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Abstract

We develop a model of financially constrained arbitrage, and use it to study the dynamics

of arbitrage capital, liquidity, and asset prices. Arbitrageurs exploit price discrepancies between

assets traded in segmented markets, and in doing so provide liquidity to investors. A collateral

constraint limits their positions as a function of capital. We show that the dynamics of arbi-

trage activity are self-correcting: following a shock that depletes arbitrage capital, profitability

increases, and this allows capital to be gradually replenished. Spreads increase more and recover

faster for more volatile trades, although arbitrageurs cut their positions in these trades the least.

When arbitrage capital is more mobile across markets, liquidity in each market generally be-

comes less volatile, but the reverse may hold for aggregate liquidity because of mobility-induced

contagion.
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1 Introduction

The assumption of frictionless arbitrage is central to finance theory and all of its practical applica-

tions. It is hard to reconcile, however, with the large body of evidence on asset-market “anomalies,”

especially those concerning the price discrepancies between assets with almost identical payoffs. One

approach to address the anomalies has been to abandon the assumption of frictionless arbitrage

and study the constraints faced by real-world arbitrageurs, e.g., hedge funds or trading desks in

investment banks. Arbitrageurs often have limited external capital, and there is growing evidence

that this constrains their activity and ultimately affects market liquidity and asset prices. These

effects arise both during crises and more tranquil times, and in a variety of markets ranging from

individual stocks all the way to currencies.1

In this paper we develop a model of financially constrained arbitrage, and use it to study

the dynamics of arbitrage capital, liquidity, and asset prices. These dynamics involve a two-way

feedback. On one hand, arbitrageurs’ capital affects their investment capacity and hence asset

prices. On the other hand, because arbitrageurs trade in asset markets, asset prices determine

their trading profits and losses, which in turn drive the evolution of arbitrage capital.

We show that the dynamics of arbitrage activity are self-correcting. For example, following a

shock that depletes arbitrage capital, arbitrage activity becomes more profitable, and this allows

capital to be replenished and converge back towards its steady-state, pre-shock value. We also

determine how the self-correcting pattern manifests itself in the cross-section of arbitrage trades.

More volatile trades with higher margin requirements experience a larger increase in their spreads

(i.e., price discrepancies relative to frictionless arbitrage) in response to the shock, and a faster

recovery. Yet, arbitrageurs cut their positions in these trades the least. Trades with longer time to

convergence also experience a larger increase in their spreads in response to the shock.

We finally use our model to examine how the degree of mobility of arbitrage capital affects

market stability. When capital is more mobile across markets, the liquidity that arbitrageurs

provide to investors in each market generally responds less to shocks. At the same time, mobility

generates contagion, as arbitrageurs cut their positions across multiple markets in response to a

shock in one market. Because of contagion, the aggregate liquidity, averaged across markets, may

respond more to shocks when arbitrage capital is more mobile.

1For example, Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) find that bid-ask spreads
quoted by specialists in the New York Stock Exchange widen when specialists experience losses. Hameed, Kang, and
Viswanathan (2010) and Nagel (2012) show that the returns to a liquidity-providing strategy that exploits short-term
reversals are higher following drops in the stock market or increases in volatility, times during which specialists are
more likely to be constrained. Coval and Stafford (2007) show that stocks sold by distressed mutual funds, which
experience extreme outflows, perform abnormally well after the outflows occur. Jylha and Suominen (2011) find that
outflows from hedge funds that perform the carry trade predict poor performance of that trade, with low interest-rate
currencies appreciating and high-interest rate ones depreciating.
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The specifics of our model are as follows. We assume a discrete-time, infinite-horizon economy,

with a riskless asset and a number of “arbitrage opportunities” consisting of pairs of risky assets

with identical payoffs. Each risky asset is traded in a segmented market by investors who can

trade only that asset and the riskless asset. Investors receive endowment shocks that affect their

valuation for the risky asset in their market. Because of these shocks, the prices of the two assets in

a pair can differ. The assumption that the two assets in each pair have identical payoffs is meant to

capture situations where assets have closely related payoffs but can trade at significantly different

prices. Market segmentation could arise because of informational asymmetries or regulation.2

An additional set of agents, arbitrageurs, seek to exploit the price discrepancies between the

assets in each pair. In doing so, they intermediate trade across investors and provide liquidity to

them. Arbitrageurs are “special” in that they can trade across segmented markets and thus have

better opportunities than other investors. We term the price discrepancies that they seek to exploit

“arbitrage spreads” and use them as an inverse measure of liquidity: arbitrageurs provide perfect

liquidity if spreads are zero.

Arbitrageurs are constrained in their access to external capital. We derive their financial con-

straint following the logic of market segmentation and assuming that they can walk away from

their liabilities unless these are backed by collateral. Consider an arbitrageur wishing to buy an

asset and short the other asset in its pair. The arbitrageur could borrow the cash required to buy

the asset, but the loan must be backed by collateral. Posting the asset as collateral would leave

the lender exposed to a decline in its value. The arbitrageur could post as additional collateral the

short position in the other asset, which offsets declines in the value of the long position. Market

segmentation, however, prevents investors other than arbitrageurs from dealing in multiple risky

assets. Hence, the additional collateral must come from the arbitrageur’s holdings of the riskless

asset. We assume that collateral must be sufficient to fully protect the lender against default. The

collateral requirement limits the positions that arbitrageurs can establish as a function of their

capital. Note that positions in assets with more volatile payoffs require more collateral so that

lenders are protected against larger fluctuations in asset value.

In the Appendix we derive the arbitrageurs’ financial constraint as an optimal contracting

arrangement. We consider the full set of collateralized contracts that can be traded between

arbitrageurs and investors in each segmented market. We show that when asset payoff distributions

from one period to the next are binomial, contracts traded in collateral equilibrium (Geanakoplos

2Examples of assets with closely related payoffs that can trade at significantly different prices include “Siamese-
twin” stocks, which are claims to identical dividend streams but trade in different countries (e.g., Rosenthal and
Young (1990) and Dabora and Froot (1999)), “on-the-run” and “off-the-run” bonds, which have similar coupon rates
and times to maturity but were issued at different times (e.g., Amihud and Mendelson (1991), Warga (1992) and
Krishnamurthy (2002)), bonds and credit-default swaps, the two legs of covered interest arbitrage strategies in the
currency market, etc. In the case of Siamese-twin stocks, for example, the investors in our model could be interpreted
as domestic-equity mutual funds, which have a regulatory mandate to invest only in domestic stocks.
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(1997, 2003)) take our assumed form.

In the absence of the financial constraint, arbitrageurs would drive all spreads down to zero

and provide perfect liquidity to investors. Given the constraint, however, spreads may remain

positive, and the arbitrageurs’ optimal policy is to invest in the opportunities that offer maximum

return per unit of collateral. Equilibrium is characterized by a cutoff return per unit of collateral:

arbitrageurs invest in the opportunities above the cutoff, driving their return down to the cutoff, and

do not invest in the opportunities below the cutoff. The cutoff return represents the profitability

of arbitrage activity: it is a riskless per-period return that arbitrageurs earn above and beyond

the riskless rate. Profitability is inversely related to arbitrage capital. When, for example, capital

increases, arbitrageurs become less constrained and can hold larger positions. This drives down the

returns of the opportunities they invest in, hence lowering profitability.

The self-correcting dynamics follow from the inverse relationship between profitability and cap-

ital. Following a (unanticipated) shock that depletes capital, arbitrageurs are forced to scale down

their positions, and profitability increases. Because of the higher profits, the capital of arbitrageurs

gradually increases. This, in turn, causes profitability to decrease, slowing down further capital

accumulation. Capital converges towards a steady-state value, identical to that before the shock.

In steady state, arbitrage remains profitable enough to offset the natural depletion of capital due

to arbitrageurs’ consumption.

Next, we examine how the self-correcting pattern manifests itself in the cross-section of arbitrage

opportunities. Opportunities constituted by assets with more volatile payoffs offer higher returns

to arbitrageurs because they require more collateral. For the same reason, their returns are more

sensitive to movements in the aggregate return per unit of collateral. Therefore, they increase more

following negative shocks to capital, and recover faster. The same applies to spreads, which are

present values of future returns. At the same time, arbitrageurs cut their positions in more volatile

opportunities the least because investors’ demand functions for the corresponding assets are less

price-elastic: high volatility makes investors more reluctant to give up the insurance they receive

from arbitrageurs. Opportunities for which endowment shocks have longer duration, and hence

price discrepancies take longer to disappear, have larger spreads as well. This is because spreads

are present values of future returns and the summation includes more terms. For the same reason,

the spreads of these opportunities increase more following negative shocks to capital.

Finally, we use our framework to examine whether markets are more stable when arbitrage

capital can move more freely across them. We compare the case of integration of arbitrage markets,

where all arbitrageurs can trade all assets as in our baseline model, to that of segmentation, where

any given arbitrageur can trade only one given opportunity.
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Integration attenuates the effect that shocks in one arbitrage market have on that market’s

liquidity. This is because by moving across markets, arbitrageurs bring in more investors to absorb

the shocks. At the same time, liquidity becomes affected by shocks to other markets—a contagion

effect. When arbitrage opportunities are symmetric in terms of their characteristics, e.g., the volatil-

ity of payoffs and the size and duration of endowment shocks, the contagion effect is dominated,

and liquidity in each market is less volatile under integration. When opportunities are sufficiently

asymmetric, however, the contagion effect can dominate for markets in which endowment shocks,

and hence arbitrageur positions, are small. Integration exposes small markets to larger shocks from

other markets.

The effect of integration on the aggregate liquidity, averaged across markets, is more compli-

cated. Indeed, while liquidity can become less volatile in individual markets, it becomes more

correlated across markets. When arbitrage opportunities are symmetric, the two effects exactly

cancel out, and aggregate liquidity is equally volatile under integration and segmentation. Instead,

when opportunities are asymmetric, aggregate liquidity can be more volatile under segmentation.

