with Bayesian and adaptative

learning.

There is a relative recent and growing interest on the analysis of natural catastrophes

and their e�ects on economic growth, both in the short and the long-term. The term

natural catastrophe englobes di�erent phenomena that vary in causes and in economic

and human consequences. As shown in Loayza et al. (2012), earthquakes are the natural

catastrophe generating the largest economic losses; whereas droughts a�ect the most

people. Nevertheless, some general results have been established that apply to all natural

catastrophes. Developing countries su�er on average more than developed countries

(Noy, 2009), economic losses are lesser for countries with higher education and greater

trade openness (Toya and Skidmore, 2007) and more intense disasters produce larger

negative economic impact (Fornby et al., 2013, Hochrainer, 2009, Noy, 2009, Stephens,

2007). Nevertheless, results are not unanimous regarding long-term consequences. A

�rst group of papers defend that natural catastrophes could enhance growth in the long-

run à la Schumpeter. That is, natural catastrophes should foster capital replacement

with new, more e�cient capital, which stimulates growth. In Jaramillo (2009), low

income countries enjoy a medium term increase in GDP growth, which fades away after

some years, only if the event has low incidence. Nevertheless, most papers �nd short
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and medium term losses and that economies return to their growth path with time.1

There is also a growing number of theoretical models that highlight the role of

natural catastrophes on economic growth. They allow to analyse the linkages between

the natural catastrophe and the productive factors, technological progress, adaptation

and mitigation policies, the role of the policy maker and public investment. There

exist computable general equilibrium models, which have addressed these questions at

a national scale like Shibusawa and Miyata (2011) for Japan, and at a regional level

like Rose and Liao (2005). In this paper, we adopt a classical view in economic growth

building a model à la Ramsey, focusing on the e�ects of earthquakes in the short as well

as in the long-term. The closest to our approach is the NEDyM model built in the spirit

of Solow (1956), developed and utilised in Hallegate and Ghil (2008) and Hallegate and

Dumas (2009), for instance. Hallegate and Ghil (2008) show that natural catastrophes

have a deeper e�ect on economies when they are booming since all resources are fully

exploited. If on the contrary, the economy is at a recession, it can reallocate unexploited

resources fast and in a e�cient manner. Hallegate and Dumas (2009) explore whether

the increase in investment that follows a natural catastrophe has an e�ect in the long-

term. They show that since reconstruction investment comes at least partly from other

national budgets, R&D for instance, economic growth could rather slow down.

The issues of earthquake prevention and long-term optimal decision making have

not been considered together so far in the literature. Nevertheless, as argued above,

it seems urgent to search for models, which at the same time are �exible, comprehen-

sive and easy to implement. Let us underline three of the main features of the present

model. The main novelty and the key characteristic of our framework is the introduction

of Bayesian adaptative learning. The policy maker has an estimation of the earthquake

frequency and the associated damage, and she takes her optimal decisions accordingly.

Standing policies are suspended upon each realisation of the earthquake and knowledge

is updated. Then, the policy maker recomputes new optimal policies with revised, more

accurate information on the expected frequency and intensity of earthquakes. Note that

with time, the policy maker can learn the true distribution of the earthquake's frequency

and intensity. Second, the original stochastic policy-making problem is transformed into

1Among the papers supporting creative destruction à la Schumpeter, let us mention Albala-Bertrand

(1993), Stewart and Fitzgerald (2001), Okuyama (2003) and Benson and Clay (2004). Then, Raddatz

(2007), Anttila-Hughes and Hsiang (2013), Ströbl (2011), or Felbermayr and Gröschl (2014) �nd short

and medium term losses, while Chhibber and Laajaj (2008) and Klomp and Valckx (2014) �nd that

economies will return to their growth path.
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a deterministic problem in which the policy maker expects earthquakes to arrive at the

expected frequency and to hit the economy with the expected intensity. Although our

model loses on instantaneous prediction precision, it does not lose in its capacity to

build long-term policies. Moreover, our modelling strategy is simple to implement and

it provides an accurate description of earthquakes with time. The third novelty is the

modelisation of prevention capital, which encompasses all accumulated resources that

protect e�ectively the economy against earthquakes. Prevention capital protects the

economy against earthquakes, diminishes instantaneous damage after an earthquake

and shortens recovery times. Its dynamics are known to policy makers, who can invest

to enhance prevention or neglect it; privileging consumption and the accumulation of

physical capital. In the literature, the term adaptation capital is commonly used (Ewing

et al., 2003, Palecki et al., 2001). As in Ewing et al. (2003), we understand that preven-

tion capital includes social capital, as the procedures acquired by the population to face

natural catastrophes, emergency plans (ex-ante warning alerts and ex-post evacuation

and aid plans), secure sewage and lifelines, the adaptation of buildings, bridges, roads,

and urban planning. Noteworthy, a parallel can be established between spending in

defence and in earthquake prevention. Like spending in earthquake prevention, defence

enhances security, promoting productivity and economic growth (Smith, 1776). This

thesis has been widely tested and corroborated ever since, see for instance Aizenman

and Glick (2006), Cuaresma and Reitschuler (2006) or Dunne and Perlo-Freeman (2003).

Di�erently from other papers in the �eld of natural catastrophes, our policy maker

takes into consideration the future occurrence of earthquakes using an estimation of

its frequency and intensity. These qualities permit the policy maker to elaborate plans

considering earthquakes while using at every moment the most updated information

possible. There is varied evidence about policy makers' learning. Kalkstein and Greene

(1997) �nd that Southern States in the US are at less risk from heat waves than Northern

States, due to their longer experience. According to Palacki et al. (2011), adaptation

measures count with increased policy support when frequency increases. In particular,

they focus on consecutive heat waves in St. Louis, Missouri and Chicago, �nding that

mortality was reduced between the heat waves of 1995 and 1999. From a theoretical

perspective, di�erent learning mechanisms can be considered ranging from the business-

as-usual policy maker who does not include the natural catastrophe in his planning

program, to the policy maker who uses the most updated information available averaging

all registers. In the mid-point, there are myopic policy makers who neglect all past

information and prudent policy makers, who incorporate new information but do not
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assign the same importance to new event as to old registered information (see Bréchet

et al., 2011, and Bréchet et al., 2014, for two applications).

This paper is structured as follows. Section 2 makes a brief introduction to earth-

quakes. Section 3 presents a model for optimal inter temporal decision making for an

economy frequently hit by earthquakes. Optimal decisions depend then on the evolution

of physical and prevention capitals, both su�ering from earthquakes. Beforehand, we

devote a subsection to the choice of the damage function, which depends here on the

catastrophe intensity and time elapsed since last occurrence, and it includes a recovery

function. Both damage and recovery depend crucially on prevention. Section 4 closes

this analysis developing numerically some case studies.

2 A brief introduction to earthquakes

An earthquake is the detectable tremor of the Earth surface. The moving plates that

cover the earth �nd opposition in the neighbouring plates, generating frictions, until one

of the plates gives in. Then, the amassed energy is released producing an earthquake

immediately. 2

Large earthquakes induce damages which include human life losses, infrastructure

and building collapse, �res, soil liquefaction, landslides, avalanches, �oods and tsunamies.

According to its strength, earthquakes intensity is measured using two main scales: the

Mercali and the Richter scales. In this paper, the Richter scale is privileged (see Table 5

in the Appendix for details). Earthquake intensity in the Richter scale ranges from 1 to

9, and for every unit increase in the scale, energy released increases roughly thirtyfold.

