Does it Pay to Buy the
Pot in the Canadian

6/49 Lotto: Implications
for Lottery Design

Steven D. Moffitt
William T. Ziemba

SRC Discussion Paper No 64
February 2017

"‘" \\\“\
\M\“’ !ﬁf"t\“ UV

Systemic Risk Centre Discussion Paper Series



ISSN 2054-538X

Abstract

The Canadian 6/49 Lotto©, despite its unusual payout structure, is one of the few
government sponsored lotteries that has the potential for a favourable strategy we call
"buying the pot". By "buying the pot" we mean that a syndicate buys one of each ticket
in the lottery, ensuring that it holds a jackpot winner. We assume that the other bettors
independently buy small numbers of tickets. This paper presents (1) a formula for the
syndicate's expected return, (2) conditions under which buying the pot produces a
significant positive expected return, and (3) the implications of these findings for lottery
design.

This paper is published as part of the Systemic Risk Centre’s Discussion Paper Series.
The support of the Economic and Social Research Council (ESRC) in funding the SRC
is gratefully acknowledged [grant number ES/K002309/1].

Steven D. Moffitt, Adjunct Professor of Finance, Stuart School of Business, lllinois
Institute of Technology and Principal, Market Pattern Research, Inc.

William T. Ziemba, Alumni Professor of Financial Modeling and Stochastic Optimization
(Emeritus), University of British Columbia, Vancouver, BC, and Distinguished Visiting
Research Associate, Systemic Risk Centre, London School of Economics, UK

Published by

Systemic Risk Centre

The London School of Economics and Political Science
Houghton Street

London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without the prior permission in
writing of the publisher nor be issued to the public or circulated in any form other than
that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should
be sent to the editor at the above address.

© Steven D. Moffitt and William T. Ziemba submitted 2017



DoOES 1T PAY TO BUY THE POT IN THE CANADIAN
6/49 LOTTO: IMPLICATIONS FOR LOTTERY DESIGN

JANUARY 5, 2017

Steven D. Moffitt" and William T. Ziembat

TAdjunct Professor of Finance, Stuart School of Business, Illinois Institute of
Technology and Principal, Market Pattern Research, Inc.
TAlumni Professor of Financial Modeling and Stochastic Optimization (Emeritus),
University of British Columbia, Vancouver, BC, and Distinguished Visiting
Research Associate, Systemic Risk Centre, London School of Economics, UK



Abstract

The Canadian 6/49 Lotto(C), despite its unusual payout structure, is one of
the few government sponsored lotteries that has the potential for a favorable
strategy we call “buying the pot.” By “buying the pot” we mean that a syn-
dicate buys one of each ticket in the lottery, ensuring that it holds a jackpot
winner. We assume that the other bettors independently buy small numbers
of tickets. This paper presents (1) a formula for the syndicate’s expected re-
turn, (2) conditions under which buying the pot produces a significant positive
expected return, and (3) the implications of these findings for lottery design.



1 Introduction

Moffitt and Ziemba (2016) showed that under conditions that have obtained
in practice, it is possible to achieve an expected return of 10%-25% by bet-
ting all the tickets in a lottery that pays the entire jackpot in equal shares
to holders of winning tickets. For many large government lotteries, “buying
the pot” by betting all tickets is not feasible because the logistical problems
are insurmountable. In the California Powerball Lottery(C), for example, the
number of ticket combinations is over 175,000,000 and the rules do not allow
betting large numbers of combinations on single paper tickets.

Unlike many government lotteries, the Canadian 6/49 Lotto(C) has a large
but manageable number of ticket combinations (13,983, 816) and allows paper
tickets that combine many combinations. The purpose of this paper is three-
fold: (1) to modify the formulas in Moffitt and Ziemba (2016) to accomodate
the irregular payout features of the Canadian 6/49 Lotto, (2) to derive con-
ditions under which the expected return from buying the pot is positive, and
(3) to discuss the implications of our findings for lottery design.

2 Previous Work and Instances of Buying
the Pot

The results in this paper are mostly applications of results in Moffitt and
Ziemba (2016), which presents a pure jackpot model that applies to a series of
lotteries that occur one after the other. Each lottery has the same rules — lot-
tery players buy tickets and a winning ticket is selected using an equiprobable
drawing. Players who hold the winning ticket share equally in a jackpot that
consists of a carryover pot from the previous lottery plus an after tax portion
the monies wagered. If there is no winner, the jackpot becomes the carryover
pot for the next lottery.

Moffitt and Ziemba (2016) use the following notation to discuss the pure
jackpot model:

e Fach lottery has ¢ tickets costing $1 apiece.

e A single winning ticket w, 1 < w < t is drawn from ¢ = 1,...,t using
probabilities p; = 1/t.

e The syndicate buys one of each ticket for a total of ¢ tickets, and ¢ individ-
uals (the “crowd”) independently buy one ticket apiece using probabilities
g, 1 < g <t

e A cash jackpot v = a + (t + ¢)(1 — z) is awarded in equal shares to all
holders of the winning ticket w, where a > 0 is the carryover from the



previous lottery, c is the number of tickets bet by the crowd, and x is the
the (fractional) take.

Moffitt and Ziemba (2016) show the following for the pure jackpot model:

(1) Recursion: When t and ¢ are large, ¢; = 1/t for each i, and X is the
random number of winning tickets held by the crowd, the expected value

E [MLX], n an integer > 1, is to close approximation equal to

E[ n ] g (1—e7) n=1
nt X| T gy {1- Bl |} n
where A(c) = ¢/t.

