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Abstract 
In this paper, the authors apply a continuous time stochastic process model developed 
by Shiryaev and Zhutlukhin for optimal stopping of random price processes that appear 
to be bubbles. By a bubble we mean the rising price is largely based on the 
expectation of higher and higher future prices. Futures traders such as George Soros 
attempt to trade such markets. The idea is to exit near the peak from a starting long 
position. The model applies equally well on the short side, that is when to enter and 
exit a short position. In this paper we test the model in two technology markets. These 
include the price of Apple computer stock AAPL from various times in 2009-2012 after 
the local low of March 6, 2009; plus a market where it is known that the generally very 
successful bubble trader George Soros lost money by shorting the NASDAQ-100 stock 
index too soon in 2000. The Shiryaev-Zhitlukhin model provides good exit points in 
both situations that would have been profitable to speculators following the model. 
 
 
This paper is published as part of the Systemic Risk Centre’s Discussion Paper Series. 
The support of the Economic and Social Research Council (ESRC) in funding the SRC 
is gratefully acknowledged [grant number ES/K002309/1]. 
 
 
Acknowledgements 
The work is partially supported by Laboratory for Structural Methods of Data Analysis 
in Predictive Modeling, MIPT, RF government grant, ag. 11.G34.31.0073. The work of 
M. V. Zhitlukhin is also partially supported by The Russian Foundation for Basic 
Research, grant 12-01-31449-mol_a. The work of Ziemba was partially supported by 
the University of Manchester and its Hallsworth Lecture series fund. 
 
A. N. Shiryaev is Professor of Mathematics at Steklov Mathematical Institute, Moscow, 
Russia. 
M. V. Zhitlukhin is affiliated to Steklov Mathematical Institute, Moscow, Russia and a 
PhD student at University of Manchester, UK. 
W. T. Ziemba is Alumni Professor of Financial Modeling and Stochastic Optimization 
(Emeritus), University of British Columbia, Vancouver, BC, and Visiting Professor 
University of Manchester, and Sabanci Univearsity, Turkey, and Distinguished Visiting 
Research Associate, Systemic Risk Centre, London School of Economics and Political 
Science. 
 
 
 
Published by 
Systemic Risk Centre 
The London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means without the prior permission in 
writing of the publisher nor be issued to the public or circulated in any form other than 
that in which it is published. 
 
Requests for permission to reproduce any article or part of the Working Paper should 
be sent to the editor at the above address. 
 
© A. N. Shiryaev, M. V. Zhitlukhin, W. T. Ziemba, submitted 2013 



Trading bubbles is difficult and even the best traders like George Soros sometimes lose
a lot of money by shorting too soon. The finance and economics literature has little on
timing bubbles. There is however some interest by inefficient market types, see for example
Stiglitz [1990] and Evanoff et al [2012)]. What we mean by a bubble is a price that is going
up just because it is going up! In this paper we present a model developed by Shiryaev and
Zhitlukhin [2012ab] that seems to work well timing when to exit a long position or when
to exit a short position. To keep the exposition simple, we just apply the model here in
two very interesting technology situations namely, Apple Computer stock (AAPL) in the
past few years and the internet technology bubble around 2000 measured by the Nasdaq
(NDX100) which has futures contracts sold on it. In both cases, the results are good. The
mathematics of the model is sketched in the appendix and is an application of modern
mathematical finance stochastic calculus. Shirayev has worked on such models for many
years and Shiryaev and Zhitlukhin [2012b] present the model in a form that is useful to
trade bubbles.

The basic idea is that there is a fast rate of growth in prices, then a peak and then a fast
decline. The model tries to exit near the peak in prices or valley of its short position.
Usually financial markets fall faster than they rise. But we have found that in these two
markets and others that the rate of increase and decrease are very similar and different
speeds add no value. The paper shows entries and exits. For readers interested in how the
model works, the appendix should be helpful. But it is not important to read the appendix
to understand the results of the model which are in tables and graphs in the exhibits.