This is because in markets where endowment shocks are large: (i) shocks to asset payoffs have larger

effects on arbitrage capital holding prices constant and (ii) price changes amplify these effects with

a larger multiplier. Integration eliminates this convexity because the multiplier is equalized across

markets. The result can, however, reverse, if markets with large endowment shocks are also those

where investor demand functions are less price-elastic.

Our paper belongs to a growing theoretical literature on the limits of arbitrage, and more

precisely to its strand emphasizing arbitrageurs’ financial constraints.3 Shleifer and Vishny (1997)

are the first to derive the two-way relationship between arbitrage capital and asset prices. Gromb

and Vayanos (2002) introduce some of our model’s building blocks: arbitrageurs intermediate trade

across segmented markets, and are subject to a collateral-based financial constraint. They assume,

however, a finite horizon and no intermediate consumption, which rule out a steady state and the

related analysis of self-correcting dynamics. They also assume a single arbitrage opportunity, which

rules out cross-sectional effects.

Our result that arbitrage opportunities with higher collateral requirements offer higher returns

is related to a number of papers. In Geanakoplos (2003), Brumm, Grill, Kubler, and Schmedders

(2011), and Garleanu and Pedersen (2011), there are multiple risky assets differing in their collat-

eral value, i.e., the amount that can be borrowed using the asset as collateral. Assets for which this

amount is low are cheaper and offer higher expected returns. In these papers, however, there is no

explicit intermediation by arbitrageurs because all agents can trade the same assets.4 The unique

3For a survey of this literature, see Gromb and Vayanos (2010).
4Detemple and Murthy (1997) and Basak and Croitoru (2000, 2006) derive related results for more general portfolio

4



ability of arbitrageurs to intermediate trade across investors is instead key to our model. In Brun-

nermeier and Pedersen (2009), collateral-constrained arbitrageurs engage in intermediation, and

invest in opportunities with highest return per unit of collateral. Since more volatile opportunities

require more collateral, they offer higher returns, and their returns are more sensitive to changes in

arbitrage capital. The analysis is mostly static, however, and cannot address how arbitrage capital

and liquidity recover after shocks, or how the mobility of arbitrage capital affects market stability.

Our results on self-correcting dynamics of arbitrage activity around a steady state are related

to some recent papers. In Duffie and Strulovici (2012) arbitrageurs can supply insurance in one

of two independent markets, and their movement across markets is hindered by a search friction.

Losses in one market deplete arbitrage capital, causing insurance premia to rise and new capital

to enter. The self-correcting dynamics in our model arise instead because the return on existing

capital increases. This effect is not present in Duffie and Strulovici because arbitrageurs do not

reinvest the premia they earn, and hence their capital does not grow faster following losses. In He

and Krishnamurthy (2013), arbitrageurs can raise capital from other investors to invest in a risky

asset, but this capital cannot exceed a fixed multiple of their internal capital. Capital recovers from

negative shocks through increased profitability, as in our model. That paper focuses on the case of

a single risky asset, while we focus instead on how the dynamics of liquidity and returns manifest

themselves in the cross-section.5

Our analysis of optimal contracts in a binomial setting generalizes the no-default result of Fostel

and Geanakoplos (2013a), shown under the assumption that contracts extend over one period.6

Besides allowing for dynamic contracts, we allow a contract to serve as collateral for other contracts,

in a recursive manner. A similar recursive construction is in Gottardi and Kubler (2014).

Finally, our analysis of integration versus segmentation relates to Wagner (2011), who shows

that investors choose not to hold the same diversified portfolio because this exposes them to the

risk that they all liquidate at the same time, and to Guembel and Sussman (2015), who show that

segmentation generally raises volatility and reduces investor welfare. In our model, arbitrageurs

generally benefit from being diversified, but the resulting contagion effects can make aggregate

liquidity more volatile. Contagion effects resulting from changes in arbitrageur capital or portfolio

constraints are also derived in, e.g., Kyle and Xiong (2001) and Pavlova and Rigobon (2008).

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 derives

constraints.
5Capital recovery from negative shocks through increased profitability also arises in Xiong (2001), where ar-

bitrageurs can share risk with long-term traders and noise traders, in Brunnermeier and Sannikov (2014), where
arbitrageurs are more efficient holders of productive capital, and in Kondor and Vayanos (2014), where arbitrageurs
can trade with hedgers. The first two papers focus on the case of a single risky asset. Moreover, in all three papers
there is no explicit intermediation by arbitrageurs because all agents can trade the same assets.

6Simsek (2013) derives a general characterization of default rates in collateral equilibrium, in a static setting. For
more references on leverage and collateral equilibrium, see the survey by Fostel and Geanakoplos (2013b).
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the equilibrium and its key properties. Section 4 specializes the model to a stationary version, and

derives the steady state and the convergence dynamics. Section 5 examines how markets recover

from shocks to arbitrage capital and whether they are more stable when capital is more mobile.

Section 6 concludes, and proofs are in the Appendix.

2 The Model

2.1 Assets

There is an infinite number of discrete periods indexed by t ∈ N. There is one riskless asset with

exogenous return r > 0. There is also a continuum I of infinitely lived risky assets, all in zero net

supply. Risky assets come in pairs, with assets in each pair having identical payoffs. We denote by

−i the other asset in i’s pair. Assets i and −i pay off

di,t ≡ di + εi,t (1)

in period t, where di is a positive constant, and εi,t is a random variable distributed symmetrically

around zero in an interval [−εi, εi]. We assume di ≥ εi so that asset payoffs are non-negative. The

variables
εi,t
εi

are i.i.d. across time and asset pairs. We denote by pi,t the ex-dividend price of asset

i in period t, and define the asset’s risk premium by

φi,t ≡
di
r
− pi,t, (2)

i.e., the present value of expected future payoffs discounted at the riskless rate r, minus the price.

The assumption that the two assets in each pair have identical payoffs is for simplicity. Our

intention is to capture situations where two assets or portfolios have closely related payoffs but

can trade at significantly different prices. Examples include Siamese-twin stocks, traded in differ-

ent countries but with identical dividend streams, bonds with similar coupon rates and times to

maturity, e.g., on- and off-the-run, bonds and credit-default swaps, the two legs of covered interest

arbitrage strategies in the currency market, etc. The assumption that risky assets are in zero net

supply is also for simplicity: it ensures that arbitrageurs hold opposite positions in the assets in

each pair and hence are not affected by shocks to asset payoffs. The assumption that payoff dis-

tributions have bounded support facilitates the derivation of the arbitrageurs’ financial constraint

(Section 2.3.2).
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2.2 Outside Investors

2.2.1 Market Segmentation

For the outside investors, the markets for the risky assets are segmented. Each outside investor

can invest in only two assets: the riskless asset and one specific risky asset. We refer to the outside

investors who can invest in risky asset i as i-investors. We assume that i-investors are competitive

and infinitely lived, form a continuum with measure μi, consume in each period, and have negative

exponential utility. In period t, an i-investor chooses positions {yi,s}s≥t in asset i and consumption

{ci,s}s≥t+1 to maximize

−Et

[
∞∑

s=t+1

γs−t exp (−αci,s)

]
, (3)

where α is the coefficient of absolute risk aversion and γ is the subjective discount factor. The

investor is subject to a budget constraint, derived in Section 3.2. We denote the investor’s wealth

in period t by wi,t. We study optimization in period t after consumption ci,t has been chosen, which

is why we optimize over ci,s for s ≥ t+ 1. Accordingly, we define wi,t as the wealth net of ci,t. We

assume that investors i and −i are identical in terms of their measure, i.e., μi = μ−i.

We take market segmentation as given, i.e., assume that i-investors face prohibitively large

transaction costs for investing in any risky asset other than asset i. These costs could be due,

for example, to informational asymmetries or regulation. For example, each risky asset could be

traded in a different country, and lack of information or regulatory constraints could be preventing

i-investors from investing in a country other than their own.

The assumption that i-investors cannot invest in any risky asset other than asset i can be

relaxed: key for our analysis is only that i-investors cannot invest in asset −i. For example, we

could assume that investors and risky assets are divided into two groups, with assets in each pair

split across groups, and investors able to invest only in assets in their group. The assumption that

outside investors have negative exponential utility eliminates wealth effects for these investors. The

only wealth effects in our model concern the arbitrageurs.
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2.2.2 Endowment Shocks

We assume that outside investors receive random endowments, which affect their willingness to

hold risky assets. In period t each i-investor receives an endowment equal to

ui,t−1εi,t, (4)

where ui,t−1 is known in period t − 1. We assume that ui,t is equal to zero, except maybe over a

sequence of Mi periods t ∈ {hi −Mi, .., hi − 1} when it can become equal to a constant ui. The

latter outcome occurs with arbitrarily small probability, and when it occurs we say that i-investors

experience an endowment shock of intensity ui and duration Mi. We assume that the probability

of an endowment shock is arbitrarily small so that the possibility of a shock does not affect asset

i’s price before period hi −Mi.

An endowment shock in market i is accompanied by one in market −i. To ensure that the

prices of assets i and −i can differ, we assume that the shocks differ. We further restrict the shocks

to be opposites, i.e., ui = −u−i. This assumption, together with that of zero net supply, simplifies

our analysis by ensuring that arbitrageurs’ positions in assets i and −i are opposites.