(2) Condition under which Buying the Pot has Positive Expected Return:
The expected gain for a syndicate that bets 1 of each ticket is positive

(a+(t+c)(1—a:))E[1+X

} —t>0 (2)
provided that a/(t+¢) —z > 0. Since a/(t+c) —x is the after tax value of
a ticket assuming a fair split of a, this condition implies that a syndicate
earns better than a fair split of the jackpot. In fact, in a lottery with no
take, returns to the syndicate typically range between 10% and 25%.

(3) Optimal Strategies:

(a) The best returning strategy for the crowd consists of using ¢; = 1/t
for each 1.

(b) Let E4[X /(1 + X)] be the expectation for a crowd that bets with
probability vector ¢ = (q1,...,q)", and let 14/t be the probability
t-vector that has 1/t for each entry. Then if ¢ # 14/t

Eg[X/(1+ X)] < By, [ X/(1 + X)]. (3)

Several studies of state lotteries strategy and lottery design have appeared
in economic research. Chernoff (1980) and Chernoff (1981) study the Mas-
sachusetts Numbers Game, and the latter proposes that playing unpouplar
numbers might be a winning strategy but the results from a test of that idea
were disappointing. Ziemba and Hausch (1986) discuss various betting strate-
gies that have edge and which, in fact, have been used profitably by betting
syndicates. Thaler and Ziemba (1988) discuss these as evidence of efficient
market anomalies, and review the behavioral evidence for the persistence of



betting at poor odds. MacLean et al. (1992) investigate the use of Kelly strate-
gies that bet unpopular tickets and find that it wins, but the waiting time to
reliable gains is millions of years! Clotfelter and Cook (1990) discuss behav-
ioral bases of betting further and along with Walker (2008), discuss design
considerations for lotteries. We note that none of these studies considers the
strategy with the largest edge — buying the pot.

There are anecdotal accounts of successful buyings of the pot. One putative
attempt involved a syndicate that attempted and failed to buy all tickets. But
they were lucky, having had time to bet only about 70% of all tickets according
to one source and 85% according to another (NYTimes (1992)). The syndicate
ostensibly bet about $5 million and won about $27 million.

There are also accounts of a lottery in which buying the pot was clearly a
winning strategy. To create a keen interest in the inaugural 6/49 Lotto, six
tickets were offered for the price of one, for an expected return of $0.385 times
6, or $2.31, a 131% edge (Ziemba (1995)). Ziemba (personal communication)
mentions a Canadian 5 of 40 B C Lotto (658008 combinations) that had lower
betting as the pot grew, but despite its favorability, no one bought the pot.
Ziemba and colleagues (personal communication) realized in a Canadian lot-
tery that individual tickets had a positive expected return, and in a makeshift
effort, bought about 13,000 of the < 1,000,000 combinations. They made a
nice return, but spent hours locating all the winning tickets.

3 Rules of the 6/49 Lotto

A ticket in the 6/49 Lotto is a unique choice of 6 different numbers from integers
1 to 49. Thus the total number of tickets is the number of combinations of 49
things taken 6 at a time:

49\ 49!
t = — = 13,983,816 4
( 6 ) PR )

The 6/49 Lotto holds drawings twice a week and lumps together the monies
wagered for purposes of awarding prizes, the allocation thereof being described
below. On the drawing day, 6 numbers (the “winning numbers”) are selected
equiprobably and without replacement from 1, 2, ...49. Following that, a 7"
“bonus number” is selected.

We introduce notation to describe types of prize-wining tickets. A x/6-
ticket is one that contains exactly = of the six winning numbers but does
not contain the bonus number and a x/6+ ticket is one that contains exactly
x of the 6 numbers plus the bonus number. A x/6 ticket contains x of the
6 numbers, irrespective of the status of the bonus number; it is therefore a
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union of types x/6- and x/6+. A 5/6-, for example, contains exactly 5 of the
6 winning numbers with the other not being the bonus number, and a 5/6-+
ticket contains exactly 5 of the 6 winning numbers plus the bonus number. For
example, if the six numbers drawn were 46, 13, 4, 21, 38, 25 and the bonus
number was 43 then ticket 1-4-20-21-32-43 would be a 2/6+ ticket because
it contains 4 and 21 from the six plus the bonus number. Similarly, ticket
4-13-21-25-43-46 would be a 5/6+ ticket.

3.1 Rules for the Original Lottery: 1982-2004

Table 1 has the initial 6/49 payout scheme (1982-2004) for 3/6, 4/6, 5/6-,
5/6+ and the Jackpot 6/6. The cost of a single ticket was $1, with the lottery
sponsors taking 55% of each daily betting pool and committing the remaining
45% (the “prize pool”) for player payouts. The 45% prize pool was allocated
as follows: all 3/6 tickets were paid $10, and the remainder was paid to holders
of 4/6, 5/6-, 5/6+ and 6/6 using percentage allocation rules in Table 1. That
game is analyzed thoroughly in Ziemba et al. (1986). For other analyses of
such games, see Thaler and Ziemba (1988) and Haigh (2008).

Table 1: Allocation of Prizes in the 6/49 Pools Fund: 1982-2004.