AAPL rises and falls

AAPL had a spectacular run since the bottom of the 2007-2009 crash in March 2009, see
Exhibit 1 which shows the price history from September 1984 to the end of 2012; Exhibit
2 shows the more recent period, from the beginning of 2009 to the end of 2012.

A sequence of valuable and easy to use products created huge interest and sales around
the world. These include the iPod, the iPhone, and the iPad. All of these products had
high margins for the company which accumulated large cash levels. In November 2012
they had $121 billion in cash or $128 per share of the 941 million shares outstanding. The
company has generated cash faster than any corporation in history. The stock was never
at a high price earnings ratio and was a favorite of hedge funds, open and closed mutual
funds, ETFs and various small and large investors. And indeed it was traded as a proxy
for the market with high liquidity. Its forward price earnings ratio in November 2012 was
10.17 with estimated earnings per share of $49.28. The company has a quarterly dividend
of $2.65 per share and a buy back of about $10 million in stock. An increased or special
dividend could also occur as well as increased buy back of stock.
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Exhibit 1: The history of AAPL stock price from September 1984 to the end of 2012
(adjusted for dividends and splits).
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Exhibit 2: AAPL stock price from the beginning of 2009 to the end of 2012.
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Exhibit 3: AAPL stock price in 2012.

Steve Jobs left Apple in 1985 because of a power struggle with John Sculley who he
brought over from Pepsi asking ”do you want to sell sugared water all your life or change
the world”. Sculley came to Apple but he and Jobs had a disagreement on strategy and
marketing which stagnated the company. The board favored the marketer over the genius.
Jobs sold all but one of his AAPL shares. The company languished while he continued
developing ideas at NeXT and Pixar. When Jobs returned to Apple in 1996, he brought the
new NeXT platform and ideas for user friendly products that had not yet been imagined
by the market. He transformed the company into a winner. He held a lot of AAPL stock
but more of Pixar which merged with Disney. After his death on October 5, 2011, many
feared that the sequence of great products would cease and that the pace of innovation
could not be maintained, that the market cap of about $500 billion, various lawsuits for
patent infringement, competition and labour and supply chain issues might slow it down.
Some thought it was a bubble and others thought it would continue rallying because it was
not expensive not feeding on itself as in a typical bubble. Nonetheless, the stock peaked
at 705.07 on September 21, 2012 and then fell dramatically to the local low of 505.75 on
November 16, 2012. Later, in pre market trading on December 17, 2012, it fell to 499. On
December 31, 2012, AAPL closed the year at 532.17; see Exhibit 3 for the price action in
2012.

The concentration of ownership by mutual funds (see Exhibit 4) creates conundrum for
Apple as regulations prohibit ownership to exceed a percentage of a fund’s assets, so as
AAPL rises relative to other stocks, funds often must sell shares. Some of the selling was
tax loss selling in 2012 before expected higher capital gains and dividend rates in 2013
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Exhibit 4: Holders of Apple, April 17, 2012. Source: Bloomberg via Eric Jackson.

since more gains are in AAPL than in any other stock. Despite the large decline in the
latter part of 2012 the stock increased 30% in 2012.

Application of the model to the AAPL bubble

We apply the model to the Apple price bubble starting at the local low of 82.33 on March
6, 2009 and considering eight different entering dates for opening a long position: June 30,
2009; December 31, 2009; June 30, 2010; December 31, 2010; June 30, 2011; December 30,
2011; June 29, 2012; and July 31, 2012. It is assumed that the trend reversal will happen
before the end of 2012. Higher tax rates on dividends and capital gains are expected in
2013, thus a sale in 2012 is suggested.

To apply the model, we identify the sequence of prices P0, . . . , PN with the daily closing
prices between March 6, 2009 and December 31, 2012. There are 962 trading days in this
time interval, so N = 961.

