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1 Introduction

The global financial crisis demonstrated the speed and magnitude with which financial

losses can propagate through financial systems. The crisis showed that initial losses in

specific firms and markets could be magnified by contagion, leading to losses of calami-

tous proportions. Systemic risk —defined as “the risk of widespread disruption to the

provision of financial services that is caused by an impairment of all or parts of the

financial system, which can cause serious negative consequences for the real economy

(IMF/FSB/BIS (2016); IMF (2013))”, is caused by externalities (direct exposure, fire

sale pecuniary externalities, herding in the pricing of risk, etc.) that have the potential

to amplify shocks up to the point of disrupting financial intermediation.

This paper considers financial systems as portfolios of entities and presents a method-

ology to infer the multivariate densities that characterize systems’ asset values. Data

limitations remain an important constraint in the measurement of systemic risk. Given

this constraint, our method offers important benefits. The densities are inferred from

the limited data on individual financial entities that is usually readily available (equity

prices and probabilities of default (PoD)). We show that the proposed distributions out-

perform the parametric distributions usually employed in risk measurement (Gaussian,

t-distribution, mixture of normals) under the Diebold et al. (1998) Probability Inte-

gral Transformation criterion. The densities are then used to construct complementary

measures of systemic risk that account for systems’ interconnectedness structures while

also being able to incorporate changes in such structures when information changes.

While a variety of complementary metrics of systemic risk can be constructed, these

metrics are all consistent as they originate from a common multivariate density. Our

method is easily implemented with publicly available market-based or supervisory data;

hence, it can be used in a wide set of countries and financial stability metrics estimated

can be updated easily and frequently.

Interconnectedness manifests itself through direct and indirect interlinkages across fi-

nancial institutions (FIs) and markets. Direct interlinkages are mainly due to con-

tractual obligations among financial entities. Indirect interlinkages can be caused by

exposures to common risk factors, by asset fire sales (triggered by stressed entities) and

asset sell offs (due to information asymmetries across agents). These interlinkages be-

come particularly crucial in periods of high volatility, and can become self-reinforcing.

Hence, interconnectedness is complex and likely unstable in periods of financial distress.

2



Given the importance of interconnectedness to the modeling of systemic risk, it is

useful to think about the financial system as a portfolio of financial institutions, whose

potential valuation can be represented by a multivariate density. Such a density char-

acterizes (i) information of the individual firms’ valuation in its marginal densities; and

(ii) information of the function that describes the association across firms’ valuation (or

interconnectedness) in its copula function.1 This twofold structure also results in two

different information sets useful to policymakers. Micro-prudential surveillance would

be interested in the marginals of this multivariate distribution, i.e. in identifying the

risk that individual firms default; in the structural approach of Merton (1974) this is

the risk that the value of the assets of the firm falls below a certain threshold (related

to the capital buffer of the firm). Macro-prudential surveillance, on the other hand,

would tend to focus on interconnectedness, especially in the tail of the marginal den-

sities that characterize extreme asset values. Indeed, a key objective of policymakers

is to assess the risk that the asset valuations of several financial firms simultaneously

fall to levels low enough to provoke concurrent default.

A first challenge in characterizing such multivariate distributions is that our under-

standing of interconnectedness is usually limited, especially in the tail of the distri-

bution. Frequently, what is available is (partial) information on individual firms; for

example, information of individual firms’ asset returns and in some cases, firms’ like-

lihood of default. Obtaining information on the joint likelihood of default of financial

institutions making up a financial system is usually very difficult.2 Simultaneous de-

faults are infrequent and contribute little to the statistical relationships drawn from

historical data. Moreover, financial systems have experienced significant structural

changes, which make past relationships less reliable for modeling current interconnect-

edness. Ideally, models developed should thus be robust under such data restrictions.

Although parametric assumptions may appear to resolve these issues, improper para-

metric calibration of risk models are known to lead to erroneous statistical inferences.3

1In contrast to correlation, which only captures linear dependence, copula functions characterize
linear and non-linear dependence structures embedded in multivariate densities

2While asset returns might allow to estimate return correlations across firms, such correlations
represent linear dependence measures of “mean returns”; hence, do not capture adequately intercon-
nectedness of extreme asset values (tail events).

3Koyluoglu et al. (2003) presents an interesting analysis of the consequences of the improper
calibration of credit risk models.
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A second challenge is that the measures of systemic risk obtained should be easily in-

terpretable by policymakers, and therefore relate to the policymakers’ policy reaction

to systemic risk. Because policy reactions depend on the specific agencies interested

in systemic risk (e.g. the central bank, the financial stability authority, the regulator),

the current literature has provided a range of measures derived from Value-at-Risk,

conditional probability, expected shortfalls, etc. (Bisias et al. (2012)). But the quan-

tification of each measure is done using specific methodologies, which makes it difficult

to ensure the metrics are consistent with each other.

This paper aims to address these two key challenges with the presentation of the

Consistent Information Multivariate Density Optimization (CIMDO) methodology.4

CIMDO is a non-parametric procedure, based on the Kullback (1959) cross-entropy

approach, to recover robust portfolio multivariate distributions from the incomplete

set of information available for the modeling of systemic risk. In general, entropy ap-

proaches reverse the process of modeling data. Instead of assuming parametric prob-

abilities to characterize the information contained in the data, these approaches use

information in the data to infer unknown probability densities. In this specific case,

the (unobserved) multivariate density characterizing the asset valuations and intercon-

nectedness structure of a system of financial institutions is inferred from observed (but

partial) information on the individual financial institutions in the system, i.e., their

equity returns and probabilities of default (PoDs). These are observed or can be esti-

mated from supervisory or market-based data. The CIMDO approach ensures that the

inferred multivariate densities are consistent with the observed PoDs because the ob-

served PoDs are used to impose restrictions on the moments of the multivariate density.

Using an extension of the Probability Integral Transform (PIT) criterion advocated

by Diebold et al. (1998), this paper shows that CIMDO-inferred density forecasts per-

form better than parametric distributions forecasts, even when they are calibrated with

the same information set. The CIMDO approach reduces the risk of density misspeci-

fication (especially in the tail of the distribution) because it recovers densities that are

consistent with empirical observations of the PoDs.

As PoDs of individual financial institutions change across time, the CIMDO method-

ology allows to update, consistently with the changes in the PoDs, the resulting mul-

4The CIMDO was first introduced in an earlier version of this paper, Segoviano (2006).
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tivariate densities and embedded copula functions. This is a key advantage over risk

models that incorporate only linear dependence and assume it to be constant through-

out economic cycles.5

To address the second challenge, we highlight that multivariate distributions inferred

by the CIMDO methodology provide complementary financial stability measures that

allow us to assess systemic risk from different perspectives, (i) tail risk, (ii) distress

dependence, (iii) contagion losses, and (iv) contribution to systemic risk. Since these

metrics are estimated as different moments of a common multivariate density, they

provide different perspectives of systemic risk whilst being fully consistent. We also

note our approach allows us to easily incorporate the risk contribution of non-banks

(mutual funds, hedge funds, pension funds, etc.) into the analysis of systemic risk.

The paper’s structure is as follows. Section 2 discusses the literature related to risk

quantification and applications to systemic risk measurement. Section 3 introduces the

CIMDO approach. Section 4 explains how the CIMDO dependence structure depends

on information and assesses the sensitivity of CIMDO densities to misspecification. Sec-

tion 5 evaluates the robustness of the CIMDO density under the Probability Integral

Transform criterion proposed by Diebold et al. (1998). Section 6 proposes complemen-

tary financial stability measures that can be easily derived from CIMDO multivariate

densities. The results of the application to the US and European banking and shadow-

banking systems are discussed in Section 7, and Section 8 concludes on the benefits of

the method, in particular for the calibration of theoretical models.

2 Literature

Systemic risk is caused by financial externalities that may be amplified by cyclical or

structural vulnerabilities. A cyclical view of systemic risk indicates that during expan-

sionary booms, funding constraints are looser and intermediaries can build up leverage

and maturity mismatch. The greater risk appetite of intermediaries in boom times

is reflected in higher asset valuations; hence intermediaries, in boom times, will tend

to take more risk in the form of higher leverage and maturity transformation than is

5In comparison to traditional methodologies to model parametric copula functions, the CIMDO
method avoids the difficulties of explicitly selecting a parametric form and calibrating its parameters.
The approach allows to infer simultaneously with the CIMDO multivariate density the copula function
that defines the interconnectedness structure across the marginal densities in the CIMDO multivariate
distribution.
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optimal from a social welfare perspective. In contrast, during economic contractions,

evidence suggest that lenders become highly risk averse (Adrian et al. (2015)). Credit

cycles implications for asset prices have been studied in the theoretical literature (Kiy-

otaki and Moore (1997)). This theoretical work has been further developed by assessing

the interactions among the buildup of financial intermediary leverage, the implications

for asset prices and the evolution of systemic tail risk (Adrian and Boyarchenko (2012);

Gertler et al. (2012)).