According to the U.S. Geological Survey Earthquake Hazards Team, and as shown in

Table 6 in the Appendix, there are between 15,000 and 32,000 earthquakes worldwide

every year, all intensities together. Minor earthquakes that do not entail human nor

economic losses, occur almost constantly in places like California, Alaska, El Salvador,

Mexico, Turkey or Japan, but they can occur everywhere. Regarding high intensity

earthquakes, there has been only one earthquake of magnitude larger than 8 from 2009

to 2011, and 2 in 2012.

Table 1 below lists the ten most intense earthquakes in history, showing the eco-

nomic and human losses involved. The second largest earthquake hit Alaska in 1964,

2Although we consider here only earthquakes having a natural origin, mine blasts and nuclear tests

can also generate earthquakes.

4



but despite its intensity it did not entail large economic losses, and only 131 people

lost their lives. Several reasons can explain this somehow lucky outcome. First, the

earthquake happened a Good Friday so that public buildings and schools were closed.

Second, Alaska has a low population density. Indeed, in 1964 and according to Pipkin

and Trent (1997), population density in Alaska was less than one person per square

kilometer. In the same line, the 1952 Kamchatka earthquake, the 5th most intense in

history, did not take human lives and economic losses were relatively low. The Honshu

earthquake of 2011 had the same intensity as the Kamchatka earthquake. In contrast

to the Russian experience, 15,703 people died in Honshu and economic losses exceeded

300 billion dollars, and this despite the preparedness of the Japanese population and

government.

No. Location Date Magnitude Economic

Loss

Fatalities

1 Chile 22.05.1960 9.5 $550 million 1,655

2 Alaska 28.03.1964 9.2 $311 million 131

3 Northern Sumatra 26.12.2004 9.1 $10 billion 227,898

4 Honshu, Japan 11.03.2011 9.0 $309 billion 15,703

5 Kamchatka, Russia 04.11.1952 9.0 $800,000

-$1,000,000

0

6 Maule, Chile 27.02.2010 8.8 $30 billion 523

7 Ecuador-Colombia 31.01.1906 8.8 n.a. 500-1500

8 Rat Islands, Alaska 04.02.1965 8.7 $10,000 n.a.

9 Northern Sumatra 28.03.2005 8.6 n.a. 1,000

10 Assam, Tibet 15.08.1950 8.6 n.a. 780

Table 1: 10 Largest Earthquakes in History3

It seems clear then that some countries would bene�t from including earthquakes

in their long-term economic decision making if they aim at maximising the country's

welfare. This would require precise knowledge on earthquake arrival times, on generated

instantaneous damage, recovery times but also on the dynamics of prevention. All

these depend in turn on the country's geographical situation, population and industrial

distributions, on its administration as well as on its sensitivity to earthquakes. The

following examples help us illustrate the idiosyncratic nature of earthquakes and their

3Based on National Centers for Environmental Information of NOAA (U.S.). Retrieved from

http://earthquake.usgs.gov/earthquakes/world/10_largest_world.php
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damage, which should be respected in this type of framework. Using data from the US

National Oceanographic and Atmospheric Administration (NOAA), Figure 1 displays

the number of earthquakes by intensity and damage categories su�ered in Japan, Italy,

China and the Chinese region of Yunan as from 19004. Note that although Italy has

su�ered less earthquakes overall and of a lower intensity than Japan, damage is relatively

higher.
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Figure 1: Number of Earthquakes by intensity. Source: NOAA.

Looking at Japan, Figure 2 highlights that most earthquakes are without e�ect,

underlining that the country has been implementing e�ective prevention policies for long.

In the numerical exercises of section 4, the roles of learning and earthquake sensitivity

together with prevention capital and technology are examined for these two countries.

Most earthquakes in China and Yunan are of intensity 7 and 8. Although the distribution

of earthquake losses is similar for China and Yunan (Figure 2), their consequences for

welfare and growth are quite di�erent. In this regard, section 4 analyses the welfare

4The damage scale is produced by the NOAA and has 4 levels. An earthquake of level 0 has no

damage. A level 1 earthquake has an economic damage of less than 1 million US dollars. Level 2

earthquakes are labelled moderate and they induce a loss ranging from 1 to 5 million US dollars. Level

3 earthquakes are severe and induce losses from 5 to 24 million US dollars. Level 4 earthquakes are

extreme and generated losses are larger than 25 million dollars.
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impact of learning, of having an adequate level of adaptation and prevention capital,

taking into account the attributes of each economy, including economic characteristics

and population growth, among others.
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Figure 2: Earthquake Intensity Histogram. Source: NOAA.

Once the signi�cance of earthquakes emphasised, the next question is how to in-

troduce earthquakes into a long-term decision making model. Hence, we need to make

assumptions on the nature and behaviour of earthquakes. In this regard, let us highlight

that although earthquakes have been analysed for more than 130 years, earthquake pre-

diction has been fruitless (Mulargia et al., 2017), that is, it is impossible to forecast the

occurrence of earthquakes in the medium or long-term. Nevertheless, there exist two

well-established laws governing earthquakes. First, the Omari law (1894) forecasts the

decay of earthquake aftermath. Second, the Gutenberg-Richter (1956) law establishes a

relationship between the number of earthquakes and their intensity. According to this

law, the more intense the earthquake, the less frequent (and vice versa). Regarding the

modelling of earthquake frequency, there are di�erent approaches. Here, we follow Ka-

gan and Jackson (1994) and Kagan (2002). Using the Harvard catalog on earthquakes,

the authors estimate long-term worldwide earthquake probabilities assuming that the

distribution of earthquakes in time follows a Poisson process. Like theirs, our estimates

are not earthquake predictions to be used as warnings, but as guides for economic policy
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making. In contrast to earthquake frequency, earthquake intensity cannot be predicted

nor estimated. As a consequence, in this paper, the policy maker will adapt to the

probability distribution of earthquakes of the average of observed intensities.

3 Inter temporal decision making under earthquake

threat

We develop a theoretical model to address the problem of a policy maker who faces

intense earthquakes frequently. Although the economy may have su�ered from earth-

quakes for a long time, the policy maker knowledge or awareness may be insu�cient to

provide an accurate stochastic description of the earthquake frequency, its intensity and

the associated economic damage.

The remaining of this section is structured as follows. After a brief introduction

to damage functions, section 3.1 presents our choices for the instantaneous damage

and recovery time functions. Then, section 3.2 introduces a simple version of Bayesian

learning tailored to our framework. Finally, section 3.3 ensures the existence of an

optimal solution to the policy maker's problem and provides a set of necessary optimal

conditions.