Exhibit 5 lists the results for the eight entering dates and four different choices of the
parameter µ2. The names of the first seven columns are self-explanatory. Column “% of
max.” gives the ratio of the closing price on the exiting date to the highest closing price
($702.10 on September 19, 2012). Column ”Return rate, %” contains the annual rates
of return, if one buys Apple shares on each of the entering dates and sells on the date
suggested by the model. The rate is computed by the compound interest formula r =
log(Sτ/S0) · (τ/0.252)−1, where 252 is the average number of trading days in a year, so one
year has the length of 0.252 in t-time.

Tests varying µ2 = −αµ1 for α = 0.5, 1, 2, 3 indicate that the choice µ2 = −µ1 is the
optimal one, and works equally well both for early and late entering dates giving nearly
90% of the maximum price.

Exhibit 6 presents the graph of AAPL prices with entering dates marked by the dots,
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Entering Entering µ1 σ T Exit Exit % of Return
date price date price max. rate, %

µ2 = −µ1

2009-06-30 142.43 0.666 0.224 8.81 2012-10-11 628.10 89.46 45.11
2009-12-31 210.73 0.452 0.186 7.53 2012-10-11 628.10 89.46 39.26
2010-06-30 251.53 0.344 0.192 6.29 2012-10-09 635.85 90.56 40.64
2010-12-31 322.56 0.305 0.177 5.01 2012-10-08 638.17 90.89 38.55
2011-06-30 335.67 0.249 0.169 3.76 2012-10-08 638.17 90.89 50.44
2011-12-30 405.00 0.234 0.173 2.49 2012-10-08 638.17 90.89 59.07
2012-06-29 584.00 0.245 0.175 1.24 2012-10-09 635.85 90.56 30.62
2012-07-31 610.76 0.245 0.174 1.03 2012-10-11 628.10 89.46 13.83

µ2 = −0.5µ1

2009-06-30 142.43 0.666 0.224 8.81 2011-11-18 374.94 53.40 40.38
2009-12-31 210.73 0.452 0.186 7.53 2012-10-08 638.17 90.89 40.00
2010-06-30 251.53 0.344 0.192 6.29 2012-10-09 635.85 90.56 40.64
2010-12-31 322.56 0.305 0.177 5.01 2012-10-09 635.85 90.56 38.26
2011-06-30 335.67 0.249 0.169 3.76 2012-10-11 628.10 89.46 48.73
2011-12-30 405.00 0.234 0.173 2.49 2012-10-11 628.10 89.46 56.13
2012-06-29 584.00 0.245 0.175 1.24 2012-10-19 609.84 86.86 13.99
2012-07-31 610.76 0.245 0.174 1.03 2012-10-19 609.84 86.86 -0.67

µ2 = −2µ1

2009-06-30 142.43 0.666 0.224 8.81 2012-10-31 595.32 84.79 42.86
2009-12-31 210.73 0.452 0.186 7.53 2012-10-11 628.10 89.46 39.26
2010-06-30 251.53 0.344 0.192 6.29 2012-10-09 635.85 90.56 40.64
2010-12-31 322.56 0.305 0.177 5.01 2012-10-08 638.17 90.89 38.55
2011-06-30 335.67 0.249 0.169 3.76 2012-05-17 530.12 75.50 51.87
2011-12-30 405.00 0.234 0.173 2.49 2012-05-17 530.12 75.50 71.41
2012-06-29 584.00 0.245 0.175 1.24 2012-10-08 638.17 90.89 32.40
2012-07-31 610.76 0.245 0.174 1.03 2012-10-08 638.17 90.89 23.05

µ2 = −3µ1

2009-06-30 142.43 0.666 0.224 8.81 2012-11-07 558.00 79.48 40.67
2009-12-31 210.73 0.452 0.186 7.53 2012-10-19 609.84 86.86 37.88
2010-06-30 251.53 0.344 0.192 6.29 2012-10-11 628.10 89.46 39.97
2010-12-31 322.56 0.305 0.177 5.01 2012-10-09 635.85 90.56 38.26
2011-06-30 335.67 0.249 0.169 3.76 2012-10-08 638.17 90.89 50.44
2011-12-30 405.00 0.234 0.173 2.49 2012-10-08 638.17 90.89 59.07
2012-06-29 584.00 0.245 0.175 1.24 2012-10-08 638.17 90.89 32.40
2012-07-31 610.76 0.245 0.174 1.03 2012-10-08 638.17 90.89 23.05