Prize Combinations  Probability Allocation Rule Type
6/6 1 p1 ~7.1e-08 50% of the Pools Fund  Share
5/6+ 6 p2 ~ 4.3e-07 15% of the Pools Fund  Share
5/6— 252 p3 ~ 1.8e-05 12% of the Pools Fund  Share
4/6 13,545  ps4 = 0.000969  23% of the Pools Fund  Share
3/6 246,820 ps = 0.017650  $10 per ticket Fixed
No Win 13,723,192 pg = 0.981362 Non-winner = $0 Returns 0

Figure 1 shows the leveraging effect of the fixed $10 3/6 prize when
there are average numbers, popular numbers, and unpopular numbers.
The impact of popular vs. unpopular numbers selected in the drawing is
significant, producing a 17% versus a 36% jackpot share. The large prizes
5/6-, 5/6+ and 6/6 for unpopular numbers in the drawing are typically
seven times larger than for popular ones. See examples in Ziemba et al.
(1986).
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Figure 1: Prize shares for 3/6, 4/6, 5/6, 5/6+ and 6/6 in the original 6/49 Lotto when the
drawing has Popular Numbers (W), Unpopular Numbers (®) and Average Numbers (A).
For popular numbers, note the large increase in payouts for 3/6 tickets (> 60%) at the
expense of other types. Source: Ziemba et al. (1986).

3.2 Rules for the Current Lottery: 9/18/2013 -

In the 6/49 Lotto, new rules were introduced in June, 2004 and again
on September 18, 2013. We discuss only the latter rules. These included
(1) a single ticket cost of $3, (2) three fixed prizes, the same 3/6 paying
$10, a 2/6+ paying $5 and a 2/6- that earns a free play at the next
drawing, and (3) altered payout percentages for 4/6, 5/6-, 5/6+ and
6/6 (Table 2), (4) an increase in the take from 55% to 60%, and (5) a
greater allocation to 6/6 winners. The intention of these changes was
to increase sales by growing jackpots faster, and creating of many small
consolation prices (2/6-, 2/6+ and 3/6), which provide a “silver lining”
for non-winners (Shefrin and Statman (1984)). Many small prizes with
significant probabilities lead to a convex payoff structure which is believed
to maximize sales. See Section 5.

We'll call the number of tickets bet at a drawing (twice a week in the
6/49), the ticket pool, contributors to which are the crowd in amount ¢
and the syndicate in amount ¢. Thus the total number of tickets bet is
¢ +t. The betting pool d,, is the total number of dollars contributed by
the bettors — as we see below, this amount is not simply $3 = (¢ + t).
The betting pool is divided among the lottery sponsors and the bettors
as follows:



Sponsors. Sponsors (the state, the lottery organization) receive 0.60 =
d,,., with the remaining 0.40+d, ., the prize pool, awarded as prizes or
added to the carryover pool as indicated below. The “lottery take”
0.60 = d, is used to cover expenses of running the lottery and to
provide funds for government services. The lottery itself, however,

is run by a non-governmental company.

Prize Distribution. The prize pool has eight classes (i = 1,2,...,8)
of payouts grouped into four types: (A) fixed dollar (2/6+ and
3/6), (B) free play in the next lottery (2/6-), (C) payouts that split
among 4/6, 5/6-, 5/6+ and 6/6 tickets the remaining prize pool after
deductions for type (A) and (B) payouts, and (D) non-winner tickets
that receive no payout.

Table 2 details these payouts by showing in the first column the
type of ticket, in the second column a notation for the number of
each class determined after the random, equiprobable drawing of
6 numbers and a bonus, the third column showing the notation
for the class, the fourth column the number of tickets matching a
randomly drawn ticket, the fifth column having the probability that
a randomly chosen ticket is in the class, the sixth column having
the allocation rule and the last, whether the ticket payout is fixed,
shared as part of a pool, or returns 0.

2/64 and 3/6 tickets receive $5 and $10, respectively, and 2/6- tick-
ets receive a free play in the next lottery, but a charge of $1.41 is
applied to the prize pool. See Example 3.1 for details. The payouts
are shown in the first four lines of the table for 4/6, 5/6-, 5/6+
and 6/6 tickets. These type (C) tickets share the remainder of the

0.40 = d,, after deductions for tickets of types (A) and (B). The
amount 0.40 = d,,, — (payouts to 2/6+, 3/6 and charges for 2/6-) is
called the Pools Fund. As is evident from the table, type (C) tickets
share in a pool whose percentage of the total bets varies greatly, de-
pending on the winning numbers of 2/6+, 3/6 and free plays. The
lottery also guarantees a $5,000,000 pool to holders of 6/6 tickets.

Any unclaimed monies in the Pools Fund are added to the current

jackpot and carried over to the next drawing. From Table 2, it is

clear that the majority contribution to the carryover is the 79.5%

that occurs when there is no 6/6 winner. But 5/6+ and 5/6- tickets

also have low probabilities of occurring and when there are no 5/6+
or 5/6- winners, those shares of 6% and 5%, respectively, are added
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Table 2: Allocation of Prizes in the Current 6/49 Pools Fund.

# Crowd # Combinations Allocatio Share
Type Tickets Class for any ticket  Probability Rule Status
(C) N1 6/6 1 p1 ~7.1e-08 79.5% of the Pools Fund Share
(C) No 5/6+ 6 p2 ~ 4.3e-07 6% of the Pools Fund Share
(©) N3 5/6— 252 p3 ~ 1.8e-05 5% of the Pools Fund Share
(C) Ny 4/6 13,545 p4g = 0.000969  9.5% of the Pools Fund Share
(A) N5 3/6 246,820 ps = 0.017650  $10 per ticket Fixed
(A) Ng 2/6+ 172,200 pg = 0.012314  $5 per ticket Fixed
(B) N7 2/6— 1,678,950 py = 0.120064 free play ($1.41 deduction) Fixed
(D) Ng No Win 11,872,042 pg = 0.848984 Non-winner = $0 Returns 0

to the carrover pool for the next lottery.