Contagion among financial institutions can occur through direct linkages or through in-

direct links.6 Direct linkages include losses due to a counterparty’s bankruptcy (Eisen-

berg and Noe (2001)) as well as funding shocks (Allen and Gale (2000); Freixas et al.

(2000)). Indirect links can occur through a variety of channels, but the following chan-

nels have been those most discussed: (i) fire sales and common exposures, i.e. the

sales of banks in distress affect asset prices, which can hurt other banks, especially in

conjunction with collateral constraints (e.g. Bhattacharya and Gale (1987), Lorenzoni

(2008); Stein (2012)); (ii) information, when there is information asymmetry : the in-

formation provided by the failure of a bank on the state of the economy can affect the

valuation (and the probability of a bank run) for another bank (e.g. Garber and Grilli

(1989)); (iii) strategic complementarities, for instance the failure of a bank can hamper

the supply of funds and investment in the economy, reducing the profitability of the

surviving banks (e.g. Acharya (2009)).

Methodologies that measure systemic risk have sought to capture the effect of link-

ages across financial entities in different ways. Bisias et al. (2012), provides a review

of this empirical literature.7 The authors classify over thirty quantitative measures of

systemic risk, within five categories ranging from probability distribution (statistical)

measures to network analyses and macroeconomic measures. We briefly explain here

the main probability distribution measures to focus on their similarities and differences

with the CIMDO-based financial stability measures presented in Section 6.

Statistical measures construct estimates of correlations, of probabilities, or of con-

ditional losses, for events of joint distress. These measures are not structural and most

often cannot attribute true causality (although Granger-causality is sometimes used),

which has the advantage that the measures are informative independently of theoreti-

6See De Bandt and Hartmann (2000) for a more detailed survey of the literature
7Acharya et al. (2017) provides another, shorter, survey.
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cal priors. They also capture both direct and indirect linkages. A limitation, common

to all these measures, is that they cannot provide information on the channels of con-

tagion since they are reduced-form.

The CoVaR model of Adrian and Brunnermeier (2016) estimates the Value at Risk

(VaR) of a firm, conditional on another firm being in distress. The CoVaR can be

estimated with quantile regressions, using the time variation to capture comovement.

Quantile regressions allow a better fit of the model in the lower tail of the distribution

(domain of distressed values) that the user is interested in.8 The Co-Risk measure of

IMF (2009) is similar in spirit to CoVaR, except that Co-Risk examines the CDS spread

of one firm (as opposed to the asset value in CoVaR), conditional on the CDS spread of

another firm, each at the respective 95th percentile of its empirical distribution. How-

ever, nothing guarantees that the PoDs predicted by Co-Risk are consistent with the

PoDs that are empirically observed. The conditional probability measures we propose

are on the contrary consistent which the observed PoDs. In addition, the multivariate

density incorporates the complete interconnectedness structure, and thus the financial

stability measures we can construct are not limited to pairwise conditional probabilities.

Huang et al. (2009) and Huang et al. (2012) proposed a measure of systemic risk

(the Distressed Insurance Premium, DIP) based on the calculation of a hypotheti-

cal, forward-looking, insurance premium against large losses suffered by a system of

financial firms. The method primarily relies on the construction of high-frequency

correlations of asset returns for the financial institutions analyzed. The individual in-

stitutions’ PoDs are deduced from CDS spreads and a standard portfolio credit risk

model (Hull and White (2004); Tarashev and Zhu (2008)) is used to estimate the

expectation of portfolio credit losses. The indicator of financial stability is thus funda-

mentally based on the (parametric) assumption that asset returns are distributed as

multivariate log-normal. This is a key limitation that the CIMDO approach addresses.

Acharya et al. (2017) show that a firm’s contribution to systemic risk can be cap-

tured by its systemic expected shortfall (SES), which is the probability of a systemic

crisis multiplied by the loss of the firm conditional on such a crisis. SES is a well-

8With the use of rolling regressions, it is also possible to estimate backward-looking time-varying
CoVaR. Adrian and Brunnermeier (2011) also propose a forward-looking estimate of CoVaR, but this
measure is constructed indirectly: first, a regression of backward-looking CoVaRs on structural firm
characteristics is estimated to identify good predictors of future CoVaR. Second, this model is applied
to current data to predict CoVaR.
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defined variable that has important theoretical implications —SES is a key component

of the optimal systemic risk tax — but it is also a variable that can be estimated as

a linear combination of the marginal expected shortfall (measured as the 5th percent

worst equity returns), of leverage, of excess returns on bonds due to credit risk, and the

excess costs of financial distress. The authors also link the SES to the capital increase

that regulators recommended following the US banking sector stress tests of February

2009.

Finally, Diebold and Yilmaz (2009) and Diebold and Ylmaz (2014) have suggested mea-

sures of interconnectedness based on weighted, directed networks, using VAR forecast

error variance decompositions to estimate the network’s weighted adjacency matrix.9

An issue with such measures is that they are difficult to convert to probability or to

monetary units, which are most valuable for policymaking.

3 Consistent Information Multivariate Density Op-

timisation (CIMDO)

In order to account for the potential loss propagation of financial entities when mea-

suring systemic risk, it is useful to think about the financial system as a portfolio of

financial entities, whose potential individual values can be represented by a multivari-

ate density. The structural approach of Merton (1974) is then the starting point to

model default risk. The premise of the structural approach is that a firm’s underlying

asset value evolves stochastically over time, and that default is triggered by a drop

in the firm’s asset value below a pre-specified barrier, henceforth called the default-

threshold, which is modeled as a function of the firm’s leverage structure.

The difficulty in extending the model to a system of firms comes from the choice

and calibration of a multivariate distribution. Because financial assets’ returns ex-

hibit heavy tails, Glasserman et al. (2002) proposed a multivariate distribution where

marginals follow t-distributions with the same degrees of freedom; however, such a

framework is not sufficiently flexible to account for risk heterogeneity among financial

9Diebold and Ylmaz (2014) also noted that Acharya et al. (2017)’s Marginal Expected Shortfall
and Adrian and Brunnermeier (2016)’s CoVaR were specific measures based on aggregations of a
weighted directed network.
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institutions.10 Mixture models (McLachlan and Basford (1988) and Zangari (1996))

provide an alternative option but their calibration is also difficult.11 Copula functions,

which allow modelers to account for linear and non-linear dependence structures have

also been used (see Gagliardini and Gouriroux (2003); Schnbucher (2003); Embrechts

et al. (2003)). Copula modeling is a step in the right direction but it has shortcomings

common to parametric modeling, in particular the need to choose a specification and

calibration of (parametric) copula functions, and the need to calibrate dependence —

often using a time invariant parameter.

This paper proposes the CIMDO approach, based on Kullback (1959)’s cross-entropy

approach, to recover multivariate distributions from the incomplete set of information

available for the modeling of systemic risk. The starting point of this literature is

Shannon (1948), who defined a unique function that measures the uncertainty of a

collection of events (entropy). Jaynes (1957) proposed to make use of this entropy con-

cept to choose an unknown distribution of probabilities when only partial information

is available. Kullback (1959) and Good (1963) extended the proposal to cases where,

in addition to moment constraints, some form of conceptual knowledge exists about

the properties of the system that can be expressed in the form of a prior probability

distribution (Golan et al. (1996)).

Following this literature, we propose to infer the unknown multivariate distribution

that characterizes the implied asset values of a portfolio of firms from the observed

PoDs of the firms making up the portfolio and from a prior multivariate distribu-

tion. The cross-entropy approach recovers the distribution that is closest to the prior

distribution but that is consistent with the PoDs, which are empirically observed.

10Extensions of multivariate t-distributions that allow for different degrees of freedom in their
marginals are possible, but under these assumptions, the multivariate t-distributions are not fully
described by their variance-covariance matrices.

11Mixture models assume that the firm’s logarithmic asset values are generated from a mixture of
two different normal distributions: the distribution of the quiet state and the distribution of the volatile
state, which has a certain probability of occurrence. An attractive property of the mixture model is
that its distribution exhibits heavy tails due to the random nature of volatility. In the univariate case,
it is necessary to estimate five parameters (two variances, two means and the probability of being in
a volatile state). In the multivariate case calibration becomes even more difficult, as it is necessary to
calibrate two covariance matrices corresponding to the quiet and volatile states for the multivariate
distributions.

9



3.1 Objective function and priors

For a portfolio, containing assets given to M different risk, whose logarithmic returns

are characterized by the random variables l1, .., lM , finding a multivariate distribution

p(l1, .., lM) consistent with a set of observations is equivalent to solving the constrained

minimization problem

min
p(.,...,.)∈S

C
[
p(l1, .., lM), q(l1, .., lM)

]
=

∫
lM

..