Exhibit 5: Results of applying the model to AAPL stock with various entry dates and
values of µ2.
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Exhibit 6: Buying and selling dates for AAPL when µ2 = −µ1. The dots indicate the eight
entering dates, and the square indicates the exit date on October 8, 2012.

and the date October 8, 2012 (one of the exit dates) marked by the square. Exhibits 7-8
present the graphs of the exiting process ψt and the optimal stopping boundaries a(t) for
the entering dates December 30, 2011 and June 29, 2012 with µ2 = −µ1. By comparing
with Exhibit 3, it is interesting to see how the process ψt reacts on changes in the price
process St: for example, the increase of ψt in May 2012 on Exhibit 7 was caused by the
corresponding fall of the AAPL price as can be seen from Exhibit 3.
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Exhibit 7: The process ψt and the function a(t) for AAPL when buying long on December
30, 2011; µ2 = −µ1.
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Exhibit 8: The process ψt and the function a(t) for AAPL when buying long on June 29,
2012; µ2 = −µ1.
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The Internet bubble crash during 2000-2002

Alan Greenspan, the chairman of the US Federal Reserve System (Fed), began in 1994 a
low interest rate policy that dropped short term rates continuously over a multiyear period.
This led to an increase in the S&P500 stock index from 470.42 in January 1995 to 1469.25
at the end of 1999, as shown in Exhibits 9 and 10. The price earnings ratios were high and
Shiller used these to predict the crash starting in 1996, see Campbell and Shiller [1998] and
Shiller [1996, 2000, 2009]. It is known that stock price rises usually start with low price
earnings ratios and end with high price earnings ratios, see Exhibit 11. But predicting
when the market will crash using just price earnings ratios is problematic.
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Exhibit 9: S&P500 index, 1994-2012.

However, Ziemba has found in many markets over many years that the bond-stock earnings
yield differential (BSEYD) model1 predicts crashes better than just high price-earnings
ratios, see Ziemba and Schwartz [1991], Ziemba [2003] and Lleo and Ziemba [2012]. The
model signaled a crash in the S&P500 in April 1999. It was in the danger zone all of 1999
starting in April and it got deeper in the danger zone as the year progressed, see Exhibit
10. The S&P500 rose from 1229.23 at the end of December 1998 to 1469.25 at the end of
December 1999. The PE ratio was flat, increasing only from 32.34 to 33.29 while long bond
yield rose from 5.47% to 6.69%. The lowest value of S&P500 in April 1999 was 1282.56 on
April 1, and the highest value was 1371.56 on April 27. The signal did work but the real
decline was not until September 2000 with a temporary fall from the March 24, 2000 high
of 1552.87 and a recovery into the September 1, 2000 peak of 1530.09. By October 10,
2002 S&P500 fell to 768.63 having two temporary recoveries from the local lows of 1091.99
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(a) (b) (c=1/a) (b-c) (a) (b) (c=1/a) (b-c)
30 yr. Stocks Crash 30 yr. Stocks Crash

Month S&P500 P/E bond return signal Month S&P500 P/E bond return signal
95 Jan 470.42 17.10 8.02 5.85 2.17 98 Jan 980.28 24.05 6.01 4.16 1.85

Mar 500.71 16.42 7.68 6.09 1.59 Mar 1101.75 27.71 6.11 3.61 2.50
May 533.40 16.39 7.29 6.10 1.19 May 1090.82 27.62 6.10 3.62 2.48

Jul 562.06 17.23 6.90 5.80 1.10 Jul 1120.67 28.46 5.83 3.51 2.32
Sep 584.41 16.88 6.74 5.92 0.82 Sep 1017.01 26.10 5.47 3.83 1.64
Nov 605.37 17.29 6.36 5.78 0.58 Nov 1163.63 31.15 5.54 3.21 2.33