3.1 The damage function

The literature on economic losses generated by disasters is vast and ranges from ap-

plications of Input-Output methodologies (see Cochrane, 1974, Kawashima and Kauch,

1990), econometrics (West and Lenze, 1994), to computable general equilibrium models

(Rose et al., 1997). Other papers aim at producing accurate estimates of immediate

economic and material losses. Focusing on earthquake damage, Brookshire et al. (1997)

and Kircher et al. (2006) forecast the economic short-term impact of earthquakes de-

pending on their intensity and the region's building inventory, infrastructure exposure,

relative vulnerability of built environment to ground shaking and also socio-economic

wealth associated to exposed assets. Chan et al. (1998), Dunbar et al. (2002) or Chen

et al. (2001) predict economic losses depending on earthquake intensity. Regarding

damage modelisation, this paper relies mainly on Jaiswal and Wald (2011), who pro-

vide a loss function to evaluate immediate economic losses after signi�cant earthquakes

worldwide.
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Jaiswal and Wald (2011) design a loss ratio, r, de�ned as the ratio between direct

economic loss to total economic exposure. One of the many advantages of this loss ratio

is that the same functional form �ts all sensitive regions. An earthquake of intensity s

between 5.0 and 9.0 on the Richter scale generates an immediate loss of

r(s) = φ

[
1

β
ln

(
s

χ

)]
. (1)

φ is the normal cumulative distribution function with free parameters χ and β. It

su�ces then to estimate the regional values of β and χ to compute the estimated loss

ratio worldwide.5

In the current context of long-term decision making under the frequent arrival of

earthquakes, the damage function also needs to account for delayed e�ects. Models fore-

casting damage generated by earthquakes do not usually consider recovery time simply

because most models are static. However, recovery time itself is important because it

determines overall economic losses. In as far as recovery depends at least partially on

political decisions, it seems best suited a model with optimizing decision makers, who

consider at the same time the economy and its structure, the earthquake random nature,

its e�ects, recovery times and how these can be mitigated with adequate investment.

There is debate on whether natural catastrophes induce long term gains or losses. The

seminal paper of Albala-Bertrand (1993), predicted long-run gains after a natural catas-

trophe, led by an upgrade in capita à la Schumpeter. Old capital would be replaced by

new, technologically more advanced capital. Other papers followed this line, like Stew-

art and Fitzgerald (2001), Okuyama (2003), Benson and Clay (2004), Jaramillo (2009)

and Cuñado and Ferreira (2011). Note that this result is mainly driven by developing

countries. Nevertheless, conclusions are nuanced when the origin of the solicited public

investments is considered as in Hallegate and Dumas (2009). Indeed, the urgent invest-

ment in new capital may proceed from cuts in other budgets, like R&D. Underlining

the e�ect of intense hurricanes on the US from 1970 to 2005, Ströbl (2011) proves that

economic growth can be reduced by 0.93 percentage points on average. Regarding trop-

ical storms, Antilla, Hughes and Hsiang (2011) also �nd persistent losses of 6.7% several

years after the storm. Analysing natural catastrophes in general, Raddatz (2007) �nds

that climate disasters are responsible for an average loss of 2% of GDP, a year after

the event. According to Noy (2009), sudden-set disasters can make lose a 9% of GDP

in developing countries. An intertemporal damage function should then incorporate a

5Note that χ can be larger or smaller than s. If s
χ < 1, then its logarithm is negative but it results

in positive damage given that φ is the normal cumulative distribution and it is positive de�nite.
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recovery period leading to one of the following three possible scenarios: long-run losses,

recovery and long-run gains as depicted in Figure 3. In the case studies developed in sec-

tion 4, we consider that countries go back with time to their pre-catastrophe economic

situation.
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Figure 3: Recovery scenarios

Two novel additional features are added to the original loss function in Jaiswal and

Wald (2011), namely investment in prevention and recovery time. First, the policy

maker can invest in prevention, to protect the economy, decrease short-run losses and

shorten the recovery period. In this regard, the functions describing damage and re-

covery do depend on prevention capital. Second, the loss function includes a recovery

function g, which depends on prevention capital and on time elapsed since last earth-

quake occurrence. If the last earthquake occurred at t′, the loss function at time t

is

ϕ(b, µ, t, t′) = g(b, t, t′)r(µ) = g(b, t− t′)φ
[

1

β
ln

(
µ

χ

)]
. (2)

Function g decreases in b so that the larger prevention capital, the lower the loss. In

the limit, g converges asymptotically to zero when b tends to in�nite. ϕ also depends

time elapsed since last catastrophe and it could also encompass population density, and

physical capital age.
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3.2 Bayesian learning on earthquakes

Here earthquakes are considered as independent realizations of a random variable, with

unknown probability distribution. At a given date, the policy maker solves the optimal

control problem with the available information on the random variable frequency and

intensity. This means that at time 0, the policy maker expects a realization of the

variable every τ0 years with expected intensity µ0, and she incorporates the consequences

to the problem. When the variable realizes, the policy maker actualises her expectations

and solves again the problem. In this section we describe �rst Bayesian learning when

the stochastic frequency of a variable follows a Poisson distribution. Then, we apply

the obtained results to our particular problem. In particular, we underline the role of

learning and information updating.

We assume that earthquake frequency follows a Poisson process for point processes

as in Woo (1999) or Coles (2001) and as applied in Nogaj et al (2006). Indeed, as shown

in Khintchine (1960), the superposition of independent processes, in which no process

dominates, follows a Poisson probability distribution. The probability there will be q

occurrences in a time period is

p(q | γ) =
γq

q!
e−γ,

when the average number of occurrences in the same period of time is γ.6. Suppose that

the average number of occurrences of a stochastic variable is unknown, that the time

interval [0, T ] is divided in n subperiods and that the aim is to compute the probability

that there will be q1 occurrences in the �rst subperiod, q2 in the second subperiod, until

qn in the last subperiod. Bayesian learning can be applied here since the probability that

the average number of occurrences is γ, when there have been {q1, q2, ..., qn} occurrences
in the last n subperiods, equals the product of the probability of observing γ occurrences

on average over [0, T ], and the probability of observing qi in subperiod i for all i, when

the true average is γ, that is:

p(γ | q1, . . . , qn) ∝ p(q1, . . . , qn | γ) · p(γ). (3)

p(γ) and p(γ | q1, . . . , qn) are called respectively prior and posterior probability density

function. Here it is assumed that p(q1, . . . , qn | γ) follows a Poisson distribution, which

implies that its associated prior p(γ) follows a Gamma distribution γ ∼ Γ(1, 1), that is

p(γ) = e−β, (4)

6We use here the term occurrence for a realisation of the random variable. In our context, an

occurrence is the realisation of an earthquake.
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for any γ > 0. As a result, the expected value and variance of γ are E(γ) = 1 and

V (γ) = 1. Hence, substituting (4) into (3)

p(γ | q1, . . . , qn) ∝ γ
∑n
i=1 qie−(1+n)γ. (5)

Therefore, when {q1, q2, ..., qn} occurrences have been observed in the previous n subpe-

riods, the number of occurrences follows a Gamma distribution Γ(α∗, β∗), with

α∗ =
n∑
i=1

qi, and β∗ = 1 + n.

The associated conditional mean is

E(γ | q1, . . . , qn) =
1 +

∑n
i=1 qi

1 + n
,

and the corresponding conditional frequency is

Υ =
1

E(γ | q1, . . . , qn)
=

1 + n

1 +
∑n

i=1 qi
.

Policy makers can be di�erentiated depending on their learning mechanism. Myopic

decision makers actualise their beliefs on earthquake intensity using uniquely the most

recent information. Others disregard current information using a conservative scheme,

where they do not actualise their beliefs. These policy makers consider recent occur-

rences as non-signi�cant accidents. Cautious decision makers actualize using a weighted

average of past beliefs and current information. Only when all earthquake occurrences

are equally weighted, the policy maker beliefs do converge to the true distribution in

the long-run applying the law of large numbers.