∫
l1

p(l1, .., lM) ln

[
p(l1, .., lM)

q(l1, .., lM)

]
dl1..dlM

where the set of constraints S (described below) is the set of conditions given by the

available information (for instance the unconditional probabilities of default) and the

condition that the posterior probability distribution sums to 1. In the interest of par-

simony, the simpler bivariate problem (M = 2) is presented, although all the results

are directly applicable when M > 2. The two assets are characterized by their log-

arithmic asset returns x and y and the minimization problem is simply defined as

minp(.,.)∈S C [p(x, y), q(x, y)] =
∫ ∫

p(x, y) ln
[
p(x,y)
q(x,y)

]
dxdy, where q(x, y) ∈ R2 is the

prior distribution and p(x, y) ∈ R2 the posterior distribution. The Kullback (1959)

cross-entropy criteria C [p(x, y), q(x, y)] can be thought of as the weighted average

(with weights p(x, y)) of the relative distance between p and q (ln
[
p(x,y)
q(x,y)

]
) and is a

measure of distance between the prior distribution q and the posterior distribution p.12

The objective of the minimization problem is therefore to choose the posterior dis-

tribution p that is closest to the prior and consistent with the constraints S. The prior

distribution q can be chosen differently depending on the problem at hand but can ei-

ther represent uninformative priors, be calibrated using theoretical priors and economic

intuition, or consistently with some simple empirical observations.13

3.2 Moment-consistency constraints

The information provided by the probabilities of default of each type of asset is incorpo-

rated in a set of moment-consistency constraints that modify the shape of the posterior

multivariate distribution. The moment-consistency constraints are restrictions on the

12The Kullback divergence is not a distance metric though. In particular it is not symmetric and
does not satisfy the triangle inequality.

13In the application to a portfolio of banks (section 7) the third option was chosen and q was
calibrated as a multivariate normal distribution with the correlation matrix equal to the correlation
of equity returns, computed in centered rolling windows.
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marginals of the portfolio multivariate distribution. Imposing these constraints on the

optimization problem guarantees that the posterior multivariate distribution contains

marginal densities that sum to the observed PoDs in the region of default14 (we use

the convention that the zone of default is [Xm
d ,∞] for m ∈ {x, y}, i.e. −x and −y

represent the equity returns):∫ ∫
p(x, y)χ

[Xxd ,∞]
dxdy = PoDx

t and

∫ ∫
p(x, y)χ

[Xyd ,∞]
dydx = PoDy

t (1)

p(x, y) is the posterior multivariate distribution that represents the unknown to be

solved. In addition, probabilities must be positive and sum to 1.

3.3 Solution

Let us define define the functional

L (x, y, p, λ) = `(x, y, p) + λxϕ1(x, y, p) + λyϕ2(x, y, p) + µϕ3(x, y, p)

where λx, λy, µ are lagrange multipliers, `(x, y, p) = p(x, y) [ln p(x, y)− ln q(x, y)] is the

cost function and, ϕ1(x, y, p) = p(x, y)χ
[Xxd ,∞]

, ϕ2(x, y, p) = p(x, y)χ
[Xyd ,∞]

, ϕ3(x, y, p) =

p(x, y) are the functionals associated to the moment-consistency constraints in (1).

Using the calculus of variations, there exist lagrange multipliers λx, λy, µ, such that

the solution p̂ satisfies the Euler-Lagrange equation dL (p̂)
dp

= 0, which is:

p̂(x, y)

[
1

p̂(x, y)

]
+ [ln p̂(x, y)− ln q(x, y)] + λxχ

[Xxd ,∞]
+ λyχ

[Xyd ,∞]
+ µ = 0

The posterior multivariate density is the solution of this problem (Golan et al. (1996)

show the solution is unique):

p̂(x, y) = q(x, y) exp

{
−
[
1 + µ+

(
λxχ

[Xxd ,∞]

)
+

(
λyχ

[Xyd ,∞]

)]}
(2)

where µ, λx and λy are solutions of the system

14The region of default defines the set of events under which the firm is considered to be in default,
and the concept of default used should be consistent with the definition of default to which the
observed PoDs refer. In this paper, the concept of default, or rather of distress, is broader than that
of default in the Merton model because the CDS spreads used to measure default risk are not narrowly
based on default events. Thus, the region of default (or rather, distress) does not correspond to the
risk that equity falls to 0.
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
∫ ∫

p̂(x, y)χ
[Xxd ,∞]

dxdy = PoDx
t∫ ∫

p̂(x, y)χ
[Xyd ,∞]

dydx = PoDy
t∫ ∫

p̂(x, y)dxdy = 1

(3)

3.4 Data requirements

The data required for CIMDO is: (i) data to calibrate a prior density; (ii) probabilities

of default of individual firms; and (iii) thresholds in the value of assets that define

the zone of default. The prior can be calibrated using any relevant information, for

instance on asset or equity returns, using stock market data to calibrate e.g. a normal

distribution or or t-distribution.15 The observed PoDs are crucial inputs to CIMDO.

These can be obtained from bond prices or CDS spreads (assuming a certain recovery

rate and price of risk), from a Merton model’s assessment of default frequency, or from

commercial databases (e.g. Moody’s KMV EDF).

Finally, for each firm, the region of default needs to be fixed by calibrating a threshold

(i.e. Xx
d and Xy

d ) so that changes in PoDx
t and in PoDy

t affect the shape of the poste-

rior distribution rather than the thresholds themselves. The default-threshold is fixed

to an average (through time) that is consistent with the historical average of the prob-

ability of default for each asset, PoD
m
, m ∈ {x, y}, and with the prior distribution.

For instance, if the prior distribution is a bivariate t-distribution, the historical average

of the default threshold for each borrower is set to Xx
d = τ−1 (αx) and Xy

d = τ−1 (αy),

where τ(·) is the distribution cdf and αx = 1 − PoDx
and αy = 1 − PoDy

(with the

model conventions, the region of default for each obligor is described in the upper part

of a distribution). Given these inputs, at each time t the solution of system (3) is

found to be the three scalars λx, λy and µ, which are used in conjunuction with the

prior density q to obtain the posterior CIMDO density p̂ according to equation (2).

4 How CIMDO incorporates interconnectedness struc-

tures

CIMDO provides a simple way to adjust prior distributions to available informa-

tion. The adjustment is flexible since it varies depending on the domain. Figure

15We discuss in section 4 the robustness of CIMDO to mis-specifications in the prior.
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Figure 1: CIMDO-density, Adjustment factor
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1 shows how the adjustment between the prior and the posterior, exp{−[1 + µ +

(λxχ[Xx
d
,∞)

) + (λyχ
[X
y
d
,∞)

)]}, depends on the domain, even though only three parame-

ters, µ, λx and λy need to be computed.16 Moreover, Figure 1 shows that when λx < 0

and λy < 0, which happens when the PoDs implied by the prior are below the observed

PoDs, the adjustment in the zone of joint default (top-right corner, captured by p̂3)

is exp(−µ) exp(−λx) exp(−λy) and is thus higher than the adjustment applied in the

zones of single default (top left corner, captured by p̂1, or bottom right corner, cap-

tured by p4.), i.e. exp(−µ) exp(−λy) or exp(−µ) exp(−λx). Thus, CIMDO strengthens

dependence when marginal PoDs are underestimated by the prior.

The following propositions provide additional hindsights into how CIMDO modifies

densities, in particular in relation to the modeling of dependence. Proposition 1 shows

how the copula of the prior density is modified by CIMDO. In particular, it shows how

the dependence structure is a function of the lagrange multipliers λx, λy, µ. Proposi-

tion 2 shows how the lagrange multipliers depend on the PoDs implied by the prior

and on the PoDs that are used as constraints to the minimization problem. Together,

Proposition 1 and Proposition 2 thus show how the dependence structure is a function

of the prior PoDs and of the observed PoDs.

16This is possible of course because the thresholds are fixed. If the thresholds were not fixed, the
model would be under-identified.
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Finally, Proposition 3 shows, using a t-student distribution as an example, that the

adjustment provided by CIMDO is not sensitive to the correlation of the prior when

Xx
d , X

y
d → +∞ or when λx, λy → 0. This is important because it implies that CIMDO

is robust to a mis-specification of the prior correlation if default probabilities are small

or if the prior is nearly consistent with the observed PoDs.