96 Jan 636.02 18.09 6.18 5.53 0.65 99 Jan 1279.64 32.64 5.49 3.06 2.43
Mar 645.50 19.09 6.82 5.24 1.58 Feb 1238.33 32.91 5.66 3.04 2.62
May 669.12 19.62 7.21 5.10 2.11 Mar 1286.37 34.11 5.87 2.93 2.94

Jul 639.96 18.80 7.23 5.32 1.91 Apr 1335.18 35.82 5.82 2.79 3.03
Sep 687.31 19.65 7.26 5.09 2.17 May 1301.84 34.60 6.08 2.89 3.19
Nov 757.02 20.92 6.79 4.78 2.01 Jun 1372.71 35.77 6.36 2.80 3.56

97 Jan 786.16 21.46 6.95 4.66 2.29 Jul 1328.72 35.58 6.34 2.81 3.53
Mar 757.12 20.45 7.11 4.89 2.22 Aug 1320.41 36.00 6.35 2.78 3.57
May 848.28 21.25 7.08 4.71 2.37 Sep 1282.70 30.92 6.50 3.23 3.27

Jul 954.29 23.67 6.78 4.22 2.56 Oct 1362.92 31.61 6.66 3.16 3.50
Sep 947.28 23.29 6.70 4.29 2.41 Nov 1388.91 32.24 6.48 3.10 3.38
Nov 955.40 23.45 6.27 4.26 2.01 Dec 1469.25 33.29 6.69 3.00 3.69

Exhibit 10: BSEYD model for the S&P500, 1995-1999. Source: Ziemba [2003].

on April 4, 2001 and 944.75 on September 21, 2001. There were other signals:

History shows that a period of shrinking breadth is usually followed by a sharp
decline in stock values of the small group of leaders. Then broader market takes
a more modest tumble. Paul Bagnell in late November 1999 in the Globe and
Mail.

Ziemba [2003, Chapter 2] describes this episode in stock market history. There was con-
siderable mean-reversion in the eventual crash in 2000 the September 11, 2001 attack and
in the subsequent 2002 decline of 22%. This decline was similar to previous crashes.

The concentration of stock market gains into very few stocks with momentum and size
being the key variables predicting performance was increasing before 1997 in Europe and
North America. Table 2.6 in Ziemba [2003] shows that in 1998, the largest cap stocks had
the highest return in North America and Europe but small cap stocks outperformed in
Asia and Japan. The situation was similar from 1995 to 1999 with 1998 and 1999 the most
exaggerated.

Fully 41% of the stocks in the S&P500 did not fall or actually rose during this period and
an additional 19% declined by 10% or less annualized. These were small cap stocks with
market values of $10 billion of less. The fall in the S&P500 was mainly in three areas:
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Begin End Geometric Beg End Begin End Geometric Beg End
Year Year Mean, % PE PE Year Year Mean, % PE PE
1975 1994 9.6 10.9 20.5 1981 2000 12.8 8.8 41.7
1977 1996 9.7 11.5 25.9 1979 1998 12.9 9.4 36.0
1942 1961 9.9 12.2 20.5 1982 2001 13.0 8.5 32.1
1983 2002 10.9 7.3 25.9 1980 1999 14.0 8.9 42.1
1978 1997 11.9 10.4 31.0

Exhibit 11: Nine 20-year periods of gains beginning low PE and ending high PE. Source:
Bertocchi, Schwartz and Ziemba [2010].

information technology, telecommunications and large cap stocks. Information technology
stocks in the S&P500 fell 64% and telecom stocks fell 60% from January 1 to October 31,
2002. The largest cap stocks (with market caps of $50 billion plus) lost 37%. But most
other stocks either lost only a little or actually gained. Materials fell 10% but consumer
discretionary gained 4.5%, consumer staples gained 21%, energy gained 12%, financial
services gained 19%, health care gained 29%, industrials gained 7% and utilities gained
2%. Equally weighted, the S&P500 index lost only 3%. So there was a strong small cap
effect. The stocks that gained were the very small cap stocks with market caps below $10
billion. Some 138 companies with market caps between $5-10 billion gained 4% on average
and 157 companies with market caps below $5 billion gained on average 23%.