The probabilities of these tickets occurring in an equiprobable lot-
tery are denoted by pi, po, etc. This notation is useful in the ana-
lytical expressions developed below.

Ezample 3.1 (Example of prize payouts). We provide an example of pay-
outs under the current (9/8/2013) rules. The carryover is $30,000,000
and the crowd bets 10,000, 000 tickets, of which 1,000,000 are assumed
to be free plays, yielding a net cash contribution of $27, 000, 000. Assum-
ing the crowd chooses quick picks with probability proportional to 1/,
crowd ticket numbers can be generated at random assuming a binomial
distribution. Random selections were made and displayed in column 3 of
Table 3 The other columns have the meanings: the first is the winning
ticket type, the second, the number of combinations, the fourth the total
payouts to the crowd, the fifth the number of tickets held by the syndicate
and the sixth, the total payouts to the syndicate. Using these numbers,
we calculate the prize pool, the fixed payouts to crowd and syndicate,
and the pools fund as follows:

o Prize Pool: $27,580,579 = 0.40 # (13,983,816 % 3 + 0.90 30, 000, 000).

e Crowd Fixed: $4,077,490 = 176,933 % $10 + 123, 569  $5 + 1,198,805  $1.41.

o Synd. Fixed: $5,696,520 = 246,820 # $10 + 172, 200 * $5 + 1,678,950 * $1.41.

e Pools Fund: $17,806,569 = $27, 580,579 — $4, 077, 490 — $5, 696, 520.

Summing all payouts in the syndicate payout column gives $49,516,609,
for a gain of

$7,565,161 = $49, 516,609 — $3 = 13,983, 816.



Table 3: Example of Payouts from a Sample 6/49 Pools Fund.

# Crowd Crowd  # Syndicate Syndicate
Type  Combinations Tickets Payout Tickets Payout
6/6 1 0 $0 1 $44,156,222
5/6+ 6 6 $534,135 6 $534,135
5/6— 252 185 $375,960 252 $514,534
4/6 13,545 9,773 $708,909 13,545 $982,518
3/6 246, 820 176,933  $1,769,330 246,820 $2,468,200
2/6+ 172,200 123,569 $617,845 172,200 $861,000
2/6— 1,678,950 1,198,805 $0 1,678,950 $0

plus 1,678,200 free plays in the next lottery. We remark in passing that
the cash payout from non-6/6 tickets is just $5,360,387, despite a crowd
and syndicate bet of $68,951,454. Clearly, the jackpot must be large in
order for buying the pot to be justifiable.

4 Expected Return from Covering the Lot-
tery

4.1 Notation and Terminology

Table 4 shows the fixed parameters of the lottery, that is, those that
do not involve betting strategies by syndicate or crowd. The first entry
t is a notation for the number of tickets in the lottery (13,983,816), of
which one and only one will be selected in an equiprobable drawing. The
second is the number of dollars, a > 0, in the carryover pool. The third
is p;, the probability that a randomly chosen ticket will be in class ¢
in an equiprobable drawing. The fourth entry, f, is the percentage of
the crowd’s tickets that are free plays. This fraction is used to link the
number or tickets in the betting pool to the amount in the prize pool. The
final two entries define ¢ as the number of tickets bet by the crowd. Since
we assume the syndicate buys the pot, it bets ¢t = 13,983, 816 tickets.
Table 5 has the notation for the random variables that account for
stochasticity and strategy in playing the lottery. The first entries, N,

1 =1,2,...,8 are random numbers of tickets of class i held by the crowd
and N is an 8-vector of the N;. The third entry, d,, is the (stochastic)
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Table 4: Fixed Parameters for the 6/49 Lotto.

Notation Description

t Number of tickets in the lottery = 13,983,816.
a Carryover pool in dollars, a > 0.
Di Probability that a ticket is of class ¢ assuming that
the winning ticket is drawn equiprobably (see Table 2).
f Fraction of tickets that are “free plays.”
c Number of tickets bet by the crowd.

number of dollars awarded to fixed payout tickets. The fourth entry is
the number of dollars in the betting pool (d,,), of which 40% goes to
the prize pool (d,,, 5-th entry). After d,, is deducted from the prize
pool(d,,), the remainder (d,,., 6-th entry) forms the Pools Fund which is

awarded to tickets of type (C) according to the schedule in Table 2.

Table 5: Random Variables for 6/49 Payouts.

Notation Description

N; Random variable for the number of tickets of class i bet by
the crowd (see Table 2).

N Vector N = (N1, Na, ..., Ng)'.

d, s Dollars awarded or deducted for tickets of types (A) and (B).

dyp Dollars in the betting pool.

dpp Dollars in the prize pool.

d, Dollars in the Pools Fund.

5
b

Using the notation in Tables 4 and 5 we can determine the number of
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dollars in each fund as follows:

d,, = 10(N5 + tps) + 5(Ng + tps) + 1.41(N7 + tp7) (5)
dyp = 3(t + (1= f)) (6)
dPP = dBP0.4 (7)
dPF = dPP - dAB (8)

Since f is non-random, the second entry of the above table is the only
non-stochastic entry.

4.2 Equiprobable Betting by the Crowd

We calculate first the expected return to a syndicate that buys the pot
when the crowd chooses tickets independently and equiprobably. As we
discuss in Section 4.3, this is the crowd’s optimal strategy, although they
do not employ it in practice — and the cost of this “mistake” is consid-
erable.