Proposition 1. CIMDO-copula

Assume the prior density is q(x, y). The copula of q is cq(u, v) =
q[F−1(u), H−1(v)]
f [F−1(u)]h[H−1(v)]

,

where u, v are the marginal cdf F and H of q, i.e. u = F (x) =
∫ x
−∞

∫∞
−∞ q(x, y)dydx

and v = H(y) =
∫ y
−∞

∫∞
−∞ q(x, y)dxdy , and where the marginal densities are f(x) =∫∞

−∞ q(x, y)dy and g(y) =
∫∞
−∞ q(x, y)dx. Then, the dependence structure of CIMDO

can be represented by the following CIMDO-copula function:

cc(u, v) =
q[F−1

c (u), H−1
c (v)] exp{−[1 + µ]}∫ +∞

−∞ q[F−1
c (u), y] exp{−λxχ[Xx

d ,∞)} dy
∫ +∞
−∞ q[x, H−1

c (v)] exp{−λyχ[Xx
d ,∞)} dx

where u = Fc(x), v = Hc(y), and the marginal densities are

fc(x) =

∫ ∞
−∞

q(x, y) exp{−[1 + µ+ (λxχ[Xx
d
,∞)

) + (λyχ
[X
y
d
,∞)

)]}dy

hc(y) =

∫ ∞
−∞

q(x, y) exp{−[1 + µ+ (λxχ[Xx
d
,∞)

) + (λyχ
[X
y
d
,∞)

)]}dx

Proof. By using the marginal densities fc and hc in the definition of a copula.

Proposition 2. Modeling of dependence

Assume that (µ, λx, λy) solve the system (3) taking into account two probabilities of

default PoDx and PoDy, with a iid prior distribution q that does not embed prior de-

pendence (i.e. q(x, y) = q(x)q(y)). In addition, assume (µ̂1, λ̂x) is the CIMDO solution

for a univariate problem, taking into account the information PoDx only, and that

(µ̂y, λ̂y) is the CIMDO solution for the univariate problem taking into account PoDy

only. Define Qi, i ∈ {x, x̄, y, ȳ, xy, x̄y, xȳ, ȳȳ} as the different probabilities of default

(index without a bar) or non-default (index with a bar) under the prior distribution
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(see also Appendix). Then, the approximations

λx ≈
λ̂x + λ̂y

QxQy−Qxy
QxQx̄

1− (QxQy−Qxy)2

QxQx̄QyQȳ

; λy ≈
λ̂y + λ̂x

QxQy−Qxy
QyQȳ

1− (QxQy−Qxy)2

QxQx̄QyQȳ

(4)

show that:

i) the adjustment to the prior multivariate density (captured by the lagrange multi-

pliers λx, λy) differs from the adjustment for the univariate densities (λ̂x, λ̂y);

ii) λy is a function of both PoDy (as reflected in λ̂y) and of PoDx (as reflected in

λ̂x).
17

iii) when the prior assumes the distress events are independent (i.e. Qxy = QxQy),

λx ≈ λ̂x and λy ≈ λ̂y. CIMDO does not create a “spurious” dependence structure

if it was not embedded in the prior.

Proof. See Appendix

Proposition 3. Sensitivity to the correlation in the prior

Assume the prior is a centered bivariate t-distribution, with ν degrees of freedom and

correlation coefficient σ. Define J = νν/2

2π
(ν + Xx2

d + Xy2
d )−ν/2, and define Q̃i, i ∈

{xy, x̄y, xȳ, ȳȳ} as the prior joint probabilities of default/non-default if the prior was

distributed with a correlation coefficient of 0 (see also Appendix). Then the following

approximations

λx = − ln
(
PoDx)− 1− µ+ ln(Q̃xye

−λy + Q̃xȳ + (e−λy − 1)Jσ +O(σ2)
)

λy = − ln
(
PoDy)− 1− µ+ ln(Q̃xye

−λx + Q̃x̄y + (e−λx − 1)Jσ +O(σ2)
)

(5)

µ = −1 + ln
[
Q̃xye

−λxe−λy + Q̃
−λy
x̄y + Q̃xȳe

−λx + Q̃x̄ȳ

+(e−λxe−λy − e−λy − e−λx + 1)Jσ +O(σ2)
]
.

show that:

i) the lagrange multipliers depend on the prior’s correlation coefficient σ, but:

17The result is symmetric for λx.
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ii) when λx, λy → 0, the adjustment factor due to CIMDO is insensitive to the cor-

relation coefficient σ;

iii) when Xx
d , X

y
d → +∞, the adjustment factor due to CIMDO is insensitive to the

correlation coefficient σ.

Proof. See Appendix

5 Density evaluation

Do densities derived with CIMDO improve upon the performance of standard paramet-

ric models, even when these models are calibrated well enough to be consistent with the

observed data? This section conducts an evaluation of density forecasts using Diebold

et al. (1998)’s Probability Integral Transform (PIT) method. Density evaluation is a

complex problem because it is impossible to rank two incorrect density forecasts such

that all users agree with the ranking. Ranking depends on the specific loss functions

of the users.18 However, Diebold et al. (1998) noted that “if a forecast coincides with

a random variable true data-generating-process (DGP), then it will be preferred by

all forecast users, regardless of loss function”. Although determining whether a fore-

cast equals the true DGP is difficult because the true DGP is never observed, Diebold

et al. (1998) propose a method based on the Rosenblatt (1952) Probability Integral

Transform (PIT) that assesses whether the realized PIT’s of the forecast densities are

distributed iid U(0,1).

5.1 Theory

Diebold et al. (1999) also extend this method to the M -multivariate case, when there

are T time-series observations of the realized process. They factorize each period’s t,

joint forecast density into the product of their conditionals:19

pt−1 = (l1t , .., l
M
t ) = pt−1(lMt /l

M−1
t , ..l1t ).. · pt−1(l2t /l

1
t ) · pt−1(l1t ) (6)

This procedure produces a set of M − 1 conditionals and 1 marginal density. The

PIT’s of the lm random variable realizations under these M series will be iid U(0,1),

18Diebold et al. (1998) note that “the result is analogous to Arrow’s impossibility theorem. The
ranking effectively reflects a social welfare function, which does not exist.”

19Note that the M− multivariate density can be factorized into M ! ways at each period of time t.
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individually and also when taken as a whole, if the multivariate density forecasts are

correct (Diebold et al. (1998)). We propose a variant of this test because CIMDO

recovers densities using only information at each period of time t, and thus we want

to evaluate the density forecasts using a cross section of realizations, as opposed to

a time series. The test thus does not use any information ‘along time’, it only uses

cross-sectional information at a given time. The test is presented for two assets, but

the extension to more assets is trivial.

Proposition 4. Probability Integral Transform

Two assets have logarithmic returns x and y, with bivariate density p(x, y). Define the

Probability Integral Transform under the distribution f as P (x) =
∫ x
−∞ f(t)dt. Then,

define u and v as

u = P (x)⇐⇒ x = P (−1)(u)

v = P (y|x)⇐⇒ y = P (−1)(v|x)

u, v are always independent. In addition, if f is the true distribution (i.e. if f = p),

then u, v are distributed U(0,1).

Proof. See Appendix

In time series settings, empirical tests are that (u, v) ∼ iid U(0,1). In our case, in-

dependence of the conditionals and the marginals is proven and it is not necessary to

test for it. The only test needed is that u and v are uniformly distributed over [0, 1].

We run 10,000 Monte Carlo simulations in order to perform the density evaluation.

Density evaluation requires the following steps:

i) Assume the DGP is a multivariate t−distribution with non-zero mean, with iden-

tity scale matrix, and 6 degrees of freedom20 to match two PoDs (we choose

PoDx = 0.22 and PoDy = 0.29). The location of the DGP is thus [0.3613, 0.4004].

ii) Calibrate a multivariate centered normal (referred later as NCon), a multivariate

centered t-distribution (TCon) and a mixture of normals (NMix). The calibration

ensures that the PoDs of the assumed parametric densities are consistent with

the empirically observed PoDs. However, even if the shape of the distribution is

20Empirical evidence presented in Hansen (1994) and in Bekaert and Harvey (2003) indicate that
this is a reasonable assumption.
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known (a t-distribution with 6 degrees of freedom), the problem of calibrating a

t-distribution with two PoDs is under-identified. The choice to calibrate the means

at 0 implies that TCon (and a fortiori NCon) is not identical to the DGP.

iii) Infer the CIMDO-density, using a standard normal distribution as a prior (which

also has the wrong location), and the empirically observed PoDs.

iv) Decompose the competing distributions into the product of their marginal and

conditional probabilities, as indicated in equation (6).

v) Compute the PITs of the random variable realizations under the distributions

zx|y = P (x|y), zy = P (y), zy|x = P (y|x), zx = P (x), where P represents the cdf of

each of the evaluated distributions.

vi) Test whether the series zx|y, zy are iid U(0, 1).21 The test only involves a test of

uniformity (Proposition 4) performed both thanks to the Kolmogorov-Smirnov (K-

S) test,22 and with a simple plot of the z-variables’ cdf along the 45 degree line. In

particular, the focus will be on the region near default, where the decision-maker’s

losses due to an imperfect forecast would arguably be the largest.

5.2 Results

The cdfs of the different PITs are presented in Figure 2. The cdfs of the zx|y series

are shown in the first column of charts, and the cdfs of the zy series are shown in the

second column of charts. In each chart, the cdf derived from the CIMDO density is

plotted along the 45 degree line (cdf of the PIT of the ‘true’ DGP), along the cdf of

a standard normal distribution (labelled Nstd; this is a naive, non-calibrated density),

and along the density of either (i) the calibrated multivariate normal (NCon, top row

charts); (ii) the calibrated multivariate t-distribution (TCon, middle row charts); (iii)

the mixture of normal model (NMix, bottom row charts).