When ui,t = 0, investors i and −i are identical and so are the prices of assets i and −i. Suppose

instead that i-investors experience a shock ui > 0. Their endowment then becomes positively

correlated with the shock εi,t and hence with asset i’s payoff. As a consequence, asset i becomes

riskier and less attractive for i-investors. Conversely, asset −i becomes more attractive for −i-

investors, who experience a shock u−i < 0. If investors i and −i could trade with each other, then

they would offset the effect of the shock and the prices of assets i and −i would remain identical:

each i-investor would sell ui shares of asset i or −i to −i-investors. Because, however, trade between

investors i and −i is ruled out by market segmentation, the price of asset i decreases and of asset −i

increases. This creates a role for arbitrageurs, who can invest in all risky assets and in the riskless

asset. Arbitrageurs buy asset i from i-investors and sell asset −i to −i-investors, thus exploiting

the price discrepancy between the two assets. In doing so, they provide liquidity to investors i and

−i because they allow them to trade.

We refer to an asset pair (i,−i) as an arbitrage opportunity (employing that terminology even

when the two assets are trading at the same price). When investors i and −i experience endowment

shocks, we say that opportunity (i,−i) is active. We denote by

At ≡ {i ∈ I : ui,t > 0}

the set of active opportunities in period t and assume that this set is finite. A finite set of active
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opportunities is consistent with a continuum of opportunities each of which becomes active with an

arbitrarily small probability. For simplicity, we eliminate stochastic variation in the characteristics

of active opportunities by assuming that the set

Ct ≡ {(εi, μi, ui, hi − t) : i ∈ At}

is deterministic. Thus, while arbitrageurs are uncertain as to which specific opportunities will

arise, they know what the profitability of their overall portfolio will be. One setting that yields a

deterministic Ct is as follows. The universe I of risky assets is divided into N disjoint families In for

n = 1, .., N , with the assets in each family forming a continuum and having the same characteristics

(εi, μi, ui,Mi). Moreover, a deterministic number of assets from each family are randomly drawn

in each period to form an active opportunity (together with the other assets in their pairs). In

Section 4, we specialize this setting to the case where one asset from each family is drawn in each

period. This yields a stationary version of our model, whereby the set Ct is not only deterministic

but also constant over time.

Under the Siamese-twin interpretation of the asset pairs, outside investors can be interpreted

as those who can trade only in one country. Such investors can be, for example, domestic-equity

mutual funds, which have a mandate to invest only in domestic stocks. The demand of these funds

is affected by investor inflows and outflows, which correspond to our endowment shocks. Dabora

and Froot (1999) find empirically that there exists a non-trivial price wedge between a stock and

its Siamese twin. Moreover, the wedge increases when the aggregate stock market in the country

where that stock is traded goes up. They argue that the best explanation for their findings is

that some investors have mandates preventing them from investing in a country other than their

own, possibly because of agency problems. This is consistent with our interpretations of market

segmentation.7

Under the bond interpretation of asset pairs, outside investors can be interpreted as those who

must hold bonds with specific coupon rates and times to maturity. Such investors can be, for

example, pension funds, and their preferences could be driven by asset-liability management or tax

considerations.

7Because i-investors cannot invest in any risky asset other than asset i, our model cannot generate the finding of
Dabora and Froot (1999) that the price wedge between a stock and its Siamese twin increases when the aggregate
stock market in the country where that stock is traded goes up. But this finding can be generated in the extension
of our model where outside investors can invest in groups of risky assets.

9



2.3 Arbitrageurs

2.3.1 Specialness

Arbitrageurs can invest in all risky assets and in the riskless asset, and so have better investment

opportunities than outside investors. This assumption captures in the context of our model the

idea that arbitrageurs are more sophisticated than other investors. Arbitrageurs can be interpreted,

for example, as hedge funds since these are less subject to the informational or regulatory frictions

that cause segmentation. Because arbitrageurs can invest in all assets, they are the only agents

who can exploit price discrepancies across asset pairs and provide liquidity to outside investors. In

this sense, arbitrageurs in our model are “special.”

We assume that arbitrageurs are competitive and infinitely lived, form a continuum with mea-

sure one, consume in each period, and have logarithmic utility.8 In period t, an arbitrageur chooses

positions {xi,s}i∈I,s≥t in all risky assets and consumption {cs}s≥t+1 to maximize

Et

[
∞∑

s=t+1

βs−t log (cs)

]
, (5)

where β is the subjective discount factor. The arbitrageur is subject to a budget constraint and

a financial constraint, derived in Sections 3.3 and 2.3.2, respectively. We denote the arbitrageur’s

wealth in period t by Wt and assume that W0 > 0. Since arbitrageurs have measure one, Wt is

also their aggregate wealth. Logarithmic utility of arbitrageurs simplifies our analysis because it

ensures that their consumption is a constant fraction of their wealth. We use the terms “wealth”

and “capital” interchangeably for arbitrageurs.

2.3.2 Financial Constraints

Financial constraints arise in our model because agents need to collateralize their asset positions.

Consider an agent who wants to establish a long position in a risky asset. If the agent needs to

borrow cash to buy the asset, then he must post collateral to ensure that the cash loan will be

repaid. Consider next an agent who wants to establish a short position in a risky asset. The agent

needs to borrow the asset so that he can sell it subsequently, and must post collateral to ensure that

the asset loan will be repaid. We assume that i-investors have enough wealth to collateralize any

8By fixing the measure of arbitrageurs, we are ruling out entry and are focusing on changes in the wealth of
existing arbitrageurs as the driver of price dynamics. Duffie and Strulovici (2012) study how entry impeded by search
frictions affects price dynamics. Their analysis provides a complementary perspective to ours. Note that the duration
Mi of endowment shocks can be interpreted as the time it takes for enough new arbitrageurs to enter the market for
arbitrage opportunity (i,−i) and eliminate that opportunity.
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position they may want to establish, i.e., up to μiui. Arbitrageurs, however, may be constrained

by their wealth.9

Standard asset pricing models assume that agents can establish any combination of asset po-

sitions as long as they can honor any liabilities that their positions generate. One interpretation

of this constraint is that a central clearinghouse registers all positions and prevents agents from

undertaking liabilities that they cannot honor.

If arbitrageurs in our model were subject to the standard constraint only, they would be able

to enforce the law of one price, i.e., the prices of the two assets in each pair would be identical.

Indeed, if the prices were different, arbitrageurs could sell short the more expensive asset and use

part of the proceeds to buy an equal number of shares of the cheaper asset. Because asset payoffs

are identical, the liabilities from the short position would be offset by the long position. Therefore,

arbitrageurs would be able to honor all their liabilities, and could earn an unlimited profit by scaling

up their positions.

We assume that arbitrageurs are subject to a stronger constraint than in standard models. We

require them to honor any liabilities that their positions generate, and do so market-by-market.

The positions of arbitrageurs in market i consist of a position in asset i and a position in the

riskless asset held within that market. We require that this combined position does not generate

any liability. Thus, liability is calculated market by-market rather than by aggregating across all

markets as in standard models. This is in the spirit of market segmentation: the same informational

or regulatory frictions that prevent i-investors for investing in any risky asset other than asset i

could also be preventing arbitrageurs’ lenders in market i from accepting risky assets other than

asset i as collateral.10

To derive the financial constraint of an arbitrageur, we denote by xi,t his position in asset i and

by zi,t the value of his combined position in market i, both in period t. The quantity zi,t is the sum

of the value xi,tpi,t of the investment in asset i plus the value of an investment in the riskless asset

held in market i. The value of the arbitrageur’s combined position in market i in period t+ 1 is

zi,t(1 + r) + xi,t [di,t+1 + pi,t+1 − (1 + r)pi,t] (6)

9Our assumption that outside investors are unconstrained does not necessarily imply that they are wealthier than
arbitrageurs because their positions could be smaller. This could be for two distinct reasons. First, the position that
arbitrageurs as a group establish in asset i is the opposite to that of i-investors. Therefore, if arbitrageurs are in
smaller measure than i-investors, then they hold a larger position per capita in asset i. Second, each arbitrageur can
trade more risky assets than each outside investor, leading to a larger aggregate position.

10Using one asset as collateral for a position in the other is known as cross-netting. One situation where cross-
netting is generally not possible is when one asset is traded over-the-counter and the other in an exchange, e.g., US
bonds are traded over the counter and US bond futures in the Chicago Mercantile Exchange. For a more detailed
description of the frictions that hamper cross-netting see, for example, Gromb and Vayanos (2002) and Shen, Yan,
and Zhang (2014). While our analysis rules out cross-netting, it can be generalized to allow for partial cross-netting.
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and must be positive. Indeed, if it were negative, the arbitrageur would have a liability in market

i, from which he could walk away. Requiring (6) to be positive for all possible realizations of

uncertainty in period t+ 1 yields

zi,t ≥ max
{εi,t+1}i∈I

{
xi,t

(
pi,t −

di,t+1 + pi,t+1

1 + r

)}
. (7)

The right-hand side of (7) represents the maximum possible loss, in present-value terms, that the

arbitrageur can realize in market i between periods t and t + 1. This loss has to be smaller than

the value of the arbitrageur’s combined position in market i in period t. Thus, the arbitrageur

can finance a long position in asset i by borrowing cash with the asset as collateral, but must

contribute enough cash of his own to cover against the most extreme price decline. Conversely, the

arbitrageur can borrow and short-sell asset i using the cash proceeds as collateral for the loan, but

must contribute enough cash of his own to cover against the most extreme price increase.

Aggregating (7) across markets yields the financial constraint

Wt ≥
∑
i∈I

max
{εi,t+1}i∈I

{
xi,t

(
pi,t −

di,t+1 + pi,t+1

1 + r

)}
(8)

since the value of the arbitrageur’s positions summed across markets is his wealth Wt. If (8) is

satisfied, then the arbitrageur can allocate his total investment in the riskless asset in period t

across markets so that (7) is satisfied for each market. The constraint (8) requires the arbitrageur

to have enough wealth to cover his maximum possible loss in each market separately.

Our formulation of the financial constraint assumes that the only assets that arbitrageurs can

trade with i-investors, or can use as collateral in market i, are asset i and the riskless asset.