Therefore, we shall assume that the policy maker approximates the true number of

earthquake occurrences in a period of time by the average number of occurrences
∑n
i=1 qi
n

,

with corresponding frequency is n/
∑n

i=1 qi. Then, as time passes and the number of

observations increases, the average of the number of occurrences during a given period

converges to the expected value of the number of occurrences, and so estimated frequency

also converges to expected frequency. We solve next the inter-temporal decision problem

of a policy maker who faces earthquakes frequently and who learns about them. To

underline the importance of learning, we consider some scenarios in section 4, where the

policy maker does not update her beliefs on earthquakes' intensity nor frequency.

3.3 The policy maker problem

Suppose a risk neutral policy maker who maximizes overall discounted welfare over a

�nite time period in an one-sector economy made of homogeneous individuals. For
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simplicity, we assume population grows at a constant rate n ∈ R. On a given date,

welfare depends on the amount of the unique �nal good consumed and it is measured

by a standard utility function U , which is a positive, increasing and concave function:

U(·) ≥ 0, U ′(·) ≥ 0, U ′′(·) < 0.

Additionally, U satis�es the Inada conditions:

lim
C−→0

U ′(C) =∞, and lim
C−→∞

U ′(C) = 0.

The objective of the policy maker is to choose the trajectories for consumption and

investment in physical and prevention capital that will maximize aggregated welfare of

a representative agent over the time interval [0, T ]. In that regard, the policy maker

solves

max
{c,p}

∫ T

0

U(C(t))e−ρtdt,

where C stands for consumption per capita, c is the share of output devoted to con-

sumption, and p is the share of output invested in prevention capital. The policy maker

discounts the future exponentially, so that parameter ρ is the time discount rate. Note

that the arrival of earthquakes does not modify the policy maker preferences, nor the

production function. Hence the problem the policy maker solves does not change struc-

turally with the arrival of earthquakes.

Optimal decisions, production of the �nal good and earthquake damage depend on

the economy's level of protection against earthquakes. To model this new investment

possibility, we de�ne prevention capital as follows:

De�nition 1. Prevention capital is the aggregate of accumulated resources that protect

the economy against earthquakes.

Prevention capital is then an aggregated stock made of human skills, adapted infras-

tructures, factories and housing (new or improved via retro�tting techniques); �re-breaks

as well as national, regional and local emergency plans. Governments of all levels can

invest in prevention capital, and like the Japanese government, they can even hedge

insurance against catastrophes (OCDE, 2006).

We denote by k physical capital per capita and assume that production of the unique

�nal good follows a Cobb-Douglas function with technological parameter A and physical

capital share α. A share ϕ of output is bygone by earthquake damage. Hence, available

output for consumption and investment in physical and prevention capital is the share

(1− ϕ(b, µ, t, τ))Akα, which represents undamaged output.
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Consumption per capita, C(t), is a fraction c of total undamaged output and preven-

tion investment a fraction p. Hence, consumption is C(t) = c(t) [1− ϕ(b, µ, t, τ)]Akα(t)

and investment in prevention is p(t) [1− ϕ(b, µ, t, τ)]Akα(t). Hence, the dynamic equa-

tion describing the evolution of physical capital per capita is

k̇(t) = [1− c(t)− p(t)] [1− ϕ(b, µ, t, τ)]Akα(t)− (δk + n)k(t). (6)

δk is the physical capital depreciation. b, accumulated prevention capital per capita,

evolves according to the following ordinary di�erential equation:

ḃ(t) = β1 {p(t) [1− ϕ(b, µ, t, τ)]Akα(t)}β2 − (δb + n)b,

that is, investment transforms into prevention capital via a power function, and it de-

preciates at a rate δb. β1 and β2 are e�ciency parameters that depend on the economy

earthquake prevention skills and on the overall technology.

Let us gather all elements and describe the model the policy maker utilises at t = 0.

At the beginning of the planning horizon, the decision maker expects that an earthquake

of intensity µ0 will arrive every τ0 years. We assume that the policy maker uses a CIES

utility function with parameter σ, she solves the following problem:

max
{c,p}

∫ T

0

{c(t)[1− ϕ(b, µ0, t, τ0)]Akα(t)}1−σ

1− σ
e−ρtdt, (7)

subject to
k̇(t) = [1− c(t)− p(t)][1− ϕ(b, µ0, t, τ0)]Akα(t)− (δk + n)k(t),

ḃ(t) = β1 {p(t)[1− ϕ(b, µ0, t, τ0)]Akα(t)}β2 − (δb + n)b, for all t ∈ [0, T ],

k(0) and b(0) given.

(8)

The state equations of the policy maker exhibit (downward) jumps at �xed dates, which

correspond to the expected arrival of an earthquake: τ0, 2τ0, 3τ0,... Hence, k̇ and ḃ have

a countable number of discontinuities and standard optimisation methods apply.

As mentioned, the optimal trajectory resulting from (7) and (8) will be applied

from t = 0 until the �rst earthquake arrives at time t1. After measuring the actual

intensity, m1, and actual frequency t1, the policy maker actualises her beliefs and re-

computes optimal trajectories from t1.
7 In general, the policy maker actualises her

7Since the earthquake arriving at t1 is the �rst in the planning period, t1 is both (average) observed

frequency and time elapsed since last occurrence.
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beliefs and recomputes new optimal trajectories after each earthquake. We describe

next how earthquake beliefs are actualised.

The jth earthquake after t = 0 hits the economy at time 0 ≤ tj < T with intensity

mj. This j
th earthquake arrives then tj−tj−1 years after the last. Then, the policy maker

updates �rst her beliefs on frequency and intensity as the average of past observations

and the last:

µj =
mj +

∑j−1
i=0 µi

j
and τj =

∑j−1
i=1 (ti+1 − ti) + τ0

j
=
tj + τ0

j
. (9)

We know that if the policy maker updates her beliefs using the average of the observed

values, as in (9), then beliefs converge towards their true values with time.

With the updated values for earthquake intensity and frequency, the policy maker

solves the new problem, from tj:

max
{c,p}

∫ T

tj

{c(t)[1− ϕ(b, µj, t, τj)]Ak
α(t)}1−σ

1− σ
e−ρtdt,

subject to
k̇(t) = [1− c(t)− p(t)][1− ϕ(b, µj, t, τj)]Ak

α(t)− (δk + n)k(t),

ḃ(t) = β1 {p(t)[1− ϕ(b, µj, t, τj)]Ak
α(t)}β2 − δbb, for all t ∈ [tn, T ],

k(tj) and b(tj) given.

(10)

At tj, the policy maker expects the arrival of an earthquake at every τj years with an

intensity of µj. In other words, the state variables k and b are expected to receive

shocks at �xed dates with known intensity at every τj years. Hence, at the moment the

decision maker computes the optimal trajectory, the times of the expected shocks are

tj + τj, tj + 2τj, ..., tj + Njτj, where Nj is the expected number of earthquakes from tj

to T. Nj is computed as the integer part of N over τj, Nj = b T
τj
c.