Since the CIMDO PIT’s cdf is always closer to the DGP than the standard nor-

mal distribution’s cdf, CIMDO outperforms the standard normal distribution under

the PIT criterion. This is not surprising, since a standard normal distribution was

a naive calibration, inconsistent with the empirical facts. However, the PIT of the

standard normal distribution gives an idea of the degree of misspecification that can

21We also tested for the normality of the series zy|x, zx. The results are similar and not presented.
22H0 : F = U(0, 1), Ha, F 6= U(0, 1)
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Figure 2: Probability Integral Transform
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Table 1: Kolmogorov-Smirnov Tests

K-S Test: zx/y
CIMDO NStd NCon TCon NMix

K-Statistic 0.1296 0.1654 0.1932 0.1834 0.1700
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136

K-S Test: zy
CIMDO NStd NCon TCon NMix

K-Statistic 0.1287 0.1883 0.2251 0.2237 0.2218
Critical Value 0.0136 0.0136 0.0136 0.0136 0.0136

Source: authors’ calculations.

be reached. More importantly, the CIMDO distribution outperforms all the competing

distributions, especially in the region of default (upper right corner of each chart),

even though these distributions were calibrated to match the same observed PoDs.

This result shows that CIMDO uses restricted information in a more efficient manner.

Overall, whilst the fit outside the region of default is not as good as in the region of

default (the null hypothesis of the Kolmogorov-Smirnov test is always rejected – see

Table 1), CIMDO densities outperform the competing distributions, especially in the

region of default.

6 Financial Stability Measures

Given a multivariate density of asset returns for a system of firms, it is possible to

propose a variety of financial stability measures that can be updated daily. Although

these measures are consistent with each other, since they are all derived from the

same underlying multivariate density of asset values, the different measures correspond

to different views of what systemic risk can mean. This is especially useful because

different agencies (the monetary authority, the regulator, the Treasury) tend to consider

systemic risk from different angles.

6.1 Measures of tail risk

Even if financial stability were not an independent objective, an inflation targeting

central bank would need to care about financial stability because of its impact on

output and inflation. Then, according to Woodford (2012) “the question of greatest
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concern is [] the probability of a bad joint outcome”. This view leads to a first proposed

measure of systemic risk, the probability that all the financial institutions in a given

system be in distress at the same time (the Joint Probability of Distress, JPoD). For

simplicity of presentation, the JPoD formula is shown for a financial system made of

three firms with asset returns x1, x2, x3:

JPoD =

∫ ∞
X
x3
d

∫ ∞
X
x2
d

∫ ∞
X
x1
d

p̂(x1, x2, x3)dx1dx2dx3 (7)

We also compute a Financial Stability Index (FSI) as the expected number of banks

becoming distressed given that at least one bank has become distressed.23 For example,

for a system of two banks, the FSI is defined as

FSI = (P (x1 ≥ Xx1
d ) + P (x2 ≥ Xx2

d ))/(1− P (x1 < Xx1
d , x2 < Xx2

d )) (8)

and the different probabilities are computed by numerical integration of the multivari-

ate density.

6.2 Measures of dependence

Even if systemic risk were not affecting the path of output and inflation, the exter-

nalities in financial intermediation could require corrective regulation. The Distress

Dependence Matrix (DiDe) provides measures of inward and outwards linkages. It is

defined as the matrix of the probability of distress of the firm specified in the row,

given that the firm specified in the column becomes distressed:

(DiDe)i,j = P (xi ≥ Xxi
d | xj ≥ X

xj
d ) (9)

Although conditional probabilities do not imply causation, this set of pairwise condi-

tional probabilities can provide important insights into interlinkages and the likelihood

of contagion between the firms in the system.

An extension of the DiDe is the Probability of Cascade Effects (PCE), i.e. the likeli-

hood that one, two, or more institutions, become distressed given that a specific firm

23See also Huang (1992) and Hartmann et al. (2004). Huang (1992) shows that this measure can
also be interpreted as a relative measure of banking linkage. When FSI → 1, banking linkage is weak
(asymptotic independence). As the value of the FSI increases, banking linkage increases (asymptotic
dependence).
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becomes distressed. This measure quantifies the potential domino effects of a firm and

is thus an indicator of its systemic importance. For example, in a financial system with

four firms, where the events xd1, xd2, xd3, and xd4 refer to the distress events, the PCE

given that firm 1 becomes distressed, is defined as follows:

PCE1 = P (xd2|xd1)+P (xd3|xd1) + P (xd4|xd1) (10)

−
[
P (xd2, x

d
4|xd1) + P (xd2, x

d
3|xd1) + P (xd3, x

d
4|xd1)] + P (xd2, x

d
3, x

d
4|xd1)

]
6.3 Measures of expected losses

One of the most salient consequence of systemic risk is the cost to taxpayers that finan-

cial support policies can require if a crisis materializes. Laeven and Valencia (2013), in

their study of the 147 banking crises that affected 116 countries over the period 1970-

2011, find that the fiscal costs of financial support policies averaged 7 percent of GDP

of the crisis country, and reached more than 40 percent of GDP in several occasions.

When government agencies face a financial crisis, the issue of whether to intervene to

stop a contagion involves a trade-off between the immediate costs of support policy

and the potential future costs if contagion is not halted.

Measures of expected shortfall help inform this tradeoff. We define the financial sys-

tem’s Systemic Expected Shortfall as the equity losses of the portfolio of financial firms

given that the portfolio is performing below its q percentile. For a system made of three

financial institutions S = {1, 2, 3}, the Systemic Expected Shortfall is

V(S) = −E

 ∑
i∈{1...3}

(wiLGd(xi)) |
∑

i∈{1...3}

(wiLGd(xi)) < q

 (11)

where LGd(xi) is the loss given distress for the underlying asset value xi, a function that

is calibrated by interpolation between 0 and a loss given default rate of 60 percent.24

The expectation is computed using Monte Carlo integration with 10,000 simulations.

24Typically, losses given default (LGD) are calibrated at 60 percent, but this assumption is not
sufficient to calibrate the entire distribution of losses, in particular outside the region of default.
Because even outside the region of default valuation losses occur (for instance, because of expectations
that the asset is getting closer to the region of default), we set a function for loss given distress:

LGd(x) = LGD if x > Xx
d ; LGd(x) = 0 if x < Kx; LGd(x) = Φ(Kx)−Φ(x)

Φ(Kx)−Φ(x) if Kx < x < Xx
d , where Φ

is the cumulative distribution function ofthe returns of x
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Following on the work of Tarashev et al. (2009) and Drehmann and Tarashev (2013)

on Shapley values in financial systems, we use the measures of expected losses V(S) to

compute the Shapely value of a firm i in a system N :

ShVN(i) =
1

n

n∑
ns=1

1

C(ns)

∑
{S∈N | card(S)=ns and i∈S}

(V(S)− V(S − {i}) (12)

This is the weighted average of a firm’s i marginal contribution to losses (V(S)−V(S−
{i})) for each subsystem S of N that includes this firm {S ⊂ N | card(S) = ns and i ∈
S} —see Tarashev et al. (2009). Normalizing the Shapley value by asset size provides

a measure of Marginal Contribution to Systemic Risk (MCSR) of each firm i in the

system N :

MCSRi =
ShVN(i)

A
(13)

7 Application to the banking and non-bank sectors

We apply the CIMDO method and compute the different financial stability measures

proposed on two datasets of probabilities of distress. The first dataset, centered around

the Lehman collapse, is used to assess the extent of contagion at the peak of the cri-

sis, and includes the then-major US universal and investment banks, two insurance

companies and the major European banks.25 The second dataset is built to assess the

current extent of interconnectedness between the US bank and shadow bank sectors,

and includes the major US banks and insurance companies26 as well as indexes for mu-

tual funds (pension funds, money market funds (MMF), US investment grades funds,

US High Yields, bond funds, equity funds).

Including the non-bank financial system to this analysis is useful because this sector

has been growing for years and contributed to systemic instability, but the lack of data

has made its surveillance particularly challenging. Insurance companies can also prop-

agate systemic risk through their nontraditional activities. The insurance sector has

25The list of instutions is Bank of America (BAC), Citi (C), Wachovia (Wacho), Goldman Sachs
(GS), Lehman Brothers (LEH), Merrill Lynch (MER), Morgan Stanley (MS), JP Morgan (JPM),
AIG and Washington Mutual (WAMU), HSBC, UBS, Deutsche Bank (DB), Barclays (BARC), Credit
Suisse (CSFB).