Under a more general formulation, arbitrageurs could trade with i-investors any contracts that are

contingent on future uncertainty. These contracts could be collateralized by the riskless asset, by

asset i, or by any other contracts traded in market i. Moreover, contracts could extend over any

number of periods. In Appendix B we formulate equilibrium in our model under general contracts.

We show that without loss of generality, contracts can be assumed to be fully collateralized and

hence default-free. Moreover, when the distribution of the variables εi,t that describe asset payoffs

is binomial, contracts can be restricted to those studied in this section: only asset i and the riskless

asset can be traded and used as collateral. This generalizes, within our setting, the no-default

result of Fostel and Geanakoplos (2013a), shown under the assumption that contracts extend over

one period. Thus, under the binomial distribution, the financial constraint (8) can be derived from

optimal contracting.
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The financial constraint (8) limits the arbitrageurs’ positions and their ability to provide liq-

uidity as a function of their wealth. While we derive this constraint based on collateral, we can

interpret it more broadly as a friction that arbitrageurs face in raising external capital to undertake

positive present-value investments. We can also interpret the arbitrageurs’ wealth as their internal

capital or more broadly as the external capital that they can access without frictions.

3 Equilibrium

3.1 Symmetric Equilibrium

We look for competitive equilibria that are symmetric, in the sense that risk premia and agents’

positions are opposites for the two assets in each pair. Intuitively, risk premia are opposites because

assets are in zero net supply and the endowment shocks of i- and−i-investors are opposites. Because

premia are opposites, arbitrageurs find it optimal to establish opposite positions. The positions of

i- and −i-investors are opposites (and hence markets can clear) because premia and endowment

shocks are opposites.

Definition 1. A competitive equilibrium consists of prices pi,t and positions in the risky assets yi,t

for the i-investors and xi,t for the arbitrageurs, such that positions are optimal given prices and the

markets for all risky assets clear:

μiyi,t + xi,t = 0. (9)

Definition 2. A competitive equilibrium is symmetric if for the two assets (i,−i) in each pair the

risk premia are opposites (φi,t = −φ−i,t), the positions of outside investors are opposites (yi,t =

−y−i,t), and so are the positions of arbitrageurs (xi,t = −x−i,t).

Symmetry implies that the average of the prices of the two assets in a pair is the present value

of their expected future payoff discounted at the riskless rate r:

pi,t + p−i,t

2
=
di
r
.

Moreover, the risk premium of each asset is one-half of the difference between its price and the

price of the other asset:

φi,t =
pi,t − p−i,t

2
.
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Since the risk premium measures the price difference between the two assets in a pair, we refer to

its absolute value as “arbitrage spread.” The absolute value of the risk premium is also an inverse

measure of liquidity. When the risk premium is equal to zero, the two assets trade at the same price

and arbitrageurs provide perfect liquidity to outside investors. When instead the risk premium is

non-zero, liquidity is imperfect.

We look for symmetric competitive equilibria in which risk premia are deterministic. Intuitively,

since the arbitrageurs’ positions in assets i and −i are opposites, their wealthWt does not depend on

the payoff di,t of the two assets. Hence, risk premia and arbitrageurs’ positions are also independent

of di,t. Since asset payoffs are the only source of uncertainty, risk premia are deterministic.11

In the rest of this section we study optimization by outside investors and arbitrageurs in an

equilibrium of the conjectured form, i.e., symmetric with deterministic risk premia. We then impose

market clearing and show that such an equilibrium exists.

3.2 Outside Investors’ Optimization

The budget constraint of an i-investor is

wi,t+1 = yi,t(di,t+1 + pi,t+1) + (1 + r)(wi,t − yi,tpi,t) + ui,tεi,t+1 − ci,t+1. (10)

The investor holds yi,t shares of asset i in period t, and these shares are worth yi,t(di,t+1+pi,t+1) in

period t+1. The investor also holds wi,t − yi,tpi,t units of the riskless asset in period t, i.e., wealth

wi,t minus the investment yi,tpi,t in asset i. This investment is worth (1+ r)(wi,t−yi,tpi,t) in period

t + 1. Finally, the random endowment ui,tεi,t+1 is added to the investor’s wealth in period t + 1,

while consumption ci,t+1 lowers wealth.

We can simplify (10) by introducing the return per share of asset i in excess of the riskless asset.

This excess return is

Ri,t+1 ≡ di,t+1 + pi,t+1 − (1 + r)pi,t

= (1 + r)φi,t − φi,t+1 + εi,t+1, (11)

where the second step follows from (1) and (2). Since risk premia are deterministic, the quantity

Φi,t ≡ (1 + r)φi,t − φi,t+1 (12)

11Asset prices are also deterministic but this is only due to the simplifying assumption that payoffs are independent
across time.
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is also deterministic and represents the expected excess return of asset i. Using (11) and (12), we

can write (10) as

wi,t+1 = (1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1 − ci,t+1. (13)

The investor’s wealth in period t+ 1 is uncertain as of period t because of the payoff shock εi,t+1.

As the third term in the right-hand side of (13) indicates, the investor’s exposure to εi,t+1 is the

sum of his asset position yi,t and endowment shock ui,t.

We conjecture that the investor’s value function in period t is

Vi,t(wi,t) = − exp (−Awi,t − Fi,t) , (14)

where Fi,t is a deterministic function of i and t, and A is a constant. The value function is negative

exponential in wealth because the utility function depends on consumption in the same manner.

Proposition 1. The value function of an i-investor in period t is given by (14), where A = rα.

The investor’s optimal position in asset i is given by the first-order condition

εif
′ [(yi,t + ui,t)εi] = Φi,t, (15)

where the function f(y) is defined by

exp

[
αAf(y)

α+A

]
≡ E

[
exp

(
−

αAyεi,t
(α+A)εi

)]
. (16)

The first-order condition (15) takes an intuitive form. The right-hand side, Φi,t, is the expected

excess return of asset i, and can be interpreted as the marginal benefit of risk-taking. The investor

equates it to the marginal cost, which is the left-hand side. Since the function f(y) is convex, as

shown in Lemma 1, the marginal cost is increasing in the investor’s risk exposure yi,t+ui,t. Equat-

ing marginal benefit to marginal cost yields a standard downward-sloping demand: the investor’s

position yi in asset i is increasing in the asset’s expected excess return Φi,t and is hence decreasing

in the asset’s price pi,t.

Lemma 1. The function f(y) is non-negative, symmetric around the vertical axis, and strictly

convex. It also satisfies limy→∞ f ′(y) = 1.

The function αAf(y)
α+A

is the cumulant-generating function of −
αAyεi,t
(α+A)εi

. Cumulant-generating

functions are convex. Symmetry follows because εi,t is distributed symmetrically around zero.
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The first-order condition of −i-investors yields an optimal position that is the opposite to that of

i-investors. This follows from (15) and the observations that risk premia, expected excess returns,

and endowment shocks are opposites for assets i and −i, and that f ′(y) = −f ′(−y) as implied by

Lemma 1.

3.3 Arbitrageurs’ Optimization

The budget constraint of an arbitrageur is

Wt+1 =
∑
i∈I

xi,t(di,t+1 + pi,t+1) + (1 + r)

(
Wt −

∑
i∈I

xi,tpi,t

)
− ct+1. (17)

The differences with the budget constraint (10) of an i-investor are that the arbitrageur can invest

in all assets and receives no endowment. We next rewrite (17) and the financial constraint (8) using

(11), (12), εi,t = ε−i,t, Φi,t = −Φ−i,t, and the property that Φi,t = 0 for assets that are not part of

active opportunities. The latter property holds in equilibrium, as we show in Section 3.4.2. The

budget constraint (17) becomes

Wt+1 = (1 + r)Wt +
∑
i∈At

(xi,t − x−i,t)Φi,t +
∑
i∈I

xi,tεi,t+1 − ct+1, (18)

and the financial constraint (8) becomes

Wt ≥
∑
i∈I

|xi,t|εi
1 + r

−
∑
i∈At

(xi,t − x−i,t)Φi,t

1 + r
. (19)

Investing in assets that are not part of active opportunities exposes arbitrageurs to risk that is not

compensated in terms of expected return, i.e., adds a mean-preserving spread to the right-hand

side of the budget constraint (18). Investing in those assets also tightens the financial constraint

(19). Hence, the optimal investment is zero. Holding non-opposite positions in the two legs of an

active opportunity, i.e., xi,t + x−i,t �= 0 for i ∈ At, is suboptimal for the same reasons: by setting

xi,t+x−i,t = 0 and holding xi,t−x−i,t constant, arbitrageurs can reduce their risk without affecting

their expected return, and can possibly relax their financial constraint. Hence, we can simplify the

budget constraint (18) to

Wt+1 = (1 + r)Wt + 2
∑
i∈At

xi,tΦi,t − ct+1, (20)
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and the financial constraint (19) to

Wt ≥ 2
∑
i∈At

|xi,t|εi − xi,tΦi,t

1 + r
. (21)

Eq. (20) confirms that the dynamics of arbitrageur wealth are deterministic. The per-share

return of an active opportunity (i,−i) is 2Φi,t, i.e., twice the expected excess return Φi,t of asset i.

While i-investors earn Φi,t as compensation for bearing risk, arbitrageurs earn it riskfree because

they can combine a position in asset i with one in asset −i. Thus, when Φi,t �= 0, arbitrageurs can

earn a riskless return that exceeds the riskless rate r.

Using (12), we can write the per-share return of active opportunity (i,−i) as

2 [rφi,t + (φi,t − φi,t+1)] .

The first term in the square bracket represents the “carry” component of the return. This is

what arbitrageurs would earn if the risk premium φi,t remained constant over time. The second

term represents the “convergence” component. This is the additional return that arbitrageurs earn

because the risk premium converges to zero. (The risk premium becomes zero when opportunity

(i,−i) stops being active.)