4.2.1 Syndicate’s Expected Value for Equiprobable Crowd
Betting

In Appendix A, we provide a formula for the syndicate’s expected gain
G(c) from the wagering of $41,951,454 = $3 « 13,983, 818 on 13,983, 818
tickets:

E[G(c)] = (a+0.795 * u(c)) A(c) (1 — exp(=A(c))) (9)
+ (0.0GV(C) + 0.1451 +1c/t> u(e)
+ $3, 329, 200
— $3t,
where
Ac) = ¢/t,

p(c) = 040-3((t+c- (1= f))) = (t+¢)- (psS10 + pe85 + pr3L4L),

z/(c)zE[ 0

|, for X ~ Bin(c,6/t).
e o0

The term v(c) is calculated using the recursive formula in Appendix A
and appears as the last column of Table 6.
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4.2.2 Parameters that Lead to Positive Expected Return

Consider for a moment the implications of the 6/49 rules and of Formula
(18). Because the lottery sponsors take such a high percentage of the
betting pool (60%), it is clear that a substantial jackpot is needed for
a syndicate to have a positive expected return. When a syndicate bets
one of each ticket, previous analysis showed the syndicate’s numbers of
winning tickets are known exactly, irrespective of the winning numbers
from the drawing. There will always be exactly 1 winning ticket, exactly
6 5/6+ tickets, exactly 252 5/6- tickets, and so on. The RHS of first line
of formula (18) dominates the others when a jackpot a is large.

Table 6 shows the results of applying formula (18) for 10 levels of
total crowd betting (c) to solve for the sizes of carryover pools (a) that
produce expected returns of 0%, 10% and 20% for the syndicate. Since
the cost of buying the pot is $3 = 13,983,818 = $41,951, 454, a return of
10% is $4,195,145. When the crowd bets $30 million, for example, any
carryover larger than $36.92 million is a potential play for the syndicate,
and carryovers of $42.80 and $48.67 million have expected returns of 10%
and 20%, respectively. The last three columns of Table 6 provide insight
into the payout structure. The sixth column shows the expected amount
in the Pools Fund and the next column is its percentage in the prize pool.
Thus when the crowd bets $40 million, the expected Pools Fund is $19.97
million, which is 49.68% of the prize pool. Thus, the charges for fixed
payout tickets amount to $50.32% of the prize pool. The final column is
the expected value for the 5/6+ factor:

6
EV56+ = F [—] . 10
6+ Xs/6+ (10)

Note that it declines when the crowd bets more, as one expects since
X5/6+ is generally larger.

Recall from Example 3.1 that the crowd bet a net $27,000,000 on 10
million tickets and the carryover was $30,000,000 — yet the syndicate
won over $6 million. According to Table 6, the syndicate should not
bet under these conditions, since a minimum carryover of $36.92 million
is necessary. There is no problem here, since the numbers in the table
are expected values and it is quite possible for a syndicate to win despite
making an unfavorable bet. The syndicate in that example just got lucky.
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Table 6: Carryover thresholds from buying the pot for breakeven, 10% and 20% returns as
a function of the size of the crowd’s total bet, assuming the f = 10% of the crowd’s tickets
are free plays. The sixth column has the expected pools fund, the seventh, the expected
percentage of the pools fund to the prize pool and the last, the expected value of the 5/6+
factor of expression (10).

Crowd Crowd Carryover Thresholds Expected (Pools Fund) + EV56+

Tickets $ Bet Breakeven +10% +20% Pools Fund (Prize Pool) Eqn. (10)
(millions)  (millions)  (millions)  (millions) (millions) (millions) (%) (%)
3.3 9 30.33 35.05 39.76 13.28 58.39 82.71
6.7 18 33.46 38.74 44.01 15.51 54.02 70.15
10.0 27 36.92 42.80 48.67 17.74 51.32 60.71
13.3 36 40.71 47.22 53.73 19.97 49.68 53.40
16.7 45 44.81 51.99 59.17 22.20 48.73 47.60
20.0 54 49.21 57.10 64.99 24.44 48.27 42.90
23.3 63 53.90 62.52 71.15 26.67 48.14 39.02
26.7 72 58.84 68.24 77.63 28.90 48.25 35.77
30.0 81 64.03 74.23 84.42 31.13 48.53 33.01
33.3 90 69.45 80.46 91.48 33.37 48.92 30.64

4.3 Non-equiprobable Betting by the Crowd

Calculations in Section 4.2 assumed that the crowd bets independently
using q = %lt, where 1; is a t-vector of all ones. What happens when the
crowd bets using q # %lt?

In part 2.0(3), we stated a result from Moffitt and Ziemba (2016),
that for pure jackpot lotteries (ones having a single prize, a non-stochastic
jackpot v!) the expected payoff is

1 1 1 1

Eq {”1 + Nl] = vk [1 n Nl] > vh [1 n Nl] = B [“1 n Nl] ’

(i1)

where ¢ # 1/t1;, Ny is the random number of 6/6 tickets held by the

crowd. However, formula (11) does not apply in the present case because
v is stochastic, depending on the size of the Pools Fund.

Consider a non-stochastic configuration of single ticket bets n; =

(nj1,n52,...,n5)" for individuals j = 1,... ¢, each having zeroes ex-

cept for a single 1 in some position. Define z; = Z;j nj, and t-vector

LOf course, we are assuming that the crowd’s number of tickets, ¢, is known.
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z = (z1,...,2)". Clearly, Z’,ij zr = ¢. To compute the expected values
of ticket types 1, 2, ...7 with respect to an equiprobable drawing, we
note that as 7 ranges over all ticket drawings ¢ = 1,...t, for any n;, the
number of 6/6 is 1, the number of 5/6+ is 6, the number of 5/6 is 252,
and so on as indicated in Table 2. Since the drawing is equiprobable,
dividing each of these by ¢ gives the probability that any non-stochastic
ticket will be of the indicated type under an equiprobable drawing. Define
indicator functions on single ticket t-vectors n as:

1 if ticket n is a x/6 ticket,
]z/6< )Z

0 otherwise.