While the BSEYD model has been shown to be useful in predicting S&P500 declines, it is
silent on the NASDAQ technology index of the largest 100 stocks by market capitalization,
the NDX100, see Exhibit 12. This index with a major Internet component had a spectacular
increase during a period where many thought the Internet companies would prosper despite
price earnings ratios of 100 plus and many with no earnings at all. Valuation attempts
were made to justify these high prices; see Schwartz and Moon [2000] for one such example.
Predicting the top of this bubble was not easy as the Internet index (not shown) fell 17% one
day and then proceeded to reach new highs. For example, the noted investor George Soros
lost some $5 billion of the $12 billion in the Quantum hedge fund during this crash.

The NDX100 peaked at 4816.35 on March 24, 2000 starting from 398.26 in 1994. In the
decline it fell to 795.25 on October 8, 2002. Below we apply the Shiryaev and Zhitlukhin
model to both the questions when to close a long and a short positions on NDX100 for
various entering dates. The results appear in Exhibits 13–16. For a long position we
assume that the bubble bursts by the end of 2000, and for a short position we assume that
the market recovery starts by the end of 2003.

Depending upon the long position entry, the exit yielded about 75% of the maximum
price with investor gains of about 40-60% a year. Again, like with AAPL, the speed of
decrease µ2 = −µ1 provides optimal results. The shorting analysis was also successful for
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Exhibit 12: NDX100 index, 1994-2012.

the model with the exits gaining about 25-45% a year (for µ2 = −µ1) and getting close to
the minimum over the time period considered.
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Entering Entering µ1 σ T Exit Exit % of Growth
date price date price max. rate, %

µ2 = −µ1

1994-12-30 404.27 0.014 0.105 15.15 2000-04-12 3633.63 77.23 41.48
1995-12-29 576.23 0.082 0.124 12.63 2000-04-12 3633.63 77.23 42.89
1996-12-31 821.36 0.105 0.130 10.09 2000-04-12 3633.63 77.23 45.26
1997-06-30 957.30 0.109 0.134 8.84 2000-04-12 3633.63 77.23 47.81
1997-12-31 990.83 0.101 0.141 7.56 2000-04-13 3553.81 75.54 55.88
1998-06-30 1337.34 0.117 0.142 6.32 2000-04-12 3633.63 77.23 55.85
1998-12-31 1836.01 0.134 0.156 5.04 2000-04-13 3553.81 75.54 51.37
1999-06-30 2296.77 0.140 0.164 3.80 2000-04-13 3553.81 75.54 55.00

µ2 = −2µ1

1996-12-31 821.36 0.105 0.130 10.09 2000-04-11 3909.21 83.09 47.54
1997-06-30 957.30 0.109 0.134 8.84 2000-04-11 3909.21 83.09 50.51
1997-12-31 990.83 0.101 0.141 7.56 2000-04-12 3633.63 77.23 56.95
1998-06-30 1337.34 0.117 0.142 6.32 2000-04-12 3633.63 77.23 55.85
1998-12-31 1836.01 0.134 0.156 5.04 2000-04-12 3633.63 77.23 53.26
1999-06-30 2296.77 0.140 0.164 3.80 2000-04-12 3633.63 77.23 58.09

µ2 = −3µ1

1996-12-31 821.36 0.105 0.130 10.09 1998-08-31 1140.34 24.24 19.69
1997-06-30 957.30 0.109 0.134 8.84 1998-08-31 1140.34 24.24 14.95
1997-12-31 990.83 0.101 0.141 7.56 2000-04-10 3998.26 84.98 61.35
1998-06-30 1337.34 0.117 0.142 6.32 2000-04-10 3998.26 84.98 61.47
1998-12-31 1836.01 0.134 0.156 5.04 2000-04-11 3909.21 83.09 59.14
1999-06-30 2296.77 0.140 0.164 3.80 2000-04-11 3909.21 83.09 67.69

Exhibit 13: Results of applying the model to a long position on NDX-100 index.
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Exhibit 14: Entering and exit dates for a long position on the NDX100 when µ2 = −µ1.
The dots indicate the eight entering dates, and the square indicates the exit date on April
12, 2000.