Eq. (21) shows that the financial constraint is more severe when asset payoffs are more volatile,

i.e., εi is larger. This is because the maximum possible loss of a position is larger. Eq. (21) shows

additionally that the financial constraint is less severe when expected excess returns are larger in

absolute value. Suppose, for example, that Φi,t > 0, in which case arbitrageurs are long asset i,

as shown in Proposition 2. Then, the larger Φi,t is, i.e., the more profitable it is to invest in asset

i, the smaller is the maximum possible loss of a long position in that asset, and the less severe

is the constraint. Thus, outside finance is easier to raise when arbitrage opportunities are more

profitable.

The arbitrageurs’ optimization problem reduces to choosing positions in assets i ∈ At, i.e.,

those with positive endowment shocks. Positions in the corresponding assets −i are opposites,

and positions in assets that are not part of active opportunities are zero. We solve the simplified

optimization problem under the assumption that assets i ∈ At offer non-negative expected excess

returns, i.e., Φi,t ≥ 0 for all i ∈ At. This property holds in equilibrium, as we show in Section 3.4.2.

We conjecture that the value function of an arbitrageur in period t is

Vt(Wt) = B log(Wt) +Gt, (22)
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where Gt is a deterministic function of t, and B is a constant.

Proposition 2. The value function of an arbitrageur in period t is given by (22), where B = β
1−β

.

The arbitrageur’s optimal consumption is

ct =
1− β

β
Wt. (23)

• If all active opportunities offer a zero return, i.e., Φi,t = 0 for all i ∈ At, then the arbitrageur

is indifferent between any combination of positions in these opportunities.

• Otherwise, he holds non-zero positions only in opportunities with the highest return per unit

of volatility:

i ∈ argmaxj∈At

Φj,t

εj
. (24)

For these opportunities, positions are long in assets i ∈ At, i.e., those with positive endowment

shocks. Moreover, the financial constraint (21) binds.

The arbitrageurs’ optimal investment policy can be derived intuitively as follows. Substituting

the optimal consumption (23) into the budget constraint (20), we can write the latter as

Wt+1 = β

[
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t

]
. (25)

Since assets i ∈ At offer non-negative expected excess returns, arbitrageurs do not benefit from

selling them short. Therefore, we can write the financial constraint (21) as

Wt ≥ 2
∑
i∈At

xi,t (εi − Φi,t)

1 + r
. (26)

Maximizing Wt+1 in (25) subject to (26) and xi,t ≥ 0 is a simple linear-programming problem.

Arbitrageurs invest only in those opportunities that offer the highest return Φi,t per unit of collateral

εi −Φi,t. Moreover, when some opportunities offer a non-zero return, arbitrageurs “max out” their

financial constraint (26) because they can earn a riskless return that exceeds the riskless rate r.

Maximizing return per unit of collateral, Φi,t
εi−Φi,t

, is equivalent to maximizing return per unit of

volatility, Φi,t
εi

, and we focus on the latter from now on.
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3.4 Equilibrium

3.4.1 Arbitraging Arbitrage

Combining the arbitrageurs’ optimal investment policy with that of outside investors, and imposing

market clearing, we can derive a sharp characterization of equilibrium returns and positions. We

denote by

Tt ≡ {i ∈ At : xi,t > 0},

the set of active opportunities that arbitrageurs trade in period t, i.e., those in which they hold

non-zero positions.

Proposition 3. There exists Πt ∈ [0, 1) such that in period t:

• Arbitrageurs trade only active opportunities (i,−i) such that f ′(uiεi) > Πt. That is,

Tt = {i ∈ At : f
′(uiεi) > Πt}.

• All active opportunities traded by arbitrageurs offer the same return Πt per unit of volatility,

while active opportunities (i,−i) not traded by arbitrageurs offer return f ′(uiεi) ∈ (0,Πt] per

unit of volatility. That is,

i ∈ Tt ⇒
Φi,t

εi
= Πt,

i ∈ At/Tt ⇒
Φi,t

εi
= f ′(uiεi) ∈ (0,Πt].

Proposition 3 implies that active opportunities can be ranked according to f ′(uiεi). As can be

seen by setting yi,t = 0 in the outside investors’ first-order condition (15), f ′(uiεi) is the return per

unit of volatility that opportunity (i,−i) would offer in the absence of arbitrageurs. Arbitrageurs

trade the opportunities for which f ′(uiεi) is above a cutoff Πt ∈ (0, 1). Their activity causes

the return per unit of volatility offered by these opportunities to decrease to the common cutoff.

Opportunities for which f ′(uiεi) is below that cutoff are not traded, and their return per unit of

volatility remains equal to f ′(uiεi).

Since the function f(y) is convex, f ′(uiεi) is increasing in the endowment shock ui and in the

parameter εi that characterizes the volatility of asset payoffs. Thus, arbitrageurs are more likely to

trade opportunities with higher volatility and higher endowment shocks: these are the opportunities

offering higher return per unit of volatility in the arbitrageurs’ absence.
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The equalization of returns across traded opportunities can be interpreted as “arbitraging arbi-

trage.” If a traded opportunity offered lower return per unit of volatility than another opportunity,

then arbitrageurs could raise their profit by redeploying their scarce capital to the latter. The

arbitraging-arbitrage result is at the basis of the cross-sectional implications and contagion effects

derived in Section 5. Suppose, for example, that arbitrageurs experience losses in opportunity

(i,−i). This forces them to scale back their position in that opportunity, causing its return to

increase. Arbitraging arbitrage induces them, in turn, to redeploy capital to that opportunity and

away from others, causing the return of others to increase as well.

3.4.2 Dynamics of Arbitrage Capital

Using Proposition 3, we can determine the dynamics of arbitrageur wealth and the relationship

between wealth and Πt.

Proposition 4. Arbitrageur wealth evolves according to

Wt+1 = β
1 + r

1−Πt
Wt. (27)

• If Wt > Wc,t ≡
2

1+r

∑
i∈At

μiuiεi, then the financial constraint is slack, arbitrageurs earn the

riskless rate r, all active opportunities are traded, and their return Πt per unit of volatility is

equal to zero.

• If Wt < Wc,t, then the financial constraint binds, and arbitrageurs earn a riskless return

that exceeds the riskless rate r. The return Πt per unit of volatility offered by all traded

opportunities is the unique positive solution of

2
1−Πt

1 + r

∑
i∈Tt

μi
[
uiεi − (f ′)−1(Πt)

]
=Wt, (28)

and decreases in Wt.

When the variables εi,t have a binomial distribution, Πt is a convex function of Wt.

The financial constraint is slack when all active opportunities offer a zero return, i.e., Φi,t = 0

for all i ∈ At. This happens when arbitrageurs fully absorb the endowment shocks of outside

investors, i.e., xi,t = μiui for all i ∈ At. Setting Φi,t = 0 and xi,t = μiui in (26), we find that Wt

must exceed the threshold Wc,t defined in Proposition 4. Since all active opportunities offer a zero

return, Πt = 0 and arbitrageurs earn the riskless rate r.
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When instead Wt < Wc,t, arbitrageurs cannot fully absorb the endowment shocks of outside

investors. Therefore, all active opportunities offer a positive return, the return Πt per unit of

volatility offered by all traded opportunities is also positive, and arbitrageurs earn a riskless return

that exceeds r. Moreover, when Wt decreases, Πt increases because arbitrageurs are less able to

absorb the endowment shocks.

Convexity of Πt means that a given drop in Wt causes a larger increase in Πt when it occurs

in a region where Wt is smaller. Clearly, this comparison holds between the constrained and the

unconstrained regions: a drop in Wt raises Πt when Wt < Wc,t, but has no effect on Πt when

Wt > Wc,t. The intuition why the comparison can also hold within the constrained region is as

follows. When Wt is smaller than but close to Wc,t, all active opportunities are traded, and hence

a drop in Wt causes arbitrageurs to reduce their positions in all of them. Since the effect is spread

out across many opportunities, the reduction in each position is small, and so is the increase in Πt.

When instead Wt is close to zero, arbitrageurs concentrate their investment on a small number of

opportunities, and a drop in Wt triggers a large reduction in each position. Proposition 4 confirms

the convexity of Πt under the sufficient condition that the variables εi,t that describe asset payoffs

have a binomial distribution.

Proposition 5. A symmetric equilibrium exists in which risk premia φi,t, outside investors’ po-

sitions yi,t, and arbitrageurs’ positions xi,t and wealth Wt are deterministic. In this equilibrium,

expected excess returns Φi,t are zero for assets that are not part of active opportunities, and are

non-negative for assets with positive endowment shocks.

4 Steady State and Convergence Dynamics

We next analyze a stationary version of our model. Stationarity allows us to characterize more fully

the dynamics of risk premia and arbitrageur wealth. We build on this characterization to derive

implications of our model in Section 5.

We assume that the universe I of risky assets can be divided into 2N disjoint families, with

the assets in each family forming a continuum and having the same characteristics (εi, μi, ui,Mi).

Moreover, one asset from each family is randomly drawn in each period to form an active oppor-

tunity (together with the other asset in its pair). Under these assumptions, the set Ct describing

the characteristics of active opportunities is constant over time, and our model becomes stationary.

We show that the stationary version of our model has a deterministic steady state, and we derive

the dynamics of convergence to the steady state.

We index families by n ∈ {−N, ..,−1, 1, .., N}, with the convention that for an asset in fam-
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ily n the other asset in its pair belongs to family −n, and that families n = 1, .., N comprise

the assets with the positive endowment shocks. We denote by (εn, μn, un,Mn) the characteristics

(εi, μi, ui,Mi) for all assets i in family n. The set of active opportunities in period t is

A = {(n,m) : n ∈ {1, .., N},m ∈ {1, ..,Mn}}.