26Wells Fargo (WFC), Citi (C), Bank of America (BAC), JP Morgan (JPM), Morgan Stanley
(MS), Goldman Sachs (GS), Capital One Financial (COF), AIG, Allstate (ALL), Prudential Financial
(PRU), MetLife (MET), Travelers Companies (TRV), Berkshire Hathaway (BRK), Hartford Financial
(HIG)
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Figure 3: Probabilities of default of selected institutions and of the different US funds
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increasingly provided bank-like financing, engaging in securities financing transactions,

holding corporate bonds, commercial mortgages securities and even providing direct

loans to the corporate sector (Acharya and Richardson (2014)). Mutual funds and

hedge funds can also transmit shocks because of direct exposure or because of fire sale

effects, as shown by Hau and Lai (2017). An example of direct exposure is given by

sponsor support. Although sponsors of MMFs (asset managers or banks) do not have

necessarily to step in to support their funds, some of them have provided direct sup-

port by purchasing the portfolio (e.g. Société Générale bought assets from its MMFs

in 2007 and 2008). In addition, MMFs are highly exposed to banks as they are major

holders of commercial paper issued by financial firms. For hedge funds, an additional

source of contagion for banks comes from prime brokers, who provide margin lending

to hedge funds and are also usually subsidiaries of banks.27

7.1 Data

For banks and insurance companies, probabilities of distress were computed using CDS

spreads and an assumption of LGD of 60 percent.28 For the mutual funds, for which

only equity price data was available, the Probabilities of Distress were computed as the

probability of the stock price falling below a distress threshold asumed to at the worst

1 percentile of the distribution, where the probability is computed assuming the stock

price is log-normal with moments estimated over a 6 months rolling centered window.

The data on PoDs, which is the raw data used by CIMDO, is presented in Figure 3.

7.2 Results

Financial institutions are highly interconnected, with distress in one institution asso-

ciated with high probability of distress elsewhere. The Distress Dependence Matrices

for three different days are presented in Tables 2 and 3 and in Figure 4 as a net-

work, 29 with the diameter of each vertex proportional to the out-degree of the insti-

tution (a measure of average outward spillover, or systemic importance, computed as

Sj = 1
n−1

∑
i 6=j(DiDe)i,j). The darkness of each node in Figure 4 represents the in-

degree (inward spillover, or vulnerability, computed as Vi = 1
n−1

∑
j 6=i(DiDe)i,j). For

27See
28There are alternative approaches by which probabilities of distress of individual banks can be

empirically estimated. The most well known include the structural approach , PoDs derived from CDS
spreads or from out-of-the-money option prices. An extensive empirical analysis of these approaches
is presented in Athanasopoulou et al. (2009).

29Pairwise conditional probabilities ca be represented as nexus in a network representation
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Table 2: Distress Dependence Matrix, major US and European banks (July 1, 2007)

Citi BAC JPM Wacho WAMU GS LEH MER MS AIG BARC HSBC UBS CSFB DB Row av.

Citi 1 0.14 0.11 0.11 0.08 0.09 0.08 0.09 0.09 0.08 0.07 0.07 0.08 0.06 0.07 0.09

BAC 0.12 1 0.27 0.27 0.11 0.11 0.1 0.12 0.12 0.15 0.08 0.07 0.09 0.06 0.1 0.13

JPM 0.15 0.42 1 0.31 0.13 0.19 0.16 0.19 0.18 0.17 0.1 0.08 0.12 0.09 0.14 0.17

US Wacho 0.12 0.33 0.24 1 0.11 0.12 0.1 0.12 0.12 0.14 0.07 0.05 0.07 0.05 0.08 0.12

banks WAMU 0.16 0.28 0.21 0.23 1 0.12 0.12 0.16 0.13 0.15 0.09 0.08 0.09 0.06 0.09 0.14

GS 0.17 0.25 0.28 0.21 0.11 1 0.31 0.28 0.31 0.17 0.13 0.11 0.15 0.12 0.18 0.20

LEH 0.22 0.32 0.32 0.26 0.15 0.43 1 0.35 0.33 0.2 0.14 0.12 0.15 0.14 0.22 0.24

MER 0.19 0.32 0.33 0.25 0.17 0.33 0.31 1 0.31 0.2 0.15 0.15 0.19 0.15 0.21 0.23

MS 0.19 0.31 0.28 0.24 0.14 0.35 0.28 0.3 1 0.16 0.14 0.12 0.14 0.12 0.18 0.21

AIG 0.07 0.14 0.1 0.1 0.05 0.07 0.06 0.07 0.06 1 0.05 0.06 0.07 0.04 0.06 0.07

BARC 0.04 0.05 0.04 0.04 0.02 0.04 0.03 0.04 0.04 0.04 1 0.18 0.18 0.12 0.12 0.07

European HSBC 0.04 0.04 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.04 0.16 1 0.13 0.09 0.11 0.06

banks UBS 0.04 0.05 0.04 0.03 0.02 0.04 0.03 0.04 0.03 0.04 0.17 0.13 1 0.21 0.15 0.07

CSFB 0.05 0.06 0.05 0.04 0.03 0.05 0.05 0.06 0.05 0.05 0.19 0.15 0.36 1 0.21 0.10

DB 0.05 0.09 0.08 0.06 0.03 0.07 0.06 0.07 0.06 0.06 0.17 0.16 0.22 0.19 1 0.10

Column av. 0.12 0.20 0.17 0.16 0.08 0.15 0.12 0.14 0.13 0.12 0.12 0.11 0.15 0.11 0.14 0.13

Notes: Probability of distress of the bank in the row, conditional on the bank in the column becoming distressed. 

Row and column averages exclude diagonal elements

Cells in grey for DiDe > 0.25

US banks European banks

each bank, the figure also indicates the eigenvector centrality measure C (a measure of

influence in the network), normalized between 0 and 1.

The Distress Dependence Matrices show that links across major financial institutions

have increased greatly. On average, if any of the US banks fell into distress, the average

probability of another US bank being distressed increased from 27 percent on July 1,

2007 to 41 percent on September 12, 2008. Prior to the financial crisis, no institution

seemed vulnerable to other firms’ distress, whereas on September 12, 2008, Lehman

Brothers had a PoD conditional on any other bank falling into distress averaging of

56 percent. Moreover, the PoD of any other US bank conditional on Lehman falling

into distress went from 25 percent on July 1, 2007 to 37 percent on September 12,

2008.30 Links were particularly close between Lehman, AIG, Washington Mutual, and

Wachovia, all of which were particularly exposed to housing. JP Morgan, Goldman

Sachs, and Bank of America appeared to be the most systemically important institu-

tions, but their vulnerability was relatively low.

Distress in a US bank would have triggered distress in a European bank with an average

probability of around only 10 percent. However, links across major European banks

30and reaching respectively 88, 43, and 27 percent for Washington Mutual, AIG, and Wachovia
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Table 3: Distress Dependence Matrix, major US and European banks (Sept 12, 2008)

Citi BAC JPM Wacho WAMU GS LEH MER MS AIG BARC HSBC UBS CSFB DB Row av.

Citi 1 0.2 0.19 0.14 0.07 0.17 0.13 0.14 0.16 0.11 0.15 0.17 0.17 0.15 0.16 0.15

BAC 0.14 1 0.31 0.18 0.05 0.16 0.1 0.13 0.15 0.11 0.12 0.13 0.13 0.11 0.15 0.14

JPM 0.13 0.29 1 0.16 0.05 0.19 0.11 0.14 0.16 0.09 0.11 0.1 0.12 0.11 0.15 0.14

US Wacho 0.34 0.6 0.55 1 0.17 0.36 0.27 0.31 0.34 0.29 0.27 0.23 0.27 0.25 0.31 0.33

banks WAMU 0.93 0.97 0.95 0.94 1 0.91 0.88 0.92 0.91 0.89 0.87 0.86 0.86 0.83 0.86 0.90

GS 0.15 0.19 0.24 0.13 0.06 1 0.18 0.2 0.27 0.11 0.14 0.13 0.15 0.15 0.19 0.16

LEH 0.47 0.53 0.58 0.43 0.25 0.75 1 0.59 0.62 0.37 0.39 0.37 0.4 0.42 0.52 0.48

MER 0.32 0.41 0.47 0.3 0.16 0.53 0.37 1 0.48 0.26 0.31 0.33 0.35 0.35 0.39 0.36

MS 0.21 0.28 0.29 0.19 0.09 0.4 0.22 0.27 1 0.14 0.18 0.18 0.18 0.18 0.23 0.22

AIG 0.5 0.66 0.59 0.53 0.29 0.54 0.43 0.49 0.47 1 0.49 0.53 0.53 0.49 0.53 0.51

BARC 0.1 0.11 0.1 0.08 0.04 0.1 0.07 0.09 0.09 0.07 1 0.36 0.31 0.3 0.28 0.15

European HSBC 0.06 0.06 0.05 0.03 0.02 0.05 0.04 0.05 0.05 0.04 0.2 1 0.16 0.16 0.17 0.08

banks UBS 0.11 0.11 0.11 0.07 0.04 0.11 0.07 0.1 0.09 0.08 0.32 0.3 1 0.47 0.34 0.17

CSFB 0.07 0.07 0.07 0.05 0.03 0.07 0.05 0.07 0.06 0.05 0.2 0.2 0.31 1 0.26 0.11

DB 0.06 0.08 0.09 0.05 0.03 0.09 0.06 0.07 0.07 0.05 0.18 0.2 0.21 0.24 1 0.11

Column av. 0.26 0.33 0.33 0.23 0.10 0.32 0.21 0.26 0.28 0.19 0.28 0.29 0.30 0.30 0.32 0.27

Notes: Probability of distress of the bank in the row, conditional on the bank in the column becoming distressed. 