Notably, the policy maker's problem at time tj can be rewritten as

max
{c,p}

Nj−1∑
i=0

∫ tj+(i+1)τj

tj+iτj

{c(t)[1− ϕ(b, µ, t, τ)]Akα(t)}1−σ

1− σ
e−ρtdt (11)

+

∫ T

tj+Njτj

{c(t)[1− ϕ(b, µ, t, τ)]Akα(t)}1−σ

1− σ
e−ρtdt,

subject to k̇(t) = [1− c(t)− p(t)][1− ϕ(b, µj, t− iτj, τj)]Akα(t)− (δk + n)k(t),

ḃ(t) = β1 {p(t)[1− ϕ(b, µj, t− iτj, τj)]Akα(t)}β2 − δbb(t),
(12)
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for t ∈ [tj + iτj, tj + (i + 1)τj] and i = 0, ..., Nj, with k(tj) and b(tj) known, k(0) and

b(0) known. Abusing of notation, we identify T = tj + (Nj + 1)τj. Note how the

damage function evolves with time, but only inasmuch as it de�nes time elapsed since

last earthquake, that is, recovery time. We de�ne the set of admissible controls to

problem (11)-(12) as follows:

De�nition 2. A pair of control variables {c, p} is said to be τj-admissible for a given

switching frequency τj ∈ [0, T ] if

a) There exists a unique solution (k∗, p∗) to (12) with Nj shocks at times tj + τj, tj +

2τj, ..., tj +Njτj, with initial condition (k(tj), b(tj)), for all j.

b) The pair of controls {c∗, p∗} are measurable and bounded functions, with 0 ≤
c∗(t) ≤ 1 and 0 ≤ p∗(t) ≤ 1, for all t ∈ [tj, T ].

Theorem 1 provides the set of necessary optimal conditions:

Theorem 1. Given tj and the couple (τj, µj), let us de�ne on each interval [tj + iτj, tj +

(i+ 1)τj], with i = 0, ..., Nj and (Nj + 1)τj = T , the Hamiltonians Hi(t, k, b, c, p, λ
i
1, λ

i
2)

and the co-state variables λi1 and λi2 as:

Hi(t, k, b, c, p, λ
i
1, λ

i
2) =

{c(t)[1− ϕ(b, µj, t− iτj, τj))]Akα(t)}1−σ

1− σ
e−ρt

+λi1 {[1− c(t)− p(t)][1− ϕ(b, µj, t− iτj, τj)]Akα(t)− (δk + n)k(t)}

+λi2

{
β1 {p(t)[1− ϕ(b, µj, t− iτj, τj)]Akα(t)}β2 − (δb + n)b(t)

}
.

Assume there exists an optimal control set {c∗j , p∗j} associated to τj de�ned on [tj, T ]. Let

{c∗j,i, p∗j,i} denote the restriction of {c∗j , p∗j} to the time interval [tj + iτj, tj + (i+ 1)τj] for

all i. Then, it is necessary that there exists a couple {λi1, λi2} such that {k∗, b∗} satisfy

a set of canonical equations at every t ∈ [tj + iτj, tj + (i+ 1)τj]:

k̇∗ = [1− c− p][1− ϕ(b∗, µj, t− iτj, τj)]Akα∗ − (δk + n)k∗ =
∂Hi

∂λi1
, (13)

ḃ∗ = β1 {p[1− ϕ(b∗, µj, t− iτj, τj)]Akα∗}β2 − (δb + n)b∗ =
∂Hi

∂λi2
, (14)
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and

λ̇i1(t) = −∂Hi
∂k

= −{c[1− ϕ(b∗, µj, t− iτj, τj)]A}1−σαkα(1−σ)−1e−ρt

−λ1{(1− c− p)[1− ϕ(b∗, µj, t− iτj, τj)]Aαkα−1 − (δ + n)}

−λ2αβ1β2{p[1− ϕ(b∗, µj, t− iτj, τj)]A}β2kαβ2−1,

λ̇i2(t) = −∂Hi
∂b

= (cAkα)1−σ [1− ϕ(b∗, µj, t− iτj, τj)]−σϕ′b(b∗, µj, t− iτj, τj)e−ρt

+λ1(1− c− p)ϕ′b(b∗, µj, t− iτj, τj)Akα

+λ2{β1β2 [pAkα]β2 ϕ′b(b
∗, µj, t− iτj, τj)(1− ϕ(b∗, µj, t− iτj, τj))β2−1 + δb + n},

(15)

with {k(tj), b(tj)} known. The optimal values for the control variables are the solutions

to
∂Hi
∂c∗j,i

= 0⇒ c∗j,i =
(λi1eρt)

−1/σ

(1−ϕ(b,µ,t,τ))Akα
,

∂Hi
∂p∗j,i

= 0⇒ p∗j,i =
(
λi2β1β2
λi1

) 1
1−β2 1

(1−ϕ(b,µ,t,τ))Akα
,

(16)

for all i. Furthermore, the following matching conditions are satis�ed:

λi∗1 (tj + (t+ 1)τj)
− = λ

(i+1)∗
1 (tj + (t+ 1)τj)

+,

λi∗2 (tj + (t+ 1)τj)
− = λ

(i+1)∗
2 (tj + (t+ 1)τj)

+,
(17)

and

lim
t→(tj+(t+1)τj)−

Hi(t, k, b, c, p, λ
i
1, λ

i
2) = lim

t→(tj+(t+1)τj)+
Hi+1(t, k, b, c, p, λi+1

1 , λi+1
2 ). (18)

Theorem 1 provides a method to compute the optimal trajectories for the economy

after each earthquake. Note that trajectories computed at tj will be applied from tj

until tj+1, the arrival time of next earthquake. We shall de�ne the optimal trajectory

for the time interval [0, T ] as the juxtaposition of the optimal solutions between two

earthquakes. If there are N earthquakes during the time interval [0, T ], we denote by

tN the arrival time of the last earthquake and de�ne tN+1 = T . Hence, the policy maker

re-computes N times the optimal trajectory over the periods [tj, T ] to build the optimal

policy for the entire period. The resulting optimal solution is the juxtaposition of the

optimal solution between two earthquakes:

De�nition 3. The optimal solution to problem (7)-(10) is a set {k∗, b∗, c∗, p∗}, con-
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structed piece wisely:

k∗(t) = k∗j (t+ tj),

b∗(t) = b∗j(t+ tj),

c∗(t) = c∗j(t+ tj),

p∗(t) = p∗j(t+ tj),

(19)

for t ∈ [tj, tj+1], j = 0, ...,N , and where {k∗j , b∗j , c∗j , p∗j} is the optimal solution computed

after the jth earthquake.

4 Numerical case studies.

In this section, the roles of learning and prevention capital are analysed numerically and

their consequences are measured. We have chosen four economies that are a�icted by

earthquakes frequently, namely Japan, Italy, China and the Chinese region of Yunan. As

shown in Figure 2 in section 2, these economies do not su�er equally from comparable

earthquakes. This re�ects di�erences in preparedness, which, in light of our model,

stem from varying knowledge on earthquakes and their structural capacity to protect

the economy. We have identi�ed each country with an initial level of prevention capital,

and run simulations under a number of scenarios that contrast the benchmark results.

We start our analysis with the cases of Japan and Italy. On the one hand, Japan is

the perfect example of learning and prevention since the country's behaviour re�ects

a deep knowledge of earthquake frequency and intensity. Indeed, the long history of

enormous and necessary Japanese investment in prevention capital protects the economy

and minimises loses. On the other hand, evidence suggests that Italy does not posses an

e�ective level of prevention capital. We close this section with the numerical emulation

of China and Yunan. Our simulations underline the e�ect of the lack of learning in a

context of tremendous economic growth. For Yunan, we also bring to the forefront the

e�ect on welfare of the lack of political independence.