Opportunity (n,m) consists of one asset in family n ∈ {1, .., N} and one asset in family −n, and

remains active for m − 1 more periods. We denote the former asset by (n,m) and the latter by

(−n,m), and refer to m as the horizon of opportunity (n,m). The expected excess returns of

assets (n,m) and (−n,m) do not depend on m (Proposition 3), and neither do the arbitrageurs’

and outside investors’ positions (Eqs. (9) and (15)). We hence index these quantities by the family

subscript, n or −n, and the time subscript, t. The risk premia of the two assets depend on m, and

we index them by the additional subscript m. Since arbitrageurs’ positions do not depend on m,

we can write the set of active opportunities traded in period t as

Tt = {(n,m) : n ∈ Nt,m ∈ {1, ..,Mn}},

where we denote by Nt the subset of families in {1, .., N} whose assets are traded. We drop the

time subscript for steady-state values.

Proposition 6. The wealth Wt of arbitrageurs and the return Πt per unit of volatility offered by

all traded opportunities converge over time monotonically to steady-state values W and Π.

• If β(1 + r) > 1, then Wt increases toward W = ∞ and Πt decreases toward Π = 0.

• If β(1 + r) < 1 − Π, where Π ≡ maxn=1,...,N f
′(unεn) < 1, then Wt decreases toward W = 0

and Πt increases toward Π = Π.

• Otherwise, the steady-state values are given by

W = 2
1−Π

1 + r

∑
n∈N

μnMn

[
unεn − (f ′)−1(Π)

]
∈ (0,Wc), (29)

Π = 1− β(1 + r) ∈ (0,Π), (30)

where Wc ≡
2

1+r

∑N
n=1 μnMnunεn. If Wt < W , then Wt increases toward W and Πt decreases

toward Π. If Wt > W , then Wt decreases toward W and Πt increases toward Π.

The dynamics in Proposition 6 can be derived by specializing Proposition 4 to the stationary
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case. According to Proposition 4, the wealth of arbitrageurs increases between periods t and t+ 1

if β 1+r
1−Πt

> 1. Intuitively, wealth increases if the return earned by arbitrageurs is large relative to

their consumption. Arbitrageurs earn the riskless (net) return 1+r
1−Πt

− 1. The effect of consumption

is captured by the subjective discount factor β, which is inversely related to consumption, as shown

in (23).

Using Proposition 4, we can characterize how the return 1+r
1−Πt

−1 earned by arbitrageurs depends

on their wealth Wt. When Wt > Wc, all active opportunities offer a zero return, Πt = 0, and

arbitrageurs earn the riskless rate r. When instead Wt < Wc, Πt is positive, and arbitrageurs earn

a return that exceeds r. Decreases in Wt within that region raise Πt and hence raise arbitrageurs’

return. Arbitrageurs’ return reaches its maximum value, corresponding to the maximum value of

Πt, when Wt goes to zero. Setting yi,t = 0 in the outside investors’ first-order condition (15),

we find that the return per unit of volatility from an active opportunity (i,−i) in the absence of

arbitrageurs is equal to f ′(uiεi). Therefore, the maximum value of Πt is Π ≡ maxn=1,...,N f
′(unεn).

Specializing Proposition 4 to the stationary case ensures that the function linking Πt to Wt, and

in particular the parameters Wc and Π, are constant over time.

The dynamics of wealth in the stationary case follow from the above observations. When

β(1 + r) > 1, the wealth of arbitrageurs increases over time even if Πt = 0, i.e., if all active

opportunities offer a zero return. Thus, wealth becomes arbitrarily large. When instead β(1+ r) <

1−Π, the wealth of arbitrageurs decreases over time even if active opportunities offer their maximum

return. Thus, wealth converges to zero.

In the intermediate case 1−Π < β(1+r) < 1, the wealth of arbitrageurs converges to an interior

steady-state value. Indeed, when wealth is large, all active opportunities offer a zero return, and

wealth decreases because β(1 + r) < 1. When instead wealth is close to zero, active opportunities

offer their maximum return, and wealth increases because 1 − Π < β(1 + r). Dynamics are self-

correcting: wealth decreases when it is large because arbitrageurs earn a low return, and wealth

increases when it is small because arbitrageurs earn a high return. The steady-state valueW implied

by these dynamics is smaller than Wc because the steady-state return earned by arbitrageurs must

exceed r to offset consumption. An increase in the subjective discount factor raises consumption,

and hence raises the steady-state return and lowers the steady-state wealth.

We illustrate the dynamics in the stationary case with a numerical example. We assume that

periods correspond to months. We set the subjective discount factor β to 0.9
1
12 and the riskless

rate r to (1 + 2%)
1
12 − 1. The annualized values of these variables are 0.9 and 2%, respectively.

We assume that there are 2N = 6 families of risky assets: families 1, 2 and 3 comprise the assets
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with the positive endowment shocks, and families -1, -2 and -3 comprise the other assets in their

pairs. We assume that the total measure of outside investors for all assets in family n that are part

of active opportunities is equal to one. This measure is the product of the measure μn of outside

investors for any given asset in family n, times the number Mn of assets in that family that are

part of active opportunities. We impose no additional restrictions on μn and Mn. We assume that

endowment and volatility parameters are (u1, ε1) = (1, 1), (u2, ε2) = (2, 1) and (u3, ε3) = (2, 2), and

that the random variables εi,t that describe asset payoffs have a binomial distribution. We set the

coefficient of absolute risk aversion of outside investors to α = 5.

Figure 1: Dynamics of arbitrageur wealth Wt and return Πt per unit of
volatility in the stationary case. Wealth Wt is in the x-axis. Return Πt per unit
of volatility is in the vertical axis and is expressed in monthly terms. The point (W,Π)

corresponds to the steady state. The figure is drawn for β = 0.9
1

12 , r = (1+2%)
1

12 −1,
N = 3, μnMn = 1 for all n, (u1, ε1) = (1, 1), (u2, ε2) = (2, 1), (u3, ε3) = (2, 2), binomial
distributions for the random variables εi,t, and α = 5.

Figure 1 plots the return Πt per unit of volatility as a function of arbitrageur wealth Wt. The

wealth thresholdWc above which Πt is equal to zero is 2
1+r

(u1ε1+u2ε2+u3ε3) ≈ 14. The maximum

value of Πt, which corresponds to zero arbitrageur wealth, is 3.3% in monthly terms. The steady-

state value of Πt is 0.7% in monthly terms, and the corresponding steady-state value of Wt is 8.8.

The implied returns per unit of collateral are 3.3%
1−3.3% = 3.4% when arbitrageur wealth is zero, and

0.5%
1−0.5% = 0.7% in steady state.

Figure 1 illustrates the result of Proposition 4 that Πt is a decreasing function of Wt. When

Wt exceeds the steady-state value W , arbitrageurs earn a low return Πt and their wealth decreases
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to W , as shown by the arrows to the right of W . When instead Wt < W , arbitrageurs earn a high

return Πt and their wealth increases to W , as shown by the arrows to the left of W .

An additional result of Proposition 4 shown in Figure 1 is that Πt is a convex function of Wt. A

drop inWt has no effect on Πt in the unconstrained regionWt > Wc, but raises Πt in the constrained

region Wt < Wc. Moreover, the effect strengthens as Wt decreases within the constrained region.

Within that region Πt is approximately a piecewise linear function of Wt. The rightmost segment

(Wt ∈ [7.9, 14]) corresponds to the case where all active opportunities are traded, the middle

segment (Wt ∈ [3.9, 7.9]) to the case where assets in families (1,-1) are not traded, and the leftmost

segment (Wt ∈ [0, 3.9]) to the case where assets in families (2,-2) are also not traded. Arbitrageurs

stop trading assets in families (1,-1) the first as their wealth decreases because the product unεn

is the smallest for those assets and hence the corresponding arbitrage opportunities are the least

profitable. As arbitrageurs concentrate their investment on a smaller number of opportunities, a

given drop in their wealth Wt has a larger effect on their positions and on Πt.

5 Implications

In this section we explore the implications of our model for two related issues. First, how do

markets adjust over time following shocks to arbitrage capital? Second, are markets more stable

when arbitrage capital is more mobile across opportunities? We consider shocks relative to the

steady state of the stationary version of our model (Section 4). We focus on parameters for which

the steady state is interior, i.e., arbitrageur wealth does not converge to zero or infinity.

5.1 Recovery From Shocks

To study how markets recover from shocks, we consider the following thought experiment. Suppose

that in period t arbitrageur wealth drops below its steady-state value. This could be due, for

instance, to an unanticipated shock, e.g., assets in one or several pairs failing to pay the exact

same dividend. We study both the immediate and longer-term effects that the shock has on

returns, spreads, liquidity (of which spreads are an inverse measure), and positions. We focus on

opportunities that are traded in steady state; those that are not traded are not affected by drops

in wealth.

Corollary 1. Suppose that arbitrageur wealth drops in period t below its steady-state value.

• The immediate effect is that returns and spreads increase, liquidity decreases, and arbitrageurs
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scale down their positions, possibly to zero:

∀(n,m) ∈ T : Φn,t > Φn, φn,m,t > φn,m, 0 ≤ xn,t < xn.

• Following this immediate reaction, returns, spreads, liquidity and positions revert gradually

toward their steady state values:

∀(n,m) ∈ T : Φn,t ≥ Φn,t+1 ≥ ... ≥ Φn,t+m−1 > Φn,

φn,m,t

φn,m
≥
φn,m−1,t+1

φn,m−1
≥ ... ≥

φn,1,t+m−1

φn,1
> 1,

xn,t ≤ xn,t+1 ≤ ... ≤ xn,t+m−1 < xn.

