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1 Introduction

In the film Minority Report the PreCrime unit of the DC Police uses psychics to detect

people who are about to commit crimes and then locks them up before they do so.

As it happens, Andrew Crockett’s original vision of macroprudential policy (which we

call Targeted Macroprudential Policy or TMP) is envisioned to work in more or less

the same way (Crockett, 2000). The crime in this case is to cause a financial crisis; the

perpetrators are banks and other financial firms (henceforth banks) pursuing systemically

risky strategies; the task of the PreCrime units of banking supervisors is to detect these

banks and require them to increase the proportion of costly capital in their balance sheets

so that they do not create a crisis by becoming stressed or failing. The crucial role of the

psychics is played by algorithms or riskometers that empirically implement a theoretical

measure of how much systemic risk each bank creates. In the movie the government

shuts down PreCrime as it turns out that the psychics’ visions are not accurate enough

to justify punishing people on the basis of the information they provide. In this paper

we examine the limits of riskometer performance to see if riskometers can be reliable

enough to provide a sound foundation for TMP. We are, to the best of our knowledge,

the first to analyze the relationship between the reliability of systemic risk measurements

and macroprudential policy.1

In our analysis we assume that a regulator acts to minimize the sum of the expected

social cost of a crisis and the social cost of bank capital. The regulator is endowed with a

riskometer that it can use to get a risk reading for each bank, with the reading equal to

either Guilty (beyond a reasonable doubt of creating systemic risk) or Safe. The regulator

chooses between two policy options: i) the TMP option in which it requires only banks

with a Guilty reading to operate with a high level of capital (the level appropriate for

a systemically risky bank); and ii) a Blanket Macroprudential Policy or BMP option in

which the regulator requires all banks to operate with a high level of capital. The BMP

1Our analysis draws upon previous critiques of VaR by Berkowitz and O’Brien (2002); Danielsson
(2002, 2008); Hendricks (1996).
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option eliminates crisis risk, but it does so inefficiently as both actually risky banks and

safe banks must operate with high levels of costly capital. The TMP option conserves on

costly bank capital, but at the cost of increased crisis risk: banks that do create systemic

risk but cannot be shown beyond a reasonable doubt to do so can operate with a low

level of capital. We define a riskometer’s reliability to be equal to the proportion of risky

banks that get a Guilty reading when using that riskometer. The relative advantage of

the TMP option increases with the reliability of the regulator’s riskometer, and the TMP

option is always the optimal choice if the regulator has a perfectly reliable riskometer.

We investigate the practicality of TMP by first estimating a lower bound for how reliable

a riskometer needs to be in order for TMP to dominate BMP and then estimating an

upper bound for how reliable riskometers can be by examining riskometer reliability in a

best case scenario. Based upon recent Basel Committee on Banking Supervision (2010)

estimates of the cost of a crisis, the level of capital needed to eliminate crisis risk, and

the cost of bank capital, we find that the TMP option dominates the BMP option if

the reliability of the regulator’s riskometer exceeds 75% (in our base specification).2 Our

estimates of riskometer reliability in a best case scenario fall far short of the required

75% level. Consequently, we think that it will be a considerable challenge to develop a

riskometer that is reliable enough to provide a sound foundation for TMP.

We use the language of crime and punishment when discussing TMP since a bank desig-

nated as systemically risky definitely suffers a punishment— the higher capital require-

ment (and other regulatory interventions) that such a designation entails places it at a

considerable competitive disadvantage relative to its commercial rivals that are not clas-

sified as systemically risky. Indeed, the insurance company MetLife is (at the time of this

writing) suing the FSOC over its designation as “systemic”, precisely because it would

“put the company on an uneven playing field with its competitors”.3 So, given that TMP

2While we use the crisis cost and capital cost figures from the Basel Committee for concreteness, we
note that these figures are very similar to those found in other studies on this topic such as de Ramon
et al. (2012); Kragh-Sorensen (2012).

3“MetLife to mount legal challenge to systemic risk label”, Financial Times, 13 January 2015.
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involves imposing a substantial private cost upon firms, we think that TMP will only be

sustainable if a regulator can convincingly show (that is, show beyond a reasonable doubt)

that the institutions it charges with creating systemic risk really are guilty of creating

systemic risk. Since BMP does not place any given bank at a disadvantage relative to

its peers, we assume that a regulator can pursue a BMP policy without having to prove

that every bank is guilty of creating systemic risk.

We assume that banks can be ranked by the amount of systemic risk they create, and that

a bank is systemically risky if it is in the upper tail (e.g., the top decile or the top quartile)

of the bank risk distribution. A technically perfect riskometer (one that implements the

true systemic risk model in the correct way) estimated with a sufficiently large sample

would provide a Guilty reading for all systemically risky banks and a Safe reading for all

other banks. In reality riskometer readings will not be perfectly accurate due to technical

imperfections and estimation risk. There is now a substantial research effort aimed at

improving riskometer design (see, for example, Bisias et al. (2012)’s survey of 31 systemic

risk models or the ECB’s (2012) report on the progress of its Macroprudential Research

Network), and we assume that this research effort has been a success and that each of

the riskometers we examine is technically perfect. We focus our analysis entirely upon

the impact of estimation risk, which even a perfect riskometer will suffer from.