Let us present �rst the calibration method and then the associated results for each

country in separated subsections. Data on earthquakes' intensity, date and exact loca-

tion are collected from the NOAA. Data on GDP and population are extracted from the

World DataBank in the World Development Indicators Database. The learning period is

�xed to 1990-2000, except for Italy, where it covers the period 1980-2000. All numerical

exercises cover the years 2000 to 2015.
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The model has two functional forms to specify and calibrate. The �rst of these

functions is the production function, which we assume is of the Cobb-Douglas type.

Although the benchmark model of section 3 does not consider any engine of exogenous

technological progress, it is needed to reproduce the GDP trajectory of Japan, China

and Yunan. For simplicity, exogenous technological progress is assumed to be a linear

function of time, so that the production function in per capita terms is:

f(k) = (A+ γt)kα. (20)

Output is initialized using 2000 data by the World DataBank in the World Development

Indicators Database. Hence, we need to calibrate A, γ and α so that y(0) = (A+γt)k(0)α

coincides with the countries output, and that national output grows at the observed rate

over the 15 years of the simulation exercise. Table 2 collects the calibrated values for

the model parameters. Note that for Italy, China and Yunan we only reproduce those

parameters whose calibration di�ers from Japan's.

Japan Italy China Yunan

A Scale parameter 0.6 1 1

α Output elasticity 0.75 0.3 0.3

γ Time trend 0.001 0 20 20

σ Utility parameter 0.6

ρ Time discount rate 0.015

δk k depreciation rate 0.004

n Population growth rate -0.015 0 0.05 0.05

β1 Prevention skills production parameter 0.75

β2 Prevention skills production parameter 0.5

δb b depreciation rate 0.01

Table 2: Calibration of the state equations

Next, the �nal form of the damage function is

ϕ(b, µ, t, t′) = g(b, t− t′)φ
[

1

β
ln

(
µ

χ

)]
=

z

b(t)
eΩ(µ−m)θ1e−(t−t′)θ2φ

[
1

β
ln

(
µ

χ

)]
.

The above speci�cation for g encompasses all required features. That is, it decreases

with b(t) and time elapsed since last earthquake. Additionally, damage depends on the

estimation error of the policy maker regarding intensity via the term eΩ(µ−m)θ1 .
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Under the calibration for Japan, whenever b(0) = k(0), that is, if Japan had as much

prevention capital as physical capital, then there would be almost no losses after an

earthquake. In the benchmark scenario for Japan initial prevention capital is equivalent

to 10% of its physical capital. With this initial prevention capital, Japan loses at

most a 1.5% of its GDP upon an earthquake of intensity larger than 6, being this

loss distributed in time. Italy's initial prevention capital is calibrated to be 0.05% of

physical capital, which is a very low level. There are reasons to believe that most Italian

infrastructures and public/private buildings, schools, etc. are not optimally adapted

for earthquakes. In a 2006 study after the Potenza earthquake, all buildings in the

region were analysed. Although the law enforces earthquake resistant buildings for new

buildings after 1980, resistant buildings account only for 35% of the total, and mainly in

urban areas. However, over the last 20 years, earthquakes have hit the countryside and

the Italian mountains. The electronic database associated to Jaiswal and Wald (2011)

provides the most recent estimations for the parameters in the loss ratio φ, as displayed

in Table 3.8

Japan Italy China Yunan

b(0) Initial prevention capital 0.1k(0) 0.0005k(0)

z Recovery function parameter 105 106 105 103

Ω Recovery function parameter -0.1 5 -0.1

θ1 Recovery function parameter 0.005

θ2 Recovery function parameter 2

β Damage function parameter 0.1 0.15 0.15

χ Damage function parameter 10.291 9.03 9.946 9.946

Table 3: Damage function calibration.

Using historical data, we have computed the average of frequency and intensity re-

lated to earthquakes of intensity larger than 5 to act as initial condition for the simulation

period, which covers the years 2000-2015. The resulting initial expected frequencies and

intensities are displayed in Table 4.

8Note that in all exercises, we compare optimal trajectories under two di�erent assumptions for b(0):

b(0) = 0.1k(0) and b(0) = 0.001k(0).
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Japan Italy China Yunan

τ0 Initial expected frequency 0.5 1.33 0.83 2.3

µ0 Initial expected intensity 6.6 5.15 6 6.5

Table 4: Initial beliefs.

4.1 Japan, the good learner.

From 2000 to 2015 Japan has su�ered 55 earthquakes. As a result of sustained invest-

ment in prevention, earthquakes of intensity lower than 8 hardly provoke any damage.

As our numerical results show, Japan has been learning from earthquakes for so long

that their knowledge is almost perfect. Consequently, their policies would follow the

same lines even if they stopped learning today.

The numerical exercises for Japan start with the case in which there is no learning

about the earthquake intensity nor about its frequency. Later the policy maker learns

about earthquakes, assigning to expected frequency and intensity the average of the

observed values. In each of these sets of exercises the role of prevention is underlined

considering two initial levels of prevention capital, corresponding to a good and an

insu�cient level, respectively.

Figure 4 shows the numerical results for the �rst exercises, with no learning. Time is

represented on the horizontal axis of Figure 4, so that t = 0 corresponds to year 2000. As

mentioned in the calibration section, when Japan starts with a prevention capital that

is 10% of its physical capital stock (dashed lines), damage is low. Japan would lose less

than 0.25% of its GDP on a continuous basis. Note the small �gure for a country hit by

55 earthquakes in 15 years with an average intensity of 6.6. At the 15 year aggregate, an

earthquake of intensity 6 generates at most a loss of 1.5% of Japanese GDP (if no other

earthquake hits before). However, if Japan started with ten times less prevention capital

(solid lines), then loses would amount to 2.5% of its production due to the accumulated

e�ect of earthquakes. That is, Japan would lose 5 times more of its production if it

was poorly protected against earthquakes. Note that damage decreases slightly with

time because prevention capital increases in the 15 years of the simulation. Besides the

role of prevention capital in growth, the Japanese economy recovers after an earthquake

stimulated by the undamaged exogenous technological progress, as shown by the pictures

of physical capital and output in Figure 4. Prevention capital also has an impact on GDP

growth even in this case, where the damage induced by earthquakes is low. GDP overall
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Figure 4: Japan, no learning. Solid lines: b(0) = 0.01k(0). Dash-dotted: b(0) = 0.1k(0).

growth rate during the period 2000-2015 is of 3.25% in the high prevention capital

benchmark, and 3.08% in the case with ten times less prevention capital. Worth to

underline, GDP and physical capital trajectories diverge with time, and their di�erences

increase with time. Indeed, damage to GDP and capital accumulates.

As in the original Ramsey (1928) model, the policy maker choices result in a smooth

trajectory for consumption with small downward jumps caused by earthquakes. The

share of GDP devoted to consumption is larger when prevention capital is low. The

average household consumes around 2.27% of annual GDP when prevention is poor

compared to an average of 2.225% when better protected. Although this result may

seem strange at �rst, it is not so if one thinks that investment in prevention also needs

resources to be maintained and to eventually increase. Hence, the larger prevention

capital, the more resources the economy needs to devote to prevention, even if it is

just to maintain the level of prevention capital. Since earthquakes do not modify the

policy maker's preferences, the consumption trajectories associated to the low and high

prevention capital are qualitatively identical. We observe that both trajectories oscillate
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around an average value. Earthquakes shift consumption downwards showing that to

reduce consumption is the policy maker's main tool to face economic losses. Indeed,

among the three uses of production: consumption, investment in physical or prevention

capital, it is consumption that absorbs most of the losses generated by earthquakes. This

result deserves some comments. Consumption de�nes welfare, so one does not expect

that a policy maker sacri�ces consumption to privilege physical capital. Nevertheless,

if everything else remains equal, sacri�ces in consumption do not accumulate in time.