Entering Entering µ1 σ T Exit Exit % of Growth
date price date price min. rate, %

µ2 = −µ1

2001-01-31 2593.00 -0.309 0.412 7.31 2002-11-27 1125.67 139.90 46.01
2001-06-29 1830.19 -0.287 0.395 6.27 2003-01-09 1076.05 133.73 35.13
2002-02-28 1359.22 -0.226 0.345 4.64 2003-03-13 1029.79 127.98 26.80

µ2 = −0.25µ1

2001-01-31 2593.00 -0.309 0.412 7.31 2003-03-17 1077.01 133.85 41.78
2001-06-29 1830.19 -0.287 0.395 6.27 2003-04-22 1102.44 137.01 28.32
2002-02-28 1359.22 -0.226 0.345 4.64 2003-06-03 1198.57 148.96 10.00

µ2 = −0.5µ1

2001-01-31 2593.00 -0.309 0.412 7.31 2003-01-09 1076.05 133.73 45.70
2001-06-29 1830.19 -0.287 0.395 6.27 2003-03-13 1029.79 127.98 34.18
2002-02-28 1359.22 -0.226 0.345 4.64 2003-04-17 1083.56 134.66 19.97

µ2 = −2µ1

2001-01-31 2593.00 -0.309 0.412 7.31 2003-03-17 1077.01 133.85 41.78
2001-06-29 1830.19 -0.287 0.395 6.27 2003-03-17 1077.01 133.85 31.37
2002-02-28 1359.22 -0.226 0.345 4.64 2003-01-14 1094.87 136.07 24.66

Exhibit 15: Results of applying the model to a short position on NDX-100 index.
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Exhibit 16: Entering and exit dates for a short position on the NDX100 when µ2 = −µ1.
The dots indicate the three entering dates, and the squares indicate the three exit dates.
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Appendix

The model of Shiryaev and Zhitlukhin [2012b]2 assumes that the prices are modeled by
geometric Brownian motion with a disorder (St)t≥0, which is a stochastic process defined
by the differential:

dSt = [µ1I(t < θ) + µ2I(t > θ)]Stdt+ σdBt,

where µ1 > 0 > µ2 or µ1 < 0 < µ2, σ > 0 are constant parameters, B = (Bt)t≥0 is a
standard Brownian motion, and θ is an unknown moment of trend reversal3, when the
drift coefficient of the process S changes from value µ1 to value µ2.

We observe a sequence of asset prices P0, P1, . . . , PN , which initially has a positive trend
and at some unknown moment of time the trend reverses. It is assumed that the trend will
definitely reverse before the final time, N . Choosing an entering time n < N for opening a
long position (i.e. buying some amount of the asset), we want to find the optimal moment
of time to close the position and sell the assets while sequentially observing the prices
Pn, Pn+1, . . . , PN . Let Pk be the daily closing values (of AAPL or NDX100), although
other time scales can be considered as well. The model also applies to the case when the
prices have initially a negative trend and one opens a short position (i.e. sells assets that
he or she does not hold with the objective to return them later after buying for a lower
price).

The process St runs in continuous time t ≥ 0, and we choose the time scale where each
trading day has length ∆t = 0.01 (for convenience), and t = 0 represents the entering
date n, while t = T represents the final date N , where T = (N − n)∆t. Thus, the
observed sequence of prices Pk represents the values of the process St at the moments of
time t = (k − n)∆t.