Row and column averages exclude diagonal elements

Cells in grey for DiDe > 0.25

US banks European banks

increased significantly in 2008. UBS appeared to be the European bank under highest

stress on that date in our sample, although vulnerabilities in Europe were lower than in

the US. In addition, UBS’s distress would also have been associated with high stress on

Credit Suisse (CSFB) and Barclays (BARC), whose probabilities of distress conditional

on UBS becoming distressed were estimated to reach 31 percent. On average, if any of

the European banks appeared in distress, the probability of the other European banks

being distressed increased from 34 percent on July 1, 2007 to 41 percent on September

12, 2008.

The evolution of the JPoD and the Financial Stability Index (Figure ??, top charts)

show how movements in the measures of dependence coincide with events that were

considered relevant by the markets on specific dates (events first related to the US

financial sector, then to the euro debt crisis). In addition, because distress depen-

dence rises during times of crisis, the measures proposed experience larger increases

than those experienced by the PoDs of individual banks, a feature useful to identifying

systemic risk. The Financial Stability Index, for instance, shows that during the worst

weeks of 2008, the expected number of groups in distress conditional on one being

already in distress was 4.5, up from 1.5 before the subprime crisis. The system remains

subject to contagion risk, with the FSI being above since 2013.
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Figure 4: Distress Dependence Matrix, US banks and non-banks (Mar, 2015)
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In the same vein, we estimate that the probability that one or more banks in the

system would become distressed, given that Lehman became distressed was 97 percent

(Probability of Cascade Effects), up from only 50 percent a year before (Figure ??,

bottom left chart). Thus, the domino effect observed in the days after Lehman’s col-

lapse was signaled by the Probability of Cascade measure.

The estimates for March 2015 suggest that the probabilities of cascade (PCE) re-

main high, above 90 percent for several banks (JP Morgan, Bank of America, Wells

Fargo, Goldman Sachs), for a few insurance companies (Travelers, Allstate, Prudential)

and for the Pension, Equity and Bond funds. This reflects in particular the increased

outward spillovers originating from the insurance companies (Tavelers, Allstate) and

the Equity and Pension funds, even though funds and insurance companies seem less

vulnerable to contagion than other firms, in particular investment banks.
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Figure 5: JPoD, FSI and PCE
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Finally, we find that the the Systemic Expected Shortfall would have increase from

around 0.5 percent of the financial sector assets before the crisis to around 1 percent

of assets in 2016, peaking at 2.5 percent of assets in 2011 (LHS chart of Figure 6). It

also appears that in January 2015 the banking sector would have the highest systemic

impact in the US, followed by the insurance sector and pension funds (RHS chart

of Figure 6). Together, these three sectors’ marginal contributions to systemic risk

(MCSR) amounted to 73%, with 32% for banks, 25% for insurance sector and 16%

for pension funds. To disentangle the role of interconnectedness from that of size, the

MCSR is shown along two possible proxies for these factors: asset size, in percent of

the financial system total asset size, and the ratio of the MCSR to asset size. The

banks and pension funds’ contribution to systemic risk can be explained by the size

of their balance sheets, whereas interconnectedness is more important for the US high
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Figure 6: Expected losses measures of systemic risk
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yields funds, the hedge funds and the insurance companies, three groups for which the

contribution to systemic risk was found to be more than proportional to the asset size.

8 Conclusion

This paper considers financial systems as portfolios of entities and presents the CIMDO

methodology to infer the multivariate densities that characterize systems’ asset values.

Data limitations remain an important constraint in the measurement of systemic risk.

Given this constraint, CIMDO densities offer important benefits, since they:

(i) are inferred from the limited data on individual financial entities that is usually

readily available;

(ii) are consistent with the observed probabilities of distress of such entities;

(iii) outperform parametric distributions frequently employed for risk measurement

under the probability integral transformation criterion;

(iv) can be used to estimate complementary metrics of systemic risk that provide

information of alternative perspectives of risk, including measures of tail risk,

distress dependence and marginal contribution to systemic risk. Such metrics

account for systems interconnectedness structures and incorporate changes in

structures when PoDs change. Importantly, the proposed metrics are statistically

consistent since they are estimated from a common multivariate density and;
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(v) are easily implementable and can be adapted to cater to a high degree of institu-

tional granularity and data availability. The portfolio assumption allows for the

easy incorporation of multiple financial sectors beyond the banking sector into

the analysis. Moreover, implementation can be done with market-based data or

with publicly available supervisory data. This feature allows an assessment of

vulnerabilities developing in sectors where data may be scarce and which are un-

dergoing structural changes. Likewise, estimation can be done in a wide set of

countries with heterogeneous data availability.

Improved measurement of systemic risk will remain a priority for financial stability

authorities as they work towards integrating the lessons of the financial crisis into their

policies, especially macro-prudential policies. In addition to the measures of systemic

risk presented in this paper, the proposed multivariate density approach can be useful

in further contexts, including the development of macroprudential stress test frame-

works and the calibration of theoretical models.

Stress test frameworks have traditionally focused on the assessment of vulnerabilities

at the level of individual financial institution. However, in the aftermath of the global

financial crisis, efforts have been directed to the development of macroprudential stress

tests, which aim to integrate the quantification of losses due to systemic risk amplifi-

cation mechanisms, especially those coming from indirect interlinkages across entities.

The multivariate density characterizing the valuation of financial systems could be used

to estimate such losses.

Regarding the calibration of theoretical models, statistical moments obtained from the

multivariate distribution of asset values could be used to calibrate theoretical models in

a realistic and feasible manner (akin to what has been done in macroeconomics, where

reduced-form empirical moments are used to calibrate DSGE models); hence, allowing

to benefit from insights brought by the theoretical models with realistic calibrations

provided by the empirical models.

Overall, the main advantage of multivariate density approaches is that they allow

to focus on different statistical moments and importantly, at the tail of the densities

that characterize tail risks, which are essential for the analysis of financial stability.

We believe that this field would benefit from the multivariate approach going forward.
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Appendix

Proof of Proposition 2.
Assume (µ, λx, λy) solve system (14):

∫ ∫
q(x, y) exp(−1− µ− λxχ[Xx

d ,+∞) − λyχ[Xy
d ,+∞))χ[Xx

d
,∞)
dxdy = PoDx

t∫ ∫
q(x, y) exp(−1− µ− λxχ[Xx

d ,+∞) − λyχ[Xy
d ,+∞))χ[X

y
d
,∞)
dxdy = PoDy

t∫ ∫
q(x, y) exp(−1− µ− λxχ[Xx

d ,+∞) − λyχ[Xy
d ,+∞))dxdy = 1

(14)

In addition (µ̂1, λ̂x) solve the system (15) whilst (µ̂2, λ̂y) solve the system (16){ ∫
q(x) exp(−1− µ̂1 − λ̂xχ[Xx

d ,+∞))χ[Xx
d
,∞)
dx = PoDx

t∫
q(x) exp(−1− µ̂1 − λ̂xχ[Xx

d ,+∞))dx = 1
(15)

{ ∫
q(y) exp(−1− µ̂1 − λ̂xχ[Xy

d ,+∞))χ[X
y
d
,∞)
dx = PoDy

t∫
q(y) exp(−1− µ̂1 − λ̂xχ[Xy

d ,+∞))dy = 1
(16)

We define the different probabilities of default/non-default under the prior distribution
q as

Qxy =

∫ +∞

Xx
d

∫ +∞

Xy
d

q(x, y)dydx, Qxȳ =

∫ +∞

Xx
d

∫ Xy
d

−∞
q(x, y)dydx,

Qx̄y =

∫ Xx
d

−∞

∫ +∞

Xy
d

q(x, y)dydx, Qx̄ȳ =

∫ Xx
d

−∞

∫ Xy
d

−∞
q(x, y)dydx,

Qx =

∫ +∞

Xx
d

q(x)dx, Qx̄ = 1−Qx =

∫ Xx
d

−∞
q(x)dx,

Qy =

∫ +∞

Xy
d

q(y)dy, Qȳ = 1−Qy =

∫ Xy
d

−∞
q(y)dy

We separate the indefinite integrals according to the interval of indicator functions:
e−1−µ (e−λxe−λyQxy +Qxȳe