That is, they do not have further negative consequences. On the contrary, reductions

in investment in physical or prevention capital do have lasting e�ects on the future of

production and consequently on future consumption. Upon an earthquake, the policy

maker sacri�ces today's consumption to preserve tomorrow's.

Then, earthquake intensity learning is introduced. Numerical results show little

di�erences between the exercises with and without learning on earthquake intensity.

For the sake of brevity we do not show here the numerical results of this exercise since

they resemble results in Figure 4. This outcome teaches us one important lesson. When

countries have acquired su�cient experience on earthquakes, devoting extra e�ort to

learning is rewardless. And this is notably the case of Japan. Japan has been preparing

for earthquakes for long, adapting infrastructures and designing mixed private-public

insurance mechanisms (OCDE, 2006).

Our results for Japan can be brie�y summarised in three main conclussions. First,

prevention capital protects the economy and can generate important di�erences in GDP

growth in the medium term. Second, when an earthquake hits the economy, the policy

maker main tool to re-equilibrate the economy is to sacri�ce the period's consumption.

This allows the policy maker to maintain the level of the stocks of physical and preven-

tion capital, which ensure future welfare. And third, when policy makers accumulate

accurate knowledge on earthquakes, making further e�orts does not transcend in higher

welfare nor in larger GDP.

4.2 Italy. A historical country made of stone

Italy has su�ered 25 earthquakes from 1980 to 2015, with an average intensity of 5.44

in the Richter scale. The largest earthquake during those 35 years happened in April

2009 in the region of L'Aquila in the center of the country.

In the �rst exercise, the benchmark, prevention capital is as low as 0.05% of physical
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Figure 5: Italy. Dashed lines, b(0) = 0.05k(0). Solid lines, b(0) = 0.1k(0).

capital and the policy maker does not update her beliefs on earthquake intensity nor

frequency. In a second exercise, we consider that Italy mimics Japan, that is, that

its initial prevention capital is 0.1% of the initial physical capital, and that the policy

maker collects information after each earthquake to update her beliefs. Figure 5 shows

the resulting trajectories for consumption and output. As observed in the previous

exercise on Japan, the policy maker adapts to the shocks using consumption. Indeed,

we observe relative large �uctuations in consumption that help preserving investment

in future capital and hence future consumption. Next, we consider a second scenario in

which Italy updates its beliefs on earthquake intensity and frequency, and in which it

has the same relative initial stock of prevention capital as Japan. Results correspond to

the solid lines in Figure 5. Broadly speaking, we can conclude that prevention capital

enhances consumption. Take consumption after the November 2004 earthquake of Salo

in Lombardy. Note how to maintain a high level of prevention capital, the well protected

Italy decreases consumption further than the unaware Italy. Since the economy is better

protected, the e�ects of the earthquake last shorter. As a result, production grows faster

enhancing later consumption. This corresponds to the peak in consumption at t = 10

or year 2010.

There is a very interesting phenomenon after 2005. From 2002 to 2005, there was a

series of 5 earthquakes. The economy had not completely recovered from the previous

earthquake when a new earthquake arrived. As a result, damage accumulated. Besides,
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the policy maker did not change her beliefs or her view on prevention capital, so that she

was privileging consumption. As a consequence, output declines between 2005 and 2009.

Then in 2009, output starts increasing. Indeed, following a period of more than 4 years

of an austere consumption regime, the 2009 earthquake reduces further consumption.

This time the policy maker privileges investment in physical capital and re-launches

the �nal good sector. Indeed, after the 2009 earthquake of L'Aquila of intensity 6.3 the

economy starts growing again, although at a lower rate than the well-protected economy.

Three years later, another earthquake of intensity 6.1 arrives at Emilia-Romagna and

destroys an important share of production. Consumption adjusts and output continues

increasing, but at an even lower rate. Once again, the economy did not have time to

recover, and it accumulates damage. In particular, had the economy be better protected,

output would have increased a 2% more.

Three main results should be underlined. First, an economy which disregards the

role of prevention capital does not diminish consumption as much as a better protected

economy after an earthquake. Second, in poorly protected economies with no learning,

earthquakes may have everlasting consequences on consumption, output and economic

growth. Third, damage from a series of close earthquakes accumulates, being magni�ed

upon each new arrival.

4.3 China. The growing giant

We analyse the Chinese exposure and adaptation to earthquakes at di�erent levels.

First, the entire country is considered as a unique and uniform decision unit. Then, the

region of Yunan is brought into focus. Yunan is one of the Chinese regions most exposed

to earthquakes, it is a relatively poor region with a low population density and a large

area. Yunan optimal trajectories and welfare are �rst computed as if the region could

take its own decisions. Then, in the last part of this section we consider that decisions

regarding earthquake prevention in Yunan stem from the Chinese central government.

As already noticed the Chinese policy maker uses consumption here as well to com-

pensate for earthquake losses. Hence, when one earthquake hits, consumption per capita

can decrease from a slight 0.1% to almost 3% after an earthquake of intensity 6 in Yunan.

Independently of the initial level of prevention capital, damage is very close to zero and

there are no signi�cant di�erences with or without learning. Despite the instantaneous

damage caused on production, technology grows so fast that it makes up for these losses.

As a result, the Chinese government does not have any incentive to invest in prevention
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capital given that the overall economy does not feel the earthquake repercussions, which

is hidden by Chinese economic growth.9

4.3.1 Yunan as an independent regional decision maker

There have been 38 earthquakes in Yunan from 2000 to 2015, with an average damage

index of 2.55. That is, most of the earthquakes have implied serious economic losses.10

In this section we run two exercises. In the �rst, there is no learning so that earthquake

expected frequency and their intensity are �xed in time. Second, the same exercise

is simulated allowing the policy maker of Yunan to learn about earthquake frequency

and intensity. In each exercise, we consider the cases of high and low initial prevention

capital and we focus on consumption trajectories.
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Figure 6: Yunan. Left panel: no learning. Right panel: learning. In both graphics, the

solid line corresponds to b(0) = 0.001k(0), and the dashed line to b(0) = 0.1k(0).

The simulation results of this �rst exercise are shown in �gure 6. Prevention capital

increases slightly during the simulation period, independently of its initial level so that

pre-existing di�erences are kept in time. When initial prevention capital is 10% of

physical capital, damage is almost non-existent. But when prevention capital is rare,

then an earthquake of intensity 6 destroys 30% of Yunan's production instantaneously.

Due to GDP growth, and despite the low investment in prevention capital, prevention

capital increases and damage goes below 30% after 10 years. Although the trajectories

9Results are not graphically displayed for the sake of brevity, but they are available upon request.
10As mentioned in Section 2, level 2 earthquakes imply losses up to 5 million US dollars whereas level

3 earthquakes can entail losses from 5 to 24 million dollars.
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of GDP and the stock of physical capital show a similar pattern in the cases of learning

and no learning, physical capital is always larger when prevention capital is higher, that

is, when physical capital is better protected.