To construct a best case scenario for riskometer reliability, we take steps to minimize esti-

mation risk by analyzing the reliability of two relatively simple (but legitimate) riskome-

ters which we implement in the most straight-forward way that we can devise. The

riskometers we choose are the Marginal Expected Shortfall (MES) measure developed by

Acharya et al. (2010) and the CoVaR measure developed by Adrian and Brunnermeier

(2008, 2011). These two riskometers are among the most widely cited and analyzed sys-

temic risk measures, so they are undoubtedly legitimate riskometers (see, for example,

Benoit et al., 2013; Danielsson et al., 2015; Idier et al., 2011; Zhang et al., 2013). Again,

as we assume away any error due to design imperfections, any inherent design imperfec-
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tions in the riskometers themselves and/or any simplifying assumptions that we make

when implementing them that reduce their economic validity will in no way adversely

affect our measure of riskometer reliability.

We evaluate each riskometer’s reliability using daily returns from 1974 to 2012. In our

base specification we use a sample of the largest 200 US financial firms and rolling 5 year

estimation windows. We find that MES has an average reliability of 39% and that CoVaR

has an average reliability of 6%.4 Each of the riskometers we examine thus falls far short

of the level of reliability that TMP requires due to estimation error alone. It follows that

TMP needs a riskometer that is both technically superior to the two relatively simple

riskometers that we analyze here while simultaneously being far less subject to estimation

risk.

Our analysis rests upon two key assumptions. First, we assume that capital is socially

costly. While there is some debate on this point (see, for example Admati and Hellwig,

2013), the consensus in the policy community is that increasing bank capital requirements

adversely affects economic activity. The cost of crisis and cost of capital numbers we use

in our analysis reflect this consensus. Second, we assume that a regulator pursuing the

TMP option will need to use a formal systemic risk model (that is, a riskometer) to

identify systemically risky banks. In theory, regulators could classify banks as systemic

or non-systemic by using intuitive judgement informed by a systemic risk model instead,

and in this scenario the reliability of the regulator’s riskometer may not be of central

importance. However, as regulators cannot directly observe a bank’s contribution to

systemic risk and will not experience many crises, it is difficult to see how they could

form a reliable model-free view of a bank’s contribution to systemic risk (let alone a

model-free view that could withstand independent challenge from an objecting bank).5

4We consider a variety of alternative specifications in which we vary the proportion of banks that are
systemically risky, the length of the estimation window, and the number of banks in the sample. The
choice of specification does not materially alter our reliability results.

5The potential for external challenge of regulatory decisions has been heightened by the fact that
most regulators are under formal or informal requirements to undertake a cost-benefit analysis of policy
decisions. For example, the act authorizing the creation of the UK’s prudential supervisor the PRA
requires it to show that “A burden or restriction which is imposed ...should be proportionate to the
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Riskometers will therefore be central to any TMP effort, and this in turn implies that an

effective TMP requires a reliable riskometer.

We organize our analysis as follows. In the next section, we analyze the relationship

between macroprudential policy and riskometer reliability. Given the reliability threshold

this analysis yields, we describe the empirical methodology in Section 3. In Section

4, we present the riskometers we use in our analysis and evaluate their performance.

Conclusions follow.

2 Macroprudential Policy and Riskometer Reliabil-

ity

In this section we derive the relationship between the cost of a crisis, the social cost of

bank capital, riskometer reliability, and a regulator’s optimal policy choice.

We assume that the regulator oversees a continuum of banks. A proportion ψ of these

banks are risky and the remainder are safe. Risky banks create systemic risk and safe

banks do not. Banks are otherwise identical. All banks prefer to operate with a privately

optimal low level of capital, and safe banks with low capital never cause a crisis. However,

a risky bank that operates with low capital may set in train a series of events that cause

a crisis if it becomes stressed or fails. A risky bank can eliminate the chance that it will

cause a crisis by operating with a high level of capital.

If all risky banks operate with low capital, the expected cost of a crisis in each period is

χ. The social cost of requiring all banks (risky and safe) to operate with high capital is

κ. We assume that the probability of a crisis is small and hence that the expected cost

of a crisis is an approximately linear function of the proportion of risky banks operating

with low capital.

benefits” (Financial Services and Markets Act of 2012, Chapter 3, Section 3B(1)(B)). Similarly, due
to a series of recent court decisions, US banking supervisors now operate under stringent cost-benefit
requirements (Rose and Walker, 2013).
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The regulator chooses between policy options to minimize the expected total social cost

of financial crises. This cost equals the sum of the expected cost of a crisis itself and the

social cost of any additional bank capital that the regulator requires banks to hold to

reduce the probability of a crisis. The regulator is also endowed with a riskometer that

it can use to obtain a systemic risk reading for each bank. The riskometer provides a

reading of either Guilty or Safe, with a Guilty reading meaning that the bank in question

is guilty beyond a reasonable doubt of creating systemic risk and a Safe reading meaning

that the bank is not guilty beyond a reasonable doubt of creating systemic risk. We

assume that a proportion φ of risky banks gets a Guilty reading, and that all remaining

banks get a Safe reading. We therefore set the riskometer’s reliability equal to φ.