Applying this to fixed payout types 3/6, 2/6+ and 2/6, we obtain for d, ,
in formula (5)

Z $10Is/6(n;) + 5laes(nj) + 1A41Iy6} | + $5,696, 520

= (3 10p3/6 + $5paser + $1.41poss) ¢ + $5,696,520,
= $0.4073651 - ¢+ + $5, 696, 520. (12)

where notation E, emphasizes that the expectation is taken over equiprob-
able drawings and $5, 696, 520 is the fixed payout/deduction for the syn-
dicate.? Now the (stochastic) jackpot is v = a + 0.795d,,,. and the random
6/6 payout to the syndicate is

1
- 795d,,,) ———
vy, — (@ + 0795d.,)
1
_ 795(0.4 1- 1)) -
(a + 0.795(04G3(t + (1= ) — dip)) 7
1 d,

= (a + 0.954(t + (1 - f)))

1+N, 14N,
— (a + 0.954(t + c(1— f)) — $5,696, 520)

$10N5 + 5Ng + 1.41N;
1+ N

— 13
14+ M ( )

(14)

285,696,520 = $10 * 246,820 + $5 * 172,200 + $1.41 = 1,678, 950.
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In term (13), the factor multiplying 1/(1 + N;) is fixed. Therefore, its
expectation using (11) is

E, [(a +0.954(+ + o1~ f) ~ $5,696,520)) - :N ]
1

> (@ + 0.954(t + (1 — f) — $5,696,520)) %(1 —exp(=\), (15)

where A\ = ¢/t. Thus for this term at least, the syndicate gets more than
a fair split of the jackpot since

t
t+c

L1 - exp(—2) >
A
The second term (14) depends on Ny, N5, Ng and N;, which respec-
tively, are the numbers of 6/6, 3/6, 2/6+ and 2/6 tickets held by
the crowd, and these are dependent on the crowd betting probabilities
q=(q,-..,q). But we don’t have the data to model the joint distribu-
tion of (Ny, N5, Ng, N7) which is needed to evaluate (14).

However, we have circumstantial evidence that N5, Ng and N; are
positively correlated with N;. Therefore we make a crude assumption
that the joint crowd payouts for 3/6, 2/6+ and 2/6 tickets are increased
linearly with the winning ticket, that is, the payout for ticket ¢ is propor-

tional to ¢;:
$10N; + $5Ng + $1.41N;
-q;/(1/t).
TN, g/ (1/t)

Thus if the winning ticket ¢ is bet with twice the frequency of an equiprob-

able bet, so that tq; = 2, then the fixed payouts/deductions will be twice
that expected in the equiprobable case (see discussion leading to equation

(12).
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Using H = $10p5 + $5ps + $1.41p7, we calculate

. 1 1
Elt/t [mln (Cthi,dpF> 1 n N :| < Elt/t [CthiH—N]
1 1

1
= HtEy,, [cqi—(l — ecqi)]

Cq;
Yt e
i=1 t
< Hit(1 — e (16)
= %(1 —e™), (17)

where A = ¢/t and the step (16) follows from Jensen’s inequality since
1 — e “ is a concave function of g. We recall that Jensen’s inequality
can be stated as follows. A function f : [a,b] — R that satisfies f(ta +
(1 —=1¢t)b) < tf(a) + (1 —1t)f(b) for all ¢ inl0,1] is called convez, and if
the inequality is strict, strictly convex. For a random variable X and
convex function f, Jensen’s inequality asserts that f(F[X]) < E[f(X)].
Further, if X is not degenerate and f is strictly convex, then f(E[X]) <
E[f(X)]. A function f is (strictly) concave if —f is (strictly) conver;
therefore, Jensen’s inequality is reversed for concave functions.
Putting (15) together with (17), we obtain

1
E > 954 1— ) - 20 — cH
[U1+N1] (a + 0.954(t + ¢( f)) — $5,696,520 — cH)

1
(1= 18
(1 - (15)
where A = ¢/t and H = $10p; + $5ps + $1.41p7.

This calculation shows that the syndicate obtains a better result than
when the crowd bets proportionally, as in the corresponding result for
pure jackpot lotteries.

5 Design Considerations for Lotteries

Lottery design has as its goal the maximization of earnings for the spon-
sors. Assuming fairly constant fixed costs of running the lottery, sponsors
should strive to make the lottery popular, thereby increasing profitability.
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The most recent changes to payouts were made with that goal in mind
— these changes increased the “convexity” of payouts, meaning many
little prizes and greater jackpot growth. Ziemba (personal communica-
tion) recommended these designs in his work in the 1980’s and Walker
(2008) later recommended them. Convex designs encourage players be-
cause more ‘get something back,” while at the same time growing large
jackpots quickly.

This design is supported by research in behavioral finance. Lopes’
SP/A (Security-Potential /Aspiration) model (Lopes (1987)), which is a
better version of Friedman/Savage utility curves (Friedman and Savage
(1948)), argues that many unsophisticated gamblers prefer strategies of
buying safe prospects with a few longshots (the “Cautiously Hopeful”
pattern of SP/A). Regarding large jackpots, Daniel Kahneman has writ-
ten

“For emotionally significant events, the size of the probability sim-
ply doesn’t matter. What matters is the possibility of winning.
People are excited by the image in their mind. The excitement
grows with the size of the prize, but it doesn’t diminish with the
size of the probability.” Source: Bernard (2013).