−λx
)

= PoDx

e−1−µ (e−λxe−λyQxy +Qx̄ye
−λy
)

= PoDy

e−1−µ (e−λxe−λyQxy +Qx̄ye
−λy +Qxȳe

−λx +Qx̄ȳ

)
= 1

(17)

which can be rewritten
λx = −1− µ− ln(PoDx) + ln(Qxye

−λy +Qxȳ)
λy = −1− µ− ln(PoDy) + ln(Qxye

−λy +Qx̄y)
µ = −1 + ln(Qxye

−λxe−λy +Qx̄ye
−λy +Qxȳe

−λx +Qx̄ȳ)
(18)
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Similary, the univariate solution implies{
λ̂x = −1− µ̂1 − ln(PoDx) + ln(Qx)

µ̂1 = −1 + ln(Qxe
−λ̂x +Qx̄)

(19)

Thus

λx − λ̂x = ln(Qxe
−λ̂x +Qx̄)− ln(Qxye

−λxe−λy +Qx̄ye
−λy +Qxȳe

−λx +Qx̄ȳ)
+ ln(Qxye

−λy +Qxȳ)− ln(Qx)

Let us approximate w.r.t. to λy and λx, assuming the lagrange multipliers are small,
i.e. write e−λy ≈ 1− λy and e−λx ≈ 1− λx:

λx − λ̂x ≈ ln(Qx(1− λ̂x) +Qx̄)− ln[Qxy(1− λx − λy) +Qx̄y(1− λy)
+Qxȳ(1− λx) +Qx̄ȳ] + ln(Qxy(1− λy) +Qxȳ)− ln(Qx)

Since Qxy +Qxȳ = Qx, Qx̄y +Qx̄ȳ = Qx̄, Qx +Qx̄ = 1 and Qxy +Qx̄y = Qy,

λx − λ̂x ≈ ln(1−Qxλ̂x)− ln(1− λxQx − λyQy)
+ ln(Qx − λyQxy)− ln(Qx)

Note also that Qxy � Qx, Qy � 1 implies λx− λ̂x ≈ −Qxλx+λxQx+λyQy−λyQxy/Qx

Thus, λx − λ̂x = λy
QxQy−Qxy
QxQx̄

and by symmetry λy − λ̂y = λx
QxQy−Qxy
QyQȳ

.

This proves that

λx ≈
λ̂x + λ̂y

QxQy−Qxy
QxQx̄

1− (QxQy−Qxy)2

QxQx̄QyQȳ

(20)

Proof of Proposition 3.
For a bivariate t distribution, the probability density function is

q(t1, t2) =
|D|1/2

2π
(1 + (D11t

2
1 + 2D12t1t2 +D22t

2
2)/ν)−(ν+2)/2,

where

D = Σ−1 =

(
1 σ
σ 1

)−1

=

(
1

1−σ2 − σ
1−σ2

− σ
1−σ2

1
1−σ2

)
.

Then we have

q(t1, t2) =
1

2π
√

1− σ2

(
1 +

t21 − 2σt1t2 + t22
ν(1− σ2)

)−(ν+2)/2
,
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The Taylor expansions of f(t1, t2) with respect to σ around 0 is

q(t1, t2) =
1

2π

(
1 +

t21 + t22
ν

)− ν+2
2 +

(ν + 2)ν1+ ν
2

2π
t1t2(ν + t21 + t22)−

ν
2
−2σ +O(σ2) (21)

The first term on the right hand side of the above equation is the value of q(t1, t2) with
σ = 0. Substitute equation (21) into equations (18), and let Q̃ij be the probabilities of
default/non-default for a prior bivariate t distribution with identity correlation matrix.
Then

Qxy = Q̃xy +

∫ +∞

Xx
d

∫ +∞

Xy
d

(ν + 2)ν1+ ν
2

2π
t1t2(ν + t21 + t22)−

ν
2
−2 dt1dt2 σ +O(σ2)

= Q̃xy + J σ +O(σ2),

Qxȳ = Q̃xȳ +

∫ +∞

Xx
d

∫ Xy
d

−∞

(ν + 2)ν1+ ν
2

2π
t1t2(ν + t21 + t22)−

ν
2
−2 dt1dt2 σ +O(σ2)

= Q̃xȳ − J σ +O(σ2),

Qx̄y = Q̃x̄y +

∫ +∞

Xx
d

∫ Xy
d

−∞

(ν + 2)ν1+ ν
2

2π
t1t2(ν + t21 + t22)−

ν
2
−2 dt1dt2 σ +O(σ2)

= Q̃x̄y − J σ +O(σ2),

Qx̄ȳ = Q̃x̄ȳ +

∫ +∞

Xx
d

∫ +∞

Xy
d

(ν + 2)ν1+ ν
2

2π
t1t2(ν + t21 + t22)−

ν
2
−2 dt1dt2 σ +O(σ2)

= Q̃x̄ȳ + J σ +O(σ2),

where J = νν/2

2π
(ν+Xx

d
2 +Xy

d
2)−ν/2. Now we can represent the solution (18) of CIMDO,

in terms of Q̃ij and correlation σ, as the following

λx = −1− µ− ln
(
PoDx) + ln(Q̃xye

−λy + Q̃xȳ + (e−λy − 1)Jσ +O(σ2)
)

λy = −1− µ− ln
(
PoDy) + ln(Q̃xye

−λx + Q̃x̄y + (e−λx − 1)Jσ +O(σ2)
)

(22)

µ = −1 + ln
[
Q̃xye

−λxe−λy + Q̃x̄ye
−λy + Q̃xȳe

−λx + Q̃x̄ȳ +

(e−λxe−λy − e−λy − e−λx + 1)Jσ +O(σ2)
]

In equations (22), the terms in σ and in O(σ2) of represent the effect of the non-identity
correlation matrix on the solution of CIMDO. Note that Q→ 0 as Xx

d , X
y
d → +∞ and

e−λx , e−λy → 1 as λx, λy → 0. Both results indicate that a possible mis-speficiation
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of the prior correlation is less important the lower the default probabilities and the
closest the prior is from being consistent with the observed PoDs.

Proof of Proposition 4.
Define the Probability Integral Transform under the distribution f as P (x) =

∫ x
−∞ f(t)dt.

Then, define u and v as

u = P (x)⇐⇒ x = P (−1)(u)

v = P (y|x)⇐⇒ y = P (−1)(v|x)

Lemma 1: u, v are independent
Proof: In order to prove the independence assumption, we know that the joint density
c [u, v] is defined under the distribution of transformations of random variables as

c [u, v] = f
[
P (−1)(u), P (−1)(v|x)

]
·
∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
Since in this case

u = P (x)⇐⇒ x = P (−1)(u) =⇒ ∂x

∂u
= f

[
P (−1)(u)

]−1

v = P (y|x)⇐⇒ y = P (−1)(v|x) =⇒ ∂y

∂v
= f

[
P (−1)(v|x)/x

]−1

∂x

∂v
=

∂y

∂u
= 0

therefore we get

c [u, v] = f
[
P (−1)(u), P (−1)(v|x)

]
· 1

f [x] · f [y|x]

c [u, v] = f [x, y] · 1

f [x] · f [y|x]
(23)

c [u, v] = f(x) · f(y|x) · 1

f [x] · f [y|x]

c [u, v] = 1

which proves that u, v are independent.

Lemma 2: If f is the true distribution (i.e. if f = p), then u, v are distributed U(0,1).
Proof: Let F (x) =

∫ x
−∞ f(t)dt. For u on [0, 1], we have:

P [U ≤ u] = P [F (x) ≤ u]
= P [F−1 [F (x)] ≤ F−1 (u)]
= P [X ≤ F−1 (u)] = F [F−1 (u)] = u

For u < 0, P [U < u] = 0 and for u > 1, P [U > u] = 0 since the range of a cdf is [0, 1].
Thus U ∼ U(0,1).
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Calibration of competing distributions

Normal distribution: The volatility parameters obtained are σx = 1.3422;σy =
1.5864.
t-distribution: The volatility parameters obtained are σx = 1.5353;σy = 1.8386.
Mixture distribution: PdfMixture =

∫∞
Xy
d

∫∞
Xx
d
{pro1 [N1(µ1,Σ1)] + pro2 [N2(µ2,Σ2)]} dxdy =

PoD = [0.22, 0.29]. pro1 = 0.7817, pro2 = 0.2183 are the values indicating the prob-
abilities of the quiet and volatile states, N1, N2 are bivariate normal distributions
under the quiet and volatile states, µ1 = [0, 0], µ2 = [0.3, 0.3] are the mean borrow-

ers’ asset values under the quiet and volatile states and Σ1 =

[
1.0000 0

0 1.5104

]
,

Σ2 =

[
100.0000 0

0 109.1398

]
are variance covariance matrices for the bivariate distri-

bution under the quiet and volatile states.
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