Proposition 6 implies that the profitability of arbitrage, as measured by the return Πt per unit of

volatility, increases immediately following the shock, and then decreases gradually over time toward

its steady-state value. Corollary 1 shows that the dynamics for individual arbitrage opportunities

are similar to those of Πt: an immediate movement away from steady state, followed by gradual

reversion. The reversion pattern can, however, be different from that of Πt. Following its initial

rise, Πt decreases over time. Returns of individual arbitrage opportunities decrease over time only

for those opportunities in which arbitrageurs remain invested after their initial drop in wealth. For

an opportunity that arbitrageurs exit, the return remains constant until Πt decreases to the level

at which the opportunity becomes attractive again. From that time onward, the return decreases.

Changes in returns between one period and the next are not always a monotone function of

time. Clearly, returns change slowly when they approach their steady-state values. But they can

also change slowly when a large drop in wealth drives them far above their steady-state values.

This applies not only to opportunities that arbitrageurs exit (returns are constant), but also to

opportunities in which they remain invested. The intuition is that changes in returns are driven

by absolute rather than relative changes in wealth, and the former are small when wealth is small.

Changes in returns can hence be the most rapid in an intermediate period, i.e., can be a hump-

shaped function of time. Changes in spreads can also be hump-shaped, for the same reason. In our

numerical example, the hump shape arises following large reductions in wealth: wealth must drop

to 3 or below from its steady-state value of 8.8.

Corollary 1 traces the evolution of the return, spread and position for opportunity (n,m) during

the time when the opportunity is active, i.e., its horizon m. The steady-state value of the return

and position are constant during that time, but the steady-state value of the spread decreases

towards zero as horizon shortens. Corollary 1 adjusts for horizon by dividing the spread by its

26



time-varying steady-state value. The spread decreases over time both because it approaches its

steady-state value, as shown in Corollary 1, and because that value decreases.

We next examine how the dynamics of returns, spreads, liquidity and positions depend on the

characteristics of arbitrage opportunities. Specifically, we compare opportunities that differ in their

volatility parameter εn (Corollary 2) and in their horizon m (Corollary 3).

Corollary 2. Consider two arbitrage opportunities (n,m) and (n′,m), with εn > εn′ and (μn, un) =

(μn′ , un′), which are among the opportunities traded in steady state.

• Return and spread are larger for the more volatile opportunity, and liquidity is smaller. Im-

mediately following a drop in arbitrageur wealth in period t below the steady-state value, return

and spread increase more for the more volatile opportunity, and liquidity decreases more. Dur-

ing the recovery phase, return and spread decrease more for that opportunity, and liquidity

increases more. That is,

Φn > Φn′ , φn,m > φn′,m,

Φn,t − Φn > Φn′,t − Φn′ , φn,m,t − φn,m > φn′,m,t − φn′,m,

Φn,t+s − Φn,t+s+1 ≥ Φn′,t+s − Φn′,t+s+1,

φn,m−s,t+s − φn,m−s−1,t+s+1 ≥ φn′,m−s,t+s − φn′,m−s−1,t+s+1 ∀s = 0, ..,m − 2.

• Arbitrageurs hold a larger position in the more volatile opportunity. If arbitrageur wealth drops

in period t below the steady-state value, and the drop is not large enough for arbitrageurs to

exit any of the opportunities, their position in the less volatile opportunity is scaled down by

a larger amount. During the recovery phase, it is scaled up by a larger amount. That is,

xn > xn′ , xn − xn,t < xn′ − xn′,t,

xn,t+s+1 − xn,t+s < xn′,t+s+1 − xn′,t+s ∀s = 0, ..,m − 2.

For larger drops in wealth, arbitrageurs exit the less volatile opportunity, and possibly the

more volatile one as well.

The first part of Corollary 2 shows that the return and spread of the more volatile opportunity

are larger and more sensitive to changes in arbitrageur wealth. If the drop in wealth in small enough

so that both opportunities remain traded, the result follows from Proposition 3, which shows that

arbitrageurs equalize return per unit of volatility for all traded opportunities. Indeed, if return is
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proportional to volatility, then it is larger for the more volatile opportunity. Since, in addition,

wealth affects the proportionality coefficient Πt, the return of the more volatile opportunity is more

sensitive to changes in wealth.

Suppose next that the drop in wealth is large enough for arbitrageurs to exit one of the oppor-

tunities. According to the second part of Corollary 2, this has to be the less volatile opportunity.

Hence, its return and spread remain less sensitive to changes in wealth.

The second part of Corollary 2 shows additionally that arbitrageurs hold a larger position in

the more volatile opportunity and that position is less sensitive to changes in wealth. Arbitrageurs’

position in the more volatile opportunity is larger because outside investors in that opportunity are

more eager to share risk. The position is less sensitive to changes in wealth because the stronger

risk-sharing motive by outside investors renders their demand less price-elastic. Indeed, suppose

that arbitrageurs reduce their positions equally in both opportunities following a drop in wealth.

Because outside investors in the more volatile opportunity would suffer more from the reduced

risk-sharing, they would value risk-sharing more in the margin. This would cause the more volatile

opportunity to offer higher return per unit of volatility, and would induce arbitrageurs to re-balance

towards that opportunity.

In summary, Corollary 2 shows that following a drop in wealth, the returns and spreads of the

more volatile opportunities increase the most, and yet arbitrageurs may cut their positions in those

opportunities the least.

Corollary 3. Consider two arbitrage opportunities (n,m) and (n,m′), with m > m′, which are

among the opportunities traded in steady state. The spread is larger for the opportunity with the

longer horizon, and liquidity is smaller. Immediately following a drop in arbitrageur wealth in

period t below the steady-state value, the spread increases more for the opportunity with the longer

horizon, and liquidity decreases more. During the recovery phase, the spread decreases more slowly

for that opportunity, and liquidity increases more slowly. That is,

φn,m > φn,m′ , φn,m,t − φn,m > φn,m′,t − φn,m′ ,

φn,m−s,t+s − φn,m−s−1,t+s+1 ≤ φn,m′−s,t+s − φn,m′−s,t+s+1 ∀s = 0, ..,m′ − 2.

Corollary 3 shows that the spread of an opportunity with longer horizon is larger and more

sensitive to changes in arbitrageur wealth. The intuition can be seen from the following relationship
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between spread and returns:

φn,m,t =
m−1∑
s=0

Φn,t+s

(1 + r)s+1
, (31)

which can be derived by solving (12) backwards with the terminal condition φn,0,t = 0. The spread

associated to an arbitrage opportunity is the present value of the opportunity’s per-period returns

discounted at the riskless rate. An opportunity with longer horizon has larger spread because the

present value includes more terms. This spread is more sensitive to changes in wealth because all

the terms depend on wealth. It decreases more slowly during the recovery phase (and, in fact,

starting from any level of wealth) because it must reach zero at the end of a longer horizon.

5.2 Mobility of Arbitrage Capital

We next examine how the degree of mobility of arbitrage capital affects market stability. Are

markets more stable when arbitrageurs are better diversified across opportunities? Or does diver-

sification cause large contagion effects as arbitrageurs react to negative shocks in one market by

cutting their positions across all markets? To study this issue, we compare two polar cases. Under

full integration, our maintained assumption so far, all arbitrageurs can trade all assets. Instead,

under full segmentation, the assets in each family pair (n,−n) for n = 1, .., N are traded by a

separate set of arbitrageurs, and constitute segmented arbitrage market n. Integration could be

triggered, for example, from a deregulation of international capital flows.

To study the effects of integration, we start from the steady state under segmentation, and lift

the segmentation restriction. Proposition 6 applied to each segmented arbitrage market implies that

arbitrageurs in market n have non-zero wealth in steady state if f ′(unεn) > 1−β(1+ r). Moreover,

the return per unit of volatility is Π = 1 − β(1 + r) in the markets where arbitrageur wealth is

non-zero, and f ′(unεn) ≤ Π in the markets where it is zero. Since this return is the same across

the non-zero-wealth markets, and is lower in the zero-wealth markets, lifting the segmentation

restriction has no effect: arbitrageurs are indifferent between staying in their market or diversifying

into other non-zero-wealth markets, and the return per unit of volatility in all markets does not

change.

Corollary 4. In steady state, integration of arbitrage markets has no effect on spreads and returns.

While segmentation and integration are equivalent in steady state, they yield different outcomes

following stochastic shocks. As in Section 5.1, we assume that shocks are unanticipated. Section

5.1 identifies shocks with a decrease in arbitrageur wealth. In this section we are more explicit
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about the mechanism through which shocks affect wealth, because it differs across segmentation

and integration.

We assume that shocks concern the relative payoff of the assets in each pair. In particular, in

period t the payoff of asset (n,m) is not identical to that of asset (−n,m), but instead exceeds it

by εnηnt, where ηnt is an i.i.d. shock across n = 1, .., N . We assume that ηnt is distributed in a

small interval around zero, and hence shocks are small, so that we can linearize around the steady

state.

The effect of shocks on arbitrageur wealth can be derived from the arbitrageurs’ budget con-

straint. Since markets are in steady state before the shocks occur in period t, we can use (12) to

write the budget constraint (25) as

Wt = β

⎡
⎣(1 + r)Wt−1 + 2

∑
(n,m)∈T

xn (εnηnt + (1 + r)φn,m − φn,m−1,t)

⎤
⎦ . (32)

If the shock ηnt is negative, then it reduces the wealth Wt of arbitrageurs through the term xnεnηnt.

This is a direct effect, holding arbitrage spreads φn,m−1,t constant. The shock has also an indirect

effect, through a change in spreads: because Wt decreases, spreads increase, and this amplifies the

reduction in Wt. Amplification effects have been derived in the literature on limited arbitrage (see,

e.g., Gromb and Vayanos (2010) for a survey). We examine how they differ across segmentation

and integration.

We compare segmentation and integration based on the variance of spreads and of arbitrageur

wealth in period t. We also consider the aggregate spread, defined as the average of individual

spreads weighted by arbitrageurs’ positions:

φt ≡
∑
n∈N

xn

M−1∑
m=1

φn,m,t.