Adopting the Bayesian approach, we assume that θ is a random variable taking values in
[0, T ] and independent of B. Since in practice it is difficult to determine the actual structure
of the distribution of θ, we consider “the worst” case – when θ is uniformly distributed on
[0, T ] (as the uniform distribution has the maximum entropy on a finite interval).

Mathematically, the moment when one closes the position is represented by a stopping
time4 τ of the observable process S. If a long position is opened on date n, the problem
consists in finding the stopping time τ∗long ≤ T that maximizes the mean price at τ∗long; if a
short position is open, we seek for the τ∗short ≤ T which minimizes the mean closing price.
In other words

ESτ∗long
= sup

τ≤T
ESτ , ESτ∗short

= inf
τ≤T

ESτ ,

where E denotes mathematical expectation, and supt≤T , and inft≤T denote the supremum
and the infimum over all stopping times τ ≤ T .
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The Shiryaev and Zhitlukhin model for finding the optimal τ∗ is based on the observa-
tion of the process ψ = (ψt)t≥0, called the Shiryaev–Roberts statistic (see e. g. Poor and
Hadjiliadis, 2009), on the time interval [0, T ], specified by

ψt =
1
T

exp(−µXt − µ2t/2)
∫ t

0
exp(µXs + µ2s/2)ds,

where Xt = σ−1(log(St/S0) − (µ1 − σ2/2)t), and µ = (µ1 − µ2)/σ. The method closes a
position (a long position as well as a short one) at the first time τ∗ when the process ψt
crosses some time-dependent level a(t):

τ∗ = inf{t ≥ 0 : ψt ≥ a(t)}.

The function a(t) depends on the parameters µ1, µ2, σ, T and can be found from a
certain integral equation, see (Shiryaev and Zhitlukhin, 2012b) for details. This function
is decreasing and a(T ) = 0, so ψt always crosses it by time T .

To apply the method, we must estimate the parameters µ1, µ2, and σ. The values of µ1

and σ are found using the data P0, . . . , Pn. Under the assumption of geometric Brownian
motion, the sequence {ξk}nk=1, ξk = log(Pk/Pk−1), consists of independent normal random
variables with mean (µ1−σ2/2)∆t and standard deviation σ∆t. So we apply the standard
formulae

σ =

√√√√ 1
(n− 1)∆t

n∑
k=1

(ξk − ξ)2, µ1 = ξ/∆t+ σ2/2, where ξ =
1
n

n∑
k=1

ξk.

The choice of µ2 is subjective. In our applications we mainly use µ2 = −µ1, so that, in the
model, the decrease of the price has the same “speed” as the increase. We know that prices
of financial assets generally fall faster than they rise but in a bubble both the increase and
decrease can be similar as the calculations below show. We also consider µ2 = −0.5µ1,
µ2 = −2µ1, and µ2 = −3µ1, which however do not give any significant improvement of
µ2 = −µ1.
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Notes

1The BSEYD model relates the yield on stocks, measured by the ratio of earnings to stock prices, to
the yield on nominal Treasury bonds. When the bond yield is too high, there is a shift out of stocks into
bonds. If the adjustment is large, it causes an equity market correction (a decline of 10% within one year).
See e. g. (Ziemba, 2003) for details.

2The model extends the previous result by Novikov and Shiryaev [2009]. Other papers that consider
similar models related to detecting changes in price processes include Beibel and Lerche [1997], Gapeev and
Peskir [2006], and Ekström and Lindberg [2013].

3The moment θ of trend reversal in the model is commonly called the moment of disorder. This termi-
nology comes from the theory of quality control, where similar models were first applied.

4A stopping time τ of a process X defined on some probability space (Ω,F ,P) is a mapping τ : Ω→ [0,∞)
such that the set {ω : τ(ω) ≤ t} belongs to the σ-algebra σ(Xs; s ≤ t) for any t ≥ 0, see e. g. (Liptser
and Shiryaev, 2000). It represents the idea that a decision to stop at a time t should be based only on the
information obtained from the paths of the process X up to time t.
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