In short, larger jackpots create excitement, therefore encourage more betting
regardless of expected values or probability of winning the biggest prize. On
the other hand, many small prizes create what Shefrin and Statman (1984)
call a “silver lining” — the “ at least I got something back” effect.

There is another aspect of lottery design, namely, discouraging syndicates
from buying the pot. There are two ways to accomplish this: (1) creating a
large number of tickets making it logistically difficult to buy the pot, and (2)
using convex designs, which reduces the likelihood that pot buying situations
will occur. Method (1) is not feasible except for large lotteries like the Califor-
nia Powerball lottery. The reason is that if the number of tickets sold are too
small relative to the total number of tickets, the jackpot may build slowly and
seldom be won. On the other hand, method (2) can be effective regardless of
the size of the lottery. To illustrate, consider a pure jackpot lottery with the
same carryover, take and crowd betting as in Table 6. The results are shown
in Table 7. The first column has the number of tickets, which after a 10% de-
duction for free plays, equals the crowd contribution to the betting pool shown
in the second column. Then assuming a take of 60%, breakeven thresholds of
0%, 10% and 20% for the pure jackpot lottery are shown in columns 3-5 and
for the 6/49 in columns 6-8. The results show that buying the pot thresholds
are lower in the pure lottery, but not as much as might be expected.

17



But one can see the reason by a simple argument. When the sponsors takes
60%, only 40 cents is returned as prizes for each dollar wagered. Therefore, a
syndicate needs to recover 60% of the covering bet, or 0.6 * $3 = 13,983,816 =
$25,170, 869, regardless of the lottery’s rules. As we’ve shown, the syndicate
earns its fair share of consolation prizes, but the free plays it earns are pretty
much worthless since after the lottery is hit the next lottery will have a small
purse.

Table 7: Carryover thresholds for a pure jackpot lottery and the 6/49 Lotto.

Crowd Crowd Carryover Thresholds for Pure Jackpot  Carryover Thresholds for 6/49 Lotto
Tickets $ Bet Breakeven +10% +20% Breakeven +10% +20%

(millions)  (millions)  (millions)  (millions) (millions) (millions)  (millions)  (millions)
3.3 9 26.77 31.48 36.20 30.33 35.05 39.76
6.7 18 28.76 34.04 39.31 33.46 38.74 44.01
10.0 27 31.14 37.02 42.89 36.92 42.80 48.67
13.3 36 33.90 40.41 46.92 40.71 47.22 53.73
16.7 45 37.02 44.20 51.38 44.81 51.99 59.17
20.0 54 40.49 48.38 56.26 49.21 57.10 64.99
23.3 63 44.28 52.91 61.53 53.90 62.52 71.15
26.7 72 48.37 57.77 67.17 58.84 68.24 77.63
30.0 81 52.75 62.94 73.13 64.03 74.23 84.42
33.3 90 57.38 68.39 79.41 69.45 80.46 91.48

We conclude the discussion by examining the impacts of design choices
in the 6/49 Lotto. The 6/49 Lotto’s convex design according to Table 7
raised the bar for buying-the-pot strategies, making carryover thresholds
roughly 12% to 20% higher. We now compare the impacts of the 6/49’s
design features toward increasing the threshold for buying the pot. We
identify four factors: (1) the take, (2) the payouts for small prizes, (3) the
payouts for large, non 6/6 prizes, and (4) free plays. Then we compare
by

1. Changing the take only, using alternatives 55%, 60% (current) and
65%.

2. Eliminating fixed payouts 3/6 and 2/6+ only.
3. Eliminating 4/6, 5/6 and 5/6+ payouts only.

4. Eliminating free plays only.
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Table 8 shows breakeven carryover thresholds for these design factors.
The factor is indicated in the first column and the other 5 columns are
carryover thresholds when the crowd bets the indicated millions of dol-
lars, 20, 40, etc. In the second column (corresponding to a crowd bet of
$20 million), the numbers in parenthesis are differences of threshold car-
ryovers from the current 6/49 values (second row, second column). Since
the relative impacts of these factors are the same for the 5 crowd betting
amounts, their impacts on the buying the pot strategy can be assessed
using this column. The greatest factor impact is due to free plays; re-
moving them drops the threshold by $3.39 million (~ 10%). The largest
inhibitor is clearly the take — increasing it by 0.05% from to 65% has a
large impact on breakeven carryovers.

Table 8: Breakeven Carryover Thresholds for Various 6/49 Design Factors.

Crowd Bets in Millions of Dollars

Design 20 40 60 80 100

Factor million million million million million
TAKE=0.55 30.56 (-2.90) 36.98 44.64 53.41 63.15
CURRENT 6/49 33.46 ( 0.00) 40.71 49.21 58.84 69.45
TAKE=0.65 36.37 (12.91) 44.44 53.79 64.27 75.74
NO 2/6+, 3/6 32.88 (-0.58) 39.65 47.76 57.08 67.44
NO 4/6, 5/6 32.99 (-0.47) 39.87 48.07 57.48 67.91

NO FREE PLAY  30.07 (-3.39) 36.28 43.73 52.29 61.81

Based on these statistics, we make recommendations for state lotter-
ies using ratings of the form (+ = — + F,+ = — + F). The first sign
is for popularity, the second for inhibiting buyers of the pot. For exam-
ple, (+,—) indicates that a factor increases the lottery’s popularity, but
encourages buying the pot.