The regulator chooses between a Targeted Macroprudential Policy (TMP) option and a

Blanket Macroprudential Policy (BMP) option. Under the TMP option, the regulator

uses its riskometer to get a risk reading for each bank and requires only those with a

Guilty reading to operate with a high level of capital. All other banks can operate with

the privately optimal low level of capital. Under the BMP option, the regulator requires

all banks to operate with the high level of capital appropriate for a systemically risky

bank.

2.1 When is Macroprudential Policy Optimal?

If the regulator chooses the BMP option, the expected cost of a crisis is 0 but all banks

operate with high capital. The cost of this policy (CBMP ) is then

CBMP = κ. (1)

If the regulator instead pursues the TMP option, all safe banks and the risky banks that

receive a Safe reading operate with low capital at no social cost and only the risky banks

with a Guilty reading need to operate with a high level of capital. Unfortunately, the
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1 − φ proportion of risky banks that obtain a Safe reading may also cause a financial

crisis. It follows that the cost of this policy (CTMP ) is

CTMP = (1− φ)χ+ φψκ. (2)

The TMP option dominates the BMP option if

CTMP = (1− φ)χ+ φψκ ≤ κ = CBMP . (3)

It follows that the regulator prefers the TMP option if the reliability of his riskometer φ

exceeds

φ ≥ χ− κ
χ− ψκ

. (4)

Denote the value of φ such that the regulator just prefers the TMP option by φ∗.

2.2 How Reliable Does a Riskometer Need to Be?

We can use equation (4) to calculate how reliable a riskometer needs to be in order

for a regulator to find the TMP option optimal given values for the expected cost of

a crisis and the social cost of capital (together with an assumption on the proportion

of banks that are risky). Happily, a recent report by the Basel Committee on Banking

Supervision (2010)—henceforth BCBS10—estimates precisely these parameters. We base

our estimates of φ∗ upon the BCBS10 analysis.

When all banks operate with a low level of capital, the key driver of the expected cost of

a crisis (χ) is the extent to which a crisis has long-lasting effects beyond the immediate

shock. As the evidence reviewed in BCBS10 suggests that financial crises do have longer

lasting effects, we set χ in our base case equal to the expected reduction in output from a

crisis assuming a moderate longer term effect. In this case, χ equals 2.64% of output/year.

We also calculate φ∗ under a High χ case and a Low χ case. In the High χ case, we assume
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that a crisis has a large long term effect (χ = 6.62% of output/year) and in the Low χ

case we assume that a crisis has no long term effects (χ = 0.8% of output per year).6

BCBS10 finds that requiring all banks to operate with a capital ratio of 15% will essen-

tially reduce the probability of a crisis to 0. So, we set the High level of capital to 15%.

Reviewing the evidence on bank capital requirements and bank activity, BCBS10 finds

that increasing the capital ratio of the banking system as a whole to 15% will reduce

output by 0.72% of output/year. In our base case, we therefore set κ = 0.72% of out-

put/year. To get an idea of how the regulator’s optimal policy choice will vary with the

cost of bank capital, we also consider a High κ and a Low κ case. In the High κ case we

increase our base κ by 50% to 1.08% of output/year, and in the Low κ case we decrease

base κ by 50% to 0.36% of output/year.

We set ψ equal to 10%. Changing ψ to 1%, 5%, or 25% has only a minimal effect upon φ∗,

so we do not consider the impact of variations in ψ further.7 Intuitively, φ∗ is insensitive

to changes in ψ because the marginal impact of this change on the total social cost of

capital under the TMP option can be offset by a small change in the expected cost of a

crisis (which is a linear function of φ).

We calculate φ∗ for each χ/κ combination in Table 1. In our base case, we find that the

reliability of the regulator’s riskometer must equal at least 75% to make it worthwhile for

the regulator to choose the TMP option.

[Table 1 approximately here]

The minimum reliability requirement for the regulator’s riskometer: i) increases as the

expected cost of a crisis increases (as the cost of allowing a risky bank to operate with

low capital increases); and ii) decreases as the social cost of bank capital increases (the

relative benefit of TMP increases as the cost of requiring all banks to operate with high

capital increases). However, setting the expected cost of a crisis equal to its base case

6These figures are from BCBS10, Table 8.
7For example, in our base case, φ∗ falls from 78% to 73% as ψ falls from 25% to 1%.
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value and increasing the social cost of bank capital by 50% decreases φ∗ to only 62%.

The minimum level of reliability that a riskometer must achieve to make TMP optimal

falls substantially below that of our base case only if one assumes that the expected cost

of a crisis is low.8

The expected cost of a crisis is low if a crisis has no long lasting effects upon economic

performance. In light of recent events, we think that it would be rash to base one’s

policy choice upon the assumption that financial crises do not have long-lasting effects.