The aggregate spread is the liquidity provided to a hypothetical outside investor who is either on

the long or on the short side of all of the arbitrageurs’ positions. Because shocks are independent

and small, the variance of a random variable Xt, e.g., spreads or wealth, is

Var(Xt) =

N∑
n=1

(
∂Xt

∂ηn,t

)2

Var(η), (33)

where the partial derivatives are evaluated at the steady state and Var(η) is the common vari-
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ance of ηn,t for n = 1, .., N . The variance of Xt is the sum over n = 1, .., N of a variance in-

duced by each shock. We first consider the case where arbitrage opportunities are symmetric, i.e.,

(εn, μn, un,Mn) ≡ (ε, μ, u,M) for all n = 1, .., N .

Proposition 7. Suppose that arbitrage opportunities are symmetric. Integration of arbitrage mar-

kets:

• Lowers the variance of each spread and of each arbitrageur’s wealth.

• Does not affect the variance of the arbitrageurs’ total wealth and of the aggregate spread.

Integration of arbitrage markets makes them more stable in the sense that the spread associated

to each opportunity, and hence the liquidity of the underlying assets, become less volatile. Risk-

sharing among arbitrageurs also improves because the variance of each arbitrageur’s wealth is

reduced. At the same time, integration does not affect the variance of the arbitrageurs’ total

wealth and of aggregate liquidity.

The intuition why integration does not affect the variance of the arbitrageurs’ total wealth is as

follows. Since the aggregate position of all arbitrageurs in an opportunity (n,m) remains the same

under integration, a negative shock ηnt causes the same drop in total wealth through the direct

effect. The additional drop through the indirect effect is also the same. Indeed, under segmentation,

the shock affects only market n, and arbitrageur positions are cut only for the corresponding active

opportunities. Under integration, positions are cut for all active opportunities, as arbitrageurs

move across markets to equate returns per unit of volatility (Proposition 3), but each position

is cut by less. Aggregating across positions and arbitrageurs, the cut is the same in both cases

because it is triggered by the same drop in total wealth (i.e., the same direct effect). The resulting

rise in the aggregate spread is also the same because the aggregate cut is the same and because

symmetry ensures that the spreads for all opportunities are equally sensitive to changes in positions.

Therefore, the indirect effect is the same.

Since integration does not affect the variance of the aggregate spread but causes individual

spreads to become more correlated, it also causes them to become less volatile. Intuitively, arbi-

trageurs smooth the effect that a shock in any given market has on spreads because by moving

across markets they bring in more outside investors to absorb the shock. Because individual spreads

become less volatile, each arbitrageur bears less risk: this can be seen more simply in the case where

he does not diversify across markets prior to the shock. In the proof of Proposition 7 we show that

integration causes the variance of individual spreads and of each arbitrageur’s wealth to be divided

by N , the number of arbitrage markets.

We next consider the case where arbitrage opportunities are asymmetric. For simplicity we
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keep horizon symmetric, i.e., Mn ≡M for all n = 1, .., N .

Proposition 8. Suppose that arbitrage opportunities have the same horizon parameter Mn = M ,

but differ in terms of the volatility parameter εn and the endowment shock un. Integration of

arbitrage markets:

• Lowers the variance of some but not necessarily all spreads.

• Lowers the variance of the arbitrageurs’ total wealth and of the aggregate spread, if oppor-

tunities have the same measure μn = μ of outside investors. Otherwise, the variance can

rise.

When arbitrage opportunities differ only in terms of the volatility parameter εn and the endow-

ment shock un, integration lowers the variance of the arbitrageurs’ total wealth. This is because

amplification effects exhibit a form of convexity: the indirect effect multiplies the direct effect, and

one is larger in those segmented markets where the other is larger. Indeed, markets in which the

direct effect is large are those where un is large, because arbitrageurs hold a large position, or where

εn is large, because the shock ηnt has a large impact on the payoff difference εnηnt. In the former

case the indirect effect is large because the change in spreads multiplies a large position, and in the

latter case because spreads are more sensitive to changes in positions. Integration mitigates the

convexity because the indirect effect becomes the same across markets, and approximately equal

to the average of indirect effects under segmentation. This reduces the average effect that shocks

have on total wealth.

When arbitrage opportunities differ also in terms of the measure μn of outside investors, integra-

tion can raise the variance of the arbitrageurs’ total wealth. This happens when markets with large

εn or un have small μn. Indirect effects under segmentation remain large in these markets because

they are independent of μn: with few outside investors, arbitrageurs hold small positions (implying

small indirect effects) but spreads are highly sensitive to changes in their positions (implying large

indirect effects). On the other hand, direct effects are small because positions are small. Therefore,

convexity is reversed.

Integration can raise the variance of aggregate liquidity. Indeed, the gains or losses of an outside

investor who is either on the long or on the short side of all of the arbitrageurs’ positions are opposite

to those of arbitrageurs. Therefore, they reflect the movements of the arbitrageurs’ total wealth.

Finally, integration can raise the variance of some individual spreads. This happens for the

opportunities with low εn or un. Intuitively, direct and indirect effects are small for these oppor-

tunities under segmentation, but the indirect effect becomes larger under integration. Integration

cannot raise the variance of all spreads, however, consistent with Proposition 7.
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6 Conclusion

We develop a model in which arbitrageurs’ limited access to capital affects the functioning of

financial markets. Arbitrageurs in our model are uniquely able to exploit mispricings, but face

financial constraints limiting their ability to do so. Two properties structure the equilibrium: the

equalization of return per unit of collateral across opportunities in which arbitrageurs invest, and

the self-correcting dynamics of arbitrage capital and profitability. Based on these properties, we

derive—analytically—a rich set of implications for the dynamics of liquidity and returns in the

cross-section, and for the effects of the mobility of arbitrage capital on market stability.

Our model focuses on riskless arbitrage: while each of the legs of an arbitrage trade is risky, the

risk cancels out. Considering unanticipated shocks, as we do in this paper, gives a preview of some

of the results that can be derived under risky arbitrage. Yet, a fuller analysis of risky arbitrage

can yield important new economic insights. Our model can be extended to accommodate arbitrage

risk: both “fundamental risk,” whereby the two assets in a pair fail to have the same payoff, and

“demand risk,” whereby endowment shocks of outside investors fluctuate in each period. When

both types of risk are small, an equilibrium in continuous time can be derived analytically using

perturbation methods around the solution under riskless arbitrage (Gromb and Vayanos (2015)).

Within this framework, it is possible to address questions such as how arbitrageurs manage the risk

of their portfolio, how the risk of each trade in the portfolio is affected by their aggregate capital,

and how that risk is related to expected returns in the cross-section.
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APPENDIX

A Proofs

Proof of Proposition 1: The investor’s Bellman equation is

Vi,t(wi,t) = max
ci,t+1,yi,t

Et {−γ exp(−αci,t+1) + γVi,t+1(wi,t+1)} . (A.1)

Substituting (13) and (14) into (A.1), we find

− exp (−Awi,t − Fi,t) = max
ci,t+1,yi,t

Et {−γ exp(−αci,t+1)

−γ exp (−A [(1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1 − ci,t+1]− Fi,t+1)} .

(A.2)

The first-order condition with respect to consumption is

α exp(−αci,t+1) = A exp (−A [(1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1 − ci,t+1]− Fi,t+1) (A.3)

⇒ ci,t+1 =
A [(1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1] + Fi,t+1 + log

(
α
A

)
α+A

. (A.4)

Hence, we can write the right-hand side of (A.2) as

max
yi,t

Et

{
−
γ(α+A)

α
exp (−A [(1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1 − ci,t+1]− Fi,t+1)

}

= max
yi,t

Et

{
−
γ(α+A)

α
exp

(
−α {A [(1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)εi,t+1] + Fi,t+1}+A log

(
α
A

)
α+A

)}

(A.5)

= max
yi,t

{
−
γ(α+A)

α
exp

(
−α {A [(1 + r)wi,t + yi,tΦi,t − f [(yi,t + ui,t)εi]] + Fi,t+1}+A log

(
α
A

)
α+A

)}
,

(A.6)

where the first step follows from (A.3), the second from (A.4), and the third by from (16) by setting

y ≡ (yi,t + ui,t)εi. Eq. (A.6) implies that the first-order condition with respect to yi,t is (15).

Equating (A.6) to the right-hand side of (A.2), we find that the Bellman equation holds for all
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values of the single state variable wi,t if

A =
αA(1 + r)

α+A
, (A.7)

Fi,t = − log

(
γ(α+A)

α

)
+
α {A [yi,tΦi,t − f [(yi,t + ui,t)εi]] + Fi,t+1} −A log

(
α
A

)
α+A

. (A.8)

Eq. (A.7) implies that A = rα. Substituting into (A.8), we find

Fi,t = − log[γ(1 + r)] +
rα [yi,tΦi,t − f [(yi,t + ui,t)εi]] + Fi,t+1 + r log(r)

1 + r
. (A.9)

Eq. (A.9) and the transversality condition lims→∞
Fi,t+s

(1+r)s = 0 determine Fi,t.

Proof of Lemma 1: To prove the properties in the lemma, we set α̂ ≡ αA
α+A

and ε̂i,t ≡
εi,t
εi
. Since

the distribution of ε̂i,t is independent of i and t, so is the function f(y). Since ε̂i,t has mean zero,

Jensen’s inequality implies that

E [exp (−α̂yε̂i,t)] ≥ exp(0) = 1,

and hence f(y) ≥ 0. Since ε̂i,t is distributed symmetrically around zero,

E [exp (−α̂yε̂i,t)] = E [exp (α̂yε̂i,t)] ,

and hence f(y) is symmetric around the vertical axis. To show that f(y) is strictly convex, we

show that f ′′(y) > 0. Since

f(y) =
log {E [exp (−α̂yε̂i,t)]}

α̂
,

differentiating once we find

f ′(y) = −
E [ε̂i,