1. (F,+) If possible, add combinations to the lottery by increasing the
numbers.

2. (+,+) Initiate a free play feature.

3. (F,+) Increase the take.

4. (+,

5. (

+,

)
) Offer many small prizes.
)

Increase the allocation of the Pools Fund to 6/6 winners.
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6. (=, +) Decrease the awards to hard-to-win non 6/6 tickets.

Note that increasing the allocation to 6/6 allows quicker build-up of jack-
pots, which encourages greater crowd participation. However, we did not
address the question of build-up speed of the jackpot, nor the accelera-
tion of betting on larger jackpots. These need to be studied in order to
design prizes and allocations to optimize betting flows.

6 Conclusions

In this paper, we have shown conditions under which buying the pot in the
6/49 Lotto has positive expected return when the crowd bets equiprob-
ably. We also indicated that equiprobable betting is optimal for the
crowd, that is, expected return is lower when it does not bet equiprob-
ably. We illustrated the advantages of lotteries with convex designs by
calculating 6/49 carryover thresholds and comparable pure jackpot carry-
over thresholds. We then rated various design features for their likelihood
of increasing a lottery’s popular, and decreasing the likelihood of buyers
of the pot.

Appendix A The Syndicate’s Expected Value
when the Crowd bets Equiprobably

Assuming that the lottery’s tickets are equiprobable, (Ny,... Ng)" has a
multinomial distribution

(Ny,...Ng)' ~ Multin(c + t,p), (19)

where p = (p1,pa,...,ps)". The distribution of deductions d,,, from the
prize pool is given by
d,, =B, N, (20)

where 3,, = (0,0,0,0,10,5,1.41,0)" and N ~ Multin(c + t,p).
Substituting (6) and (7) into equation (8) gives the Pools Fund as

d,, =040-3-(t+c-(1—f)) — d,,. (21)

and in RHS of this expression, only d,, is random.
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Using results from Moffitt and Ziemba (2016), we write the expected

value G of the syndicate’s net gain, given d,,,., as

1
E[G(c)|d,,] = 0.795 - (a + d,, ) E | ——— 22
(G du) =095 0+ ) B | | (22
6
4 0.06-d,, E|— 23
[6 + X5/6+} %)
252
05-d, B | ——— 24
+0.05-d,, [252+X5/6-] (24)
13545
. R D 2
+0.095 - d,,. [13545 n ij (25)
+ $2, 468, 200 (26)
1 $86,100 (27)
—$3t (28)

where
(Xﬁ/ﬁ, X5/6+7 X5/6—a X4/6>/ ~ Multzn(c, (1, 6, 252, 13545)//t)

Since buying one of each ticket gives the same exact payout regardless of
the winning ticket (numbers of tickets shown in Table 2), we know that a
covering strategy pays $2,468,200 and $86,100, respectively, for 3/6 and
and 2/6+ tickets. This explains terms (26) and (27).
Using the formulas from (1) we obtain for A(c) = ¢/t

1 -1
B| | = M0 1= enplA(0) (29

and values v(c) = F [L] using recursion. These calculations take
6+X5/6+

care of terms (22) and (23).
Using the Law of Large Numbers, the expectation in the term (24)
can be approximated by

252 1 (30)
252 + 252¢/t 14 ¢/t
and in term (25) by
13545 1
(31)

13545 + 13545¢/t 1+ ¢/t
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Basically, these two approximations amount to fair split of the corre-
sponding share of the Funds Pool. Thus

E[G(c)|dpp] = (a+0.795 - dpp )A(€) (1 — exp(=A(c)))  (32)

6
+0.06-d, B | —— 33
[6 + X5/6+] (33)
1

145 -d,  — 4

+ 0.145 PF1+c/t (3)
+ 2,468, 200 (35)
+ 86,100 (36)
— 33t (37)

where A(c) = ¢/t. To complete the calculation, we need to eliminate
the dependence of E[G(c)|d,,] on d,, by determining its distribution
and performing an integration. But this is straightforward: the first
three terms (32), (33) and (34) are linear in d,, so that the expectation
p(c) = Eld, ] should be substituted for d,,.. The expectation E[d,,|can
be calculated by substituting (6) into (7) and (7) into (8) taking expec-
tations:

p(c) = Eldpp] = 040-3-(t+c- (1= f)) — Eld,,]

We calculate E[d, ] as follows. For any ticket ¢, the number of tickets that
are 3/6, 2/6+ and 2/6- are respectively 248, 820, 172,200, and 1, 678, 950,
respectively. Therefore, the probability that ticket i is a 3/6, 2/6+ or
2/6- ticket, given that a winning ticket is drawn equiprobably, is ps =
248,820/t, pg = 172,200/t and p; = 1,678,950/t, respectively. Now
consider any choice of ¢ tickets. By linearity of expectations, the expected
number of 3/6 tickets is ¢ = ps, of 2/6+ tickets is ¢ = pg and of 2/6- tickets,
¢ # p7. Therefore,

V(C> = E[dAB] = (t + C)<p5 «$10 + Pe * $5 + P o* $1.41).

Summarizing, the expected gain G(c) to a syndicate that covers the
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pool is
E[G(c)] = (a+0.795 - u(c))A(e) (1 — exp(=A(c))) (38)

+ <0.06y(c) + 0.1451 +1c/t) u(c)

+ $2, 553, 300
— $3t,

() =040-3((t+c-(L—f) = (t+c¢)- (ps310 + pe$5 + pr$1.41),

6
vic)=F ) for X ~ Bin(c,6/t).
() [6+X5/6+} (©6/1)
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