Consequently, we think a regulator must have a riskometer with a reliability of least 75%

in order for TMP to be a sensible choice.9

3 A Method to Measure Riskometer Reliability

To measure riskometer reliability, we begin by assuming that the regulator oversees a

banking system consisting of Q banks, numbered B1, . . . , BQ. Each bank Bq will create

a threat to the ability of the financial system to function if it becomes stressed or fails,

and we assume that banks can be ordered (from highest to lowest) by the severity of

the threat that they pose. Denote Bq’s position in this ordering by Θq,True. We assume

that a proportion ψ of these banks create a severe threat to the ability of the financial

system to function and so classify these banks as systemically risky. Hence, a bank is

systemically risky if Θq,T rue ≤ ψQ.

The regulator cannot directly observe Θq,True and so cannot know with certainty which

banks are guilty of creating systemic risk. Instead, the regulator must use a riskometer

ρ and a sample S to estimate the probability that a bank is guilty of creating systemic

8In this case, the expected cost of a crisis assuming all banks operate with low capital is approximately
equal to the social cost of requiring all banks to operate with a high level of bank capital, implying that
the BMP option does not lower the expected total social cost of a financial crisis. The TMP option will
therefore dominate the BMP option if it leads to even a minimal decrease in the probability of crisis,
which it will do even if the regulator’s riskometer is very unreliable.

9While we base our analysis upon a 15% capital ratio, using the BCBS10 parameters for the expected
cost of a crisis and the expected cost of bank capital for capital ratios of 12% to 14% imply that φ∗ ≥
75%. Our 15% capital ratio assumption is therefore a conservative one.
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risk. Denote this probability by πq,ρ,S, with

πq,ρ,S = Prob
[
Θq,True ≤ ψQ

]∣∣∣∣∣
S

. (5)

We use an indicator variable G to identify banks that are guilty beyond a reasonable

doubt of creating systemic risk. Given the substantial penalty that a bank suffers when a

regulator designates it as systemic, we assume that a bank is guilty beyond a reasonable

doubt of creating system risk if πq,ρ,S ≥ 0.9.10 It follows that

Gq,ρ,S =


1 if πq,ρ,S ≥ 0.9,

0 otherwise.

(6)

A riskometer’s reliability φ then equals

φ =

∑
q Gq,ρ,S

ψQ
. (7)

For simplicity, we assume here that there are no false positive findings of guilt (this

assumption will create an upward bias in our measure of riskometer reliability).

A riskometer’s reliability can suffer due to technical imperfections and/or estimation risk.

A riskometer is technically imperfect if the position of a given bank in the list of banks

sorted by systemic risk as measured by a given riskometer in the limiting case of an

infinite amount of data (Θq,ρ,Limit) is not equal to Θq,True. A riskometer is subject to

estimation risk if the position of a given bank in the list of banks sorted by systemic risk

as measured by a given riskometer for a given sample S (Θq,ρ,S) is not necessarily equal

to Θq,ρ,Limit. All riskometers will suffer from estimation risk as the constantly evolving

nature of both individual banks and the financial system mean that the amount of data

10McCauliff (1982) undertook a survey of Federal Judges in the US, and found that majority of them
believe that “beyond a reasonable doubt” means: with a probability of 0.9 or higher. Weinstein and
Dewsbury (2007) consider this topic as well and argue that “beyond a reasonable doubt” should mean:
with probability 0.95 or higher.
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available to estimate a riskometer reading for a given bank at a given time is necessarily

limited.

As we are seeking to find an upper bound on how reliable a riskometer can be in the best

case scenario, we assume that each riskometer we examine is technically perfect, that is:

Θq,ρ,Limit = Θq,True.

We focus our analysis upon the impact of estimation risk on bank guilt probabilities and

so on riskometer reliability.

3.1 Estimating Guilt Probabilities

We estimate each bank’s guilt probability by using a bootstrap consisting of T trials,

numbered τ = 1, . . . , T . In each trial we: i) draw a bootstrap sample from our original

data (we discuss this process below); ii) use a riskometer ρ to obtain each bank q’s

systemic risk score, which we denote by ωq,ρ,τ ; and iii) sort banks by their risk scores

(from highest to lowest). Denote the position of Bq in this list by θq,ρ,τ .

We create an indicator variable g to denote the banks that are systemically risky based

upon the evidence of a given trial, with

gq,ρ,τ =


1 if θq,ρ,τ ≤ ψQ,

0 otherwise.

(8)

The probability that a bank is guilty of creating systemic risk is then

πq,ρ,S =

∑
τ gq,ρ,τ
T

. (9)

Our sample will contain both time series and cross-sectional relationships. To capture
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both aspects of the data, we estimate guilt probabilities using a stationary bootstrap

consisting of 1000 trials. Following the Politis and Romano (1991) algorithm, we set

the block-size in our bootstrap to 40 observations to capture the time series features of

the data. As a sensitivity check, we experimented with block sizes of 20, 30, and 50

observations and found that our choice of block-size did not materially affect our results.