When prevention capital is low, consumption declines with time. After 15 years,

consumption decreases by 13% in 15 years (Figure 6). Note that consumption su�ers

downward shifts upon earthquake occurrences. Since the e�ects of earthquakes accu-

mulate, consumption diminishes steadily. In contrast, showing a complete di�erent

behavior consumption oscillates around 1.9% of GDP when prevention capital is high.

As already noticed in other exercises, consumption is lower when prevention capital is

high because maintenance of prevention capital requires resources that are shifted from

consumption since the policy maker does not sacri�ce investment in physical capital.

Between earthquakes, the trajectory of consumption tends to increase. For instance, it

increases almost a 4% from 2000 to 2004. Then, a �rst earthquake hits and consumption

drops to almost the initial level, a drop of 3.25%. Contrary to the case of low preven-

tion capital, shocks do not accumulate and the consumption trajectory rebounds after

each earthquake. That is, the better protection against earthquakes allows the policy

maker to continue accumulating both physical and prevention capital while increasing

consumption.

Next, we allow the regional policy maker to learn about earthquake frequency and

duration. Figure 6 evidences some remarkable di�erences between the two exercises.

When prevention capital is low, the most noticeable di�erence are the tremendous jumps

in consumption at the beginning of the simulation. Jumps are due to learning: at any

time an earthquake hits, the policy maker has the opportunity to ameliorate policies

and predictions. Additionally, Figure 6 shows that when the economy is su�ciently well

endowed with prevention capital, learning is less important and optimal trajectories are

stable, being only slightly modi�ed upon earthquake shocks.

Let us compare now the exercises with and without learning using Figure 6. Infor-

mation updates are crucial when prevention capital is low. When the economy is poorly

endowed, learning increases welfare by a 17% in the 15 years covered by the simulation.

At t = 0, expected earthquake frequency is 2.314 years. Then, a �rst earthquake arrives

on the 14th of January 2000 and expected frequency decreases to 1.35 years. As a re-

sult, the policy maker decides to shift resources from investment in physical capital to

consumption and prevention capital. Hence, the trajectory of physical capital is slightly

modi�ed, results being noticeable only in the long-term.
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On the contrary, if the economy is su�ciently well protected against earthquakes,

learning increases welfare only by 0.07%. As noted in the example for Japan, a better

prepared economy su�ers less upon earthquakes arrival and has less to learn and to

improve. Trajectories are smooth, another characteristic usually sought by all policy

maker. Hence, we can conclude that learning and prevention mitigate most of the

shocks.

4.3.2 Yunan under Chinese rule

The aim of this subsection is to draw attention to the weight and consequences of

political independence. In the mid-point between being under the Chinese national

rule and being completely independent, we consider here that Yunan is autonomous

regarding consumption and investment in physical capital, but the region is tied to the

national rule regarding earthquake prevention. We characterise a concerned and close

policy maker who learns about earthquake frequency and intensity but who cannot

invest in prevention as if she was free. Hence, the region adapts to new earthquake

expectations modifying consumption and investment in physical capital but still being

unable to modify its prevention capital.

As in previous exercises, two levels of initial prevention capital are considered.11

When prevention capital is high, the welfare loss induced by following the Chinese

policy on earthquake prevention is equal to 19%. Otherwise stated, letting the regional

government adapt to their needs can increase all individuals' welfare by one �fth. The

welfare loss generated by following national rules is lower when the region is worse

prepared, reaching a total loss of 14.3%. In this case, the economy is not su�ciently

protected and the region su�ers to a great extent from earthquakes whether independent

or under the Chinese rule. Nevertheless, even in this case, the regional policy maker

would, if she could, increase investment in prevention capital to protect the economy and

secure future production and hence future consumption from subsequent earthquakes.

These last exercises have shed light on new issues. Chinese outstanding economic

growth hides economic losses generated by earthquakes. As already underlined, Chinese

authorities should take advantage of their current situation to protect the economy in

the future. The exercises on Yunan have pointed out at two aspects. Catastrophes hit

harder poorer economies, which recover more di�cultly. Finally, political independence

11Simulation results are not graphically displayed since di�erences with respect to the previous section

are not perceptible.
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seems key for a country facing earthquakes. Our results show that Yunan would gain

almost 20% of tis welfare if it had the right to decide on investment in prevention.

5 Conclusions

We have developed a modelling strategy to build optimal and �exible policies for economies

frequently hit by earthquakes. Our framework allows the policy maker to learn and im-

prove her knowledge on the stochastic nature of earthquakes as well as to invest in

prevention to lessen the e�ects of earthquakes. Other novelties include a damage func-

tion which comprehends recovery time, the crucial time period after each earthquake.

Section 3 provides a practical description of the set of optimal necessary condi-

tions that will be applied after each earthquake occurrence. When an earthquake hits

the economy, the policy maker interrupts the on-going policies and obtains informa-

tion about its frequency and intensity. Then, new policies are computed and applied.

The overall optimal trajectory is then the juxtaposition of optimal policies between

earthquake occurrences. Our numerical examples help us illustrate key elements in this

decision problem: the initial level of prevention capital, the roles of technology and

economic growth, of earthquake information and of awareness. Overall, our numerical

results have shown how prevention capital and accurate earthquake information not only

protect better the economy, but also increase consumption, long-term economic growth,

enhancing welfare.

There are many extensions we consider for future work. First, the damage function

would need further research to obtain a more accurate calibration of extreme earthquakes

as well as of inter temporal damages. One of the most challenging and demanding

projects is to allow the policy maker's preferences vary with damage directly and not

just via reductions in consumption. Then, in a second set of extensions, we would like

to build a model considering together general natural catastrophes, global warming and

economic growth as an extension of integrated assessment models à la Nordhaus (1991).

Finally, to analyse the impact of natural catastrophes on inequality, we would like to

extend the present model to an economy population with heterogenous agents.
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Appendix: The Richter scale and earthquake world fre-

quency

We provide in table 5 the Richter scale, indicating the e�ects of an earthquake depending on

its magnitude as well as its frequency. Table 6 shows the frequency of each type of earthquake

at the world scale.
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Magnitude Average earthquake e�ects Average frequency (estimated)

<2.0 Microearthquakes, not felt or felt

rarely.

Continual/several million per year

2.0-2.9 Felt slightly by some people. No

damage to buildings.

Over one million per year

3.0-3.9 Often felt by people, but very rarely

causes damage. Shaking of indoor

objects can be noticeable.

Over 100,000 per year

4.0-4.9 Noticeable shaking of indoor objects

and rattling noises. Felt by most

people in the a�ected area. Slightly

felt outside.

10,000 to 15,000 per year

5.0-5.9 Can cause damage of varying sever-

ity to poorly constructed buildings.

Felt by everyone.

1,000 to 1,500 per year

6.0-6.9 Damage to a moderate number of

well-built structures in populated

areas. Strong to violent shaking in

epicentral area.

100 to 150 per year

7.0-7.9 Causes damage to most buildings,

some to partially or completely col-

lapse or receive severe damage. Felt

across great distances with major

damage mostly limited to 250 km

from epicenter.

10 to 20 per year

8.0-8.9 Major damage to buildings, struc-

tures likely to be destroyed. Damag-

ing in large areas. Felt in extremely

large regions.

One per year

≥ 9.0 At or near total destruction - se-

vere damage or collapse to all build-

ings. Heavy damage and shaking ex-

tends to distant locations. Perma-

nent changes in ground topography.

One per 10 to 50 years

Table 5: Richter Magnitude Scale from United States Geological Survey.
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