4 Estimating Riskometer Reliability

To establish a plausible upper bound on riskometer reliability, we apply the method we

describe in the last section to measure the reliability of two relatively simple riskometers

(that is, riskometers that are just complex enough to be considered true systemic risk

measures). We then use these riskometers to estimate individual bank guilt probabilities,

and we use these guilt probabilities in turn to measure riskometer reliability. We focus

our analysis on two relatively simple riskometers as it is likely that estimation risk will

increase with riskometer complexity (as more complex riskometers place greater demands

upon the data). So, by looking at simple riskometers, we can find a lower bound for the

impact of estimation risk. Since we have already assumed away the impact of technical

imperfections, it follows our analysis will provide a best case scenario for riskometer

reliability.

4.1 Riskometers

The two riskometers we examine are Acharya et al. (2010)’s MES and Adrian and Brun-

nermeier (2008)’s CoVaR. Both MES and CoVaR are true systemic risk measures in that

a bank’s risk reading is a function of the relationship between the bank’s performance and

that of the market as a whole or the financial system rather than the bank’s performance

in isolation. Furthermore, each of these riskometers can be implemented in a very “bare

bones” fashion that captures the bank/wider system relationship in a straight-forward
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manner. Surveying the systemic risk measurement literature, we at least could not find

less complex systemic risk measures than these.11

4.1.1 The MES Riskometer

The premise of MES is that a bank creates systemic risk if it performs poorly at the same

time that the economy as a whole performs poorly. This idea leads to the MES riskometer,

in which a bank’s systemic risk score is equal to its expected return conditional upon the

market performing poorly. Acharya et al. (2010) operationalize MES as follows: ωq,MES

is equal to the average return for Bq on days when the market return is at or below its

5% value-at-risk (VaR05
M) value. Denote the set of days for which RM < VaR05

M by Z and

Bq’s returns on these days by RBq ,Z . Then,

ωq,MES = Mean
[
RBq ,Z

]
. (10)

4.1.2 The CoVaR Riskometer

Adrian and Brunnermeier’s (2008, 2011) CoVaR is based upon the idea that a bank

creates systemic risk when stress at the bank coincides with stress in the financial system

as a whole. This idea is implemented in the riskometer ∆CoVaR, which measures a

bank’s systemic risk score by looking at the change in financial system risk conditional

upon the bank being under stress.

The measure of financial system risk is VaR01
F , which is the 1% VaR on the value-weighted

portfolio of financial firms. To see how this measure of risk changes as a given bank

becomes stressed, suppose that Bq is under stress when RBq = VaR01
Bq

. Bq’s ∆CoVaR

11Of course, the basic versions of MES and CoVaR that we examine have been subject to numerous
refinements that aim to improve their technical quality (see, for example, Adrian and Brunnermeier
(2011) and Lopez-Espinosa et al. (2012) for CoVaR and Brownlees and Engle (2012) and Acharya et al.
(2012) for MES). But, as we are not evaluating riskometers on the basis of their technical merits, we do
not analyze the more elaborate versions of MES or CoVaR here.
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then equals

ωq,∆CoVaR = VaR01
F |RBq=VaR01

Bq
− VaR01

F |RBq=Median[RBq ]
. (11)

Following Adrian and Brunnermeier (2008, 2011), we estimate the relationship between

VaR01
F and RBq with a quantile regression:

VaR01
F |RBq

= α + β RBq . (12)

We use equation (12) to calculate ωq,∆CoV aR in equation (11).

We measure bank returns by (easily observable) daily common stock returns rather than

by (difficult to infer) changes in the market value of bank assets. Adrian and Brunner-

meier (2008) report that both methods lead to similar results in practice, and we chose

daily stock return measure so as to avoid very difficult errors in variable problem.

4.2 Data and Cases

We estimate riskometer reliability using daily return data for large US financial firms for

the period 1974–2012.12 We use the CRSP Value-Weighted Index as our measure of the

market rate of return (used to calculate MES) and the Fama-French Finance Industry

portfolio return as our measure of the financial sector return (used to calculate CoVaR).

In our base case we: i) use a sample consisting of the largest 200 financial firms at the

end of each year; ii) assume that 10% of these firms are systemically risky (denoted by

ψ10%); and iii) estimate systemic risk scores by using rolling 5 year estimation windows.

To identify the largest financial firms, we first drop firms with missing returns over the

year Y to Y − 4 window and calculate the end-of-year Y market capitalization for the

12We obtain our return data from CRSP, and we count a firm as a financial firm if its 4 digit SIC code
is in the set (6020, 6021, 6022, 6023, 6025, 6026, 6030, 6035, 6036, 6052, 6060, 6110, 6111, 6112, 6120,
6122, 6123, 6130, 6140, 6141, 6145, 6146, 6150, 6153, 6159, 6160, 6162, 6163, 6199, 6210, 6211, 6310,
6311, 6330, 6331, 6411, 6500, 6510, 6512, 6513, 6514, 6515, 6519, 6531, 6552, 6553, 6710, 6711, 6712,
6719).

14



remaining firms. Our sample then consists of the 200 firms with the highest market cap.

For a given riskometer, we calculate guilt probabilities (that is, the probability that a

sample firm is in the upper decile of the risk score distribution) for each firm and year.

We then calculate the reliability for each riskometer for each year.

To assess the sensitivity of our results to the parameters of our base case, we create a

series of alternative cases in which we vary the sample size (200 or 300), our assumption

on the proportion of banks that create systemic risk (5%, 10%, or 25%), and the length

of the estimation window (2 year or 5 year). In particular, we calculate guilt probabilities

and riskometer reliability for the following cases:

1. 200 Sample Firms/ψ10%/5 Year Estimation Windows;

2. 300 Sample Firms/ψ10%/5 Year Estimation Windows;

3. 200 Sample Firms/ψ25%/5 Year Estimation Windows;

4. 200 Sample Firms/ψ25%/2 Year Estimation Windows;

5. 200 Sample Firms/ψ5%/5 Year Estimation Windows.

We find that our results do not vary materially across the cases we examine, so we did

not explore all possible sample size/ψ/estimation window combinations.

4.3 Guilt Probabilities

We use the bootstrap method we describe in Section 3 to calculate a guilt probability for

each bank for each riskometer/case pair for each year. We find that while the bank with

the highest estimated systemic risk score in any given year is generally guilty beyond a

reasonable doubt of creating systemic risk, guilt probabilities decline rapidly as a bank’s

position in the list of banks sorted by systemic risk score falls. In other words, it is

impossible to reliably identify the banks in the upper decile (or quartile) of banks ranked

by their systemic risk scores.
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To illustrate this result, in Figure 1, we plot guilt probabilities for each riskometer

for the 200 Sample Firms/ψ10%/5 Year Estimation Windows case and the 200 Sample

Firms/ψ25%/5 Year Estimation Windows case. The results for the other cases are very

similar. To construct the plot, we sort banks from the highest to the lowest on the basis

of a bank’s median risk score across the bootstrap trials for a riskometer/year/case com-

bination. In the first case we assume that 20 banks create systemic risk (i.e., ψ = 10%),

so we plot the guilt probabilities for the banks with the highest, 10th highest, and 20th

highest median risk score. In the second case we assume that 50 banks create systemic

risk (i.e., ψ = 25%), so we plot the guilt probabilities of the banks with the highest, 25th

highest, and 50th highest median risk score.

To begin with MES, we find that the firm with the highest median systemic risk score in

each case is indeed guilty beyond a reasonable doubt of creating systemic risk (Figure 1,

Panels A and B). However, the guilt probability of the 10th firm in the ψ10% case and the

25th firm in the ψ25% is often less than our 90% threshold for guilt beyond a reasonable

doubt. The guilt probability of the 20th firm in the ψ10% case and the 50th firm in the

ψ25% is always far less than our 90% threshold for guilt beyond a reasonable doubt.

Turning to CoVaR, the firm with the highest median systemic risk score is again generally

guilty beyond a reasonable doubt of creating systemic risk. However, for this riskometer

it is almost always the case that the guilt probabilities of even the firm with the 10th

highest median systemic risk score in the ψ10% case and the firm with the 25th highest

median systemic risk score in the ψ25% are too low to establish guilt beyond a reasonable

doubt.

[Figure 1 approximately here]
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4.4 Riskometer Reliability

A riskometer’s reliability is equal to the number of firms that are guilty beyond a reason-

able doubt of creating systemic risk divided by the number of systemically risky firms.

As the guilt probabilities that we discuss above would lead one to expect, both MES and

CoVaR are unreliable riskometers.

We plot riskometer reliability by year in Figure 2 and provide summary statistics on

reliability in Table 2.13 The average reliability for the MES riskometer is 38.63% in our

base case (standard deviation: 15.82%). The average reliability of the CoVaR riskometer

is even lower, equalling only 6.44% in our base case (standard deviation: 6.21%). Reli-

ability for both riskometers is highest for the 200 Sample Firms/ψ25%/5 Year Windows

case, with MES’s reliability increasing to 53.69% and CoVaR’s to 20.96%.

[Figure 2 approximately here]

[Table 2 approximately here]

In Section 2 we argue that a regulator finds the targeted macroprudential policy the

optimal choice only if the reliability of their riskometer exceeds 75% (or, if one assumes

that the cost of bank capital is 50% higher than is reported in BCBS10, 62%). Our results

here show that the riskometers we examine do not meet this requirement in any year, let

alone on average (we can reject the hypothesis that reliability = 75% and the hypothesis

that reliability = 62% at the 1% level for both riskometers). In other words, we find

that even if one supposes that the riskometers we examine here are technically perfect,

estimation error alone renders them incapable of providing an adequate foundation for

TMP.

13While examining the dynamics of riskometer performance is beyond the scope of this paper, we note
that Danielsson et al. (2015) explore this topic.
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5 Conclusion

Andrew Crockett’s (2000) vision for targeted macroprudential policy is a compelling one:

since a financial firm only generates a negative externality for the economy if it creates

systemic risk, a regulator should target a bank for intervention only if it is guilty of

creating systemic risk. However, by classifying a firm as “systemically risky”, a regulator

places that firm at a disadvantage relative to its non-systemic commercial rivals. Common

sense suggests (and recent evidence confirms) that firms will therefore fiercely oppose

being designated as systemically risky. Consequently, in a post-crisis environment, we

think that a regulator will need to be able to show that a bank is guilty beyond a

reasonable doubt of creating systemic risk before subjecting it to the capital punishment

penalty that the macroprudential code sets forth.

If a regulator has to be able to show beyond a reasonable doubt that a firm does create

systemic risk, then the regulator will need to use a formal model–a riskometer–to do

so.14 It follows that a regulator will only be able to effectively pursue the TMP option

if his riskometer is reliable enough to show that a sufficiently high proportion of truly

systemically risky firms are guilty beyond a reasonable doubt of creating systemic risk.

Riskometer reliability is therefore of central importance to macroprudential policy, and

we are, to the best of our knowledge, the first to analyze this topic.

Given current estimates of the benefits of avoiding a financial crisis and the social cost of

bank capital, we find that the TMP option is optimal only if the regulator can show that

at least 75% of systemically risky banks are guilty of creating systemic risk. To see if it

is possible for riskometers to achieve this level of reliability, we estimate the reliability

of two leading systemic risk models, viz., MES and CoVaR, in a best case scenario. In

this scenario we assume that each riskometer is technically perfect and concentrate upon

14In antitrust policy, for example, a regulator wishing to block a merger on anti-competitive grounds
cannot just claim that a given merger will adversely affect the market based upon regulatory judgement.
Instead, the regulator must be able to show using formal analysis and evidence that the merger will ad-
versely affect the market. We think that macroprudential policy will move in this direction as opposition
from firms will force regulators to justify their actions.
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assessing the impact of estimation risk alone (which will affect even the ideal riskometer).

We find that even in this best case scenario the riskometers we examine are far less reliable

than the TMP option demands.

Contemplating what a truly sound riskometer would need to capture to accurately mea-

sure a bank’s contribution to systemic risk (e.g., the non-linearities in bank behavior or

endogenous risk), it is difficult to see how any systemic risk measure that is of sufficient

technical quality to serve as a proper foundation for TMP will be easier to estimate

than the versions of MES or CoVaR that we examine here. Thus, while the substantial

research effort now underway that aims to develop better systemic risk measures will

certainly make progress on the resolving the theoretical and implementation problems

that we have assumed away, it seems to us that this progress may well come at the price

of making the estimation risk that we do examine here even worse. So, while targeted

macroprudential policy would clearly be optimal for an omniscient regulator who could

directly observe a bank’s impact upon systemic risk, it is not at all clear that it makes

sense for actual regulators given the riskometers that we now have or are likely to have.
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Figure 1: Guilt Probabilities
In this figure we plot the probability that selected banks are guilty of creating systemic risk. We assume
that a bank is guilty of creating systemic risk if it is in the upper decile (panels (a) and (c)) or upper
quartile (panels (b) and (d)) of banks sorted by their systemic risk scores. In Panels (a) and (b), we
measure the risk scores by the MES riskometer, whereas, we use ∆CoVaR riskometer in Panels (c) and
(d). To calculate bank guilt probabilities given a sample S, we use a block bootstrap with 1,000 trials. In
each trial we draw a bootstrap sample and calculate each bank’s MES and ∆CoVaR systemic risk score
and note each bank’s position in the list of banks sorted (from highest to lowest) by their riskometer
scores. The probability that a bank creates systemic risk is equal to the proportion of trials in which
that bank is in the upper decile or quartile of banks. We use 5 year estimation windows, and our sample
for a year Y consists of the 200 financial firms (classified on the basis of 4-digit SIC codes) with the
highest market capitalization on the last trading day of year Y for which we have return observations for
each trading day in years Y to Y − 4. Our sample period consists of the years 1974 to 2012. In panels
(a) and (c) we assume that 20 banks create systemic risk, so we plot the guilt probabilities of the banks
with the highest, 10th highest, and 20th highest median risk scores across the bootstrap trials. In panels
(b) and (d) we assume 50 banks create systemic risk so we plot the guilt probabilities of the banks with
the highest, 25th highest, and 50th highest median risk scores across the bootstrap trials.
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Figure 2: Riskometer Reliability
In this figure we plot the reliability of the MES and ∆CoVaR riskometers for each sample year. A
riskometer’s reliability is equal to the proportion of systemically risky banks that can be shown to be
guilty beyond a reasonable doubt of creating systemic risk on the basis of that riskometer’s readings.
We assume that a bank is guilty of creating systemic risk if it is the upper 5%, 10%, or 25% (depending
upon the case) of banks sorted by their systemic risk scores as measured by a given riskometer. The
probability that a bank is guilty of creating systemic risk given a sample S is equal to the probability
that the bank is in the upper 5%, 10%, or 25% of banks sorted by their riskometer scores. We describe
how we calculate these probabilities in Figure 1. A bank is guilty beyond a reasonable doubt of creating
systemic risk if that probability is greater than or equal to 90%. Our sample for a year Y consists
of the 200 or 300 financial firms (classified on the basis of 4-digit SIC codes) with the highest market
capitalization on the last trading day of year Y for which we have return observations for each trading
day in years Y to Y − 4. Our sample period consists of the years 1974 to 2012. We plot riskometer
reliability for 5 cases: i) 200 Sample Firms/20 Systemically Risky Firms/5 Year Estimation Windows; ii)
300 Sample Firms/30 Systemically Risky Firms/5 Year Estimation Windows; iii) 200 Sample Firms/50
Systemically Risky Firms/5 Year Estimation Windows; iv) 200 Sample Firms/50 Systemically Risky
Firms/2 Year Estimation Windows; and v) 200 Sample Firms/10 Systemically Risky Firms/5 Year
Estimation Windows.
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Table 1: Optimal Policy And Riskometer Reliability
In this table we calculate the regulator’s optimal choice of Targeted Macroprudential Policy (TMP) or
Blanket Macroprudential Policy (BMP) as a function of the social cost of a 15% bank capital requirement
(rows), the social cost of a financial crisis (columns), and riskometer reliability calculated as in (4) (cell
values). The regulator chooses TMP if the reliability of its riskometer is greater than or equal to the
cell value. We derive our estimates for the social cost of bank capital and the social cost of a financial
crisis from Basel Committee on Banking Supervision (2010) report (BCBS10). We consider three cases
for the social cost of bank capital. In the first, we set it equal to that assumed in BCBS10 (0.72% of
output/year), and for robustness we also consider cases in which we increase and decrease that cost by
50%. We also consider three scenarios for the social cost of a crisis. The key factor that determines the
impact of a crisis is the extent to which a crisis has persistent effects. BCBS10 considers three scenarios:
moderate persistent effects, large persistent effects, and minimal persistent effects. In the moderate
case, the expected social cost of a crisis is 2.64% of output/year, in the Large case the cost is 6.62% of
output/year, and in the minimal case that cost is 0.8% of output/year. A riskometer’s reliability is equal
to the proportion of systemically risky banks that the regulator can prove guilty beyond a reasonable
doubt of creating systemic risk when using that riskometer, and we assume that 10% of banks create
systemic risk.

Crisis Persistency Effects
Cost of Capital Moderate Large Minimal

BCBS10 75% 90% 11%

50% Higher 62% 85% 0%

50% Lower 88% 95% 58%

25



Table 2: Riskometer Reliability
In this table we report the mean and standard deviation of the reliability of the MES and ∆CoVaR
riskometers. A riskometer’s reliability is equal to the proportion of systemically risky banks that can be
shown to be guilty beyond a reasonable doubt of creating systemic risk on the basis of that riskometer’s
readings. We assume that a bank is guilty of creating systemic risk if it is the upper 5%, 10%, or
25% (depending upon the case) of banks sorted by their systemic risk score as measured by a given
riskometer in the limiting case of an infinitely large sample. The probability that a bank is guilty of
creating systemic risk given a sample S is equal to the probability that the bank is in the upper 5%,
10%, or 25% of banks sorted by their riskometer scores. We describe how we calculate these probabilities
in Figure 1. A bank is guilty beyond a reasonable doubt of creating systemic risk if that probability is
greater than or equal to 90%. Our sample for a year Y consists of the 200 or 300 financial firms (classified
on the basis of 4-digit SIC codes) with the highest market capitalization on the last trading day of year
Y for which we have return observations for each trading day in years Y to Y − 4. Our sample period
consists of the years 1974 to 2012. We report riskometer reliability statistics for 5 cases: i) 200 Sample
Firms/20 Systemically Risky Firms/5 Year Estimation Windows; ii) 300 Sample Firms/30 Systemically
Risky Firms/5 Year Estimation Windows; iii) 200 Sample Firms/50 Systemically Risky Firms/5 Year
Estimation Windows; iv) 200 Sample Firms/50 Systemically Risky Firms/2 Year Estimation Windows;
and v) 200 Sample Firms/10 Systemically Risky Firms/5 Year Estimation Windows. The last two
columns indicate whether one-sided mean comparison tests reject the null of φ = 75% and φ = 62% at
the 1% level.

Reject Reject
Specification Riskometer Mean St. Dev. φ = 75%? φ = 62%?

200 Sample Firms/
20 Systemically Risky Firms/ MES 38.63% 15.82% Yes Yes

5 Yr Estimation Windows ∆CoVaR 6.44% 6.21% Yes Yes

300 Sample Firms/
30 Systemically Risky Firms/ MES 38.38% 15.81% Yes Yes

5 Yr Estimation Windows ∆CoVaR 9.50% 8.07% Yes Yes

200 Sample Firms/
50 Systemically Risky Firms/ MES 53.69% 9.54% Yes Yes

5 Yr Estimation Windows ∆CoVaR 20.96% 11.51% Yes Yes

200 Sample Firms/
50 Systemically Risky Firms/ MES 43.89% 10.03% Yes Yes

2 Yr Estimation Windows ∆CoVaR 11.53% 7.03% Yes Yes

200 Sample Firms/
10 Systemically Risky Firms/ MES 27.40% 15.34% Yes Yes

5 Yr Estimation Windows ∆CoVaR 1.46% 5.00% Yes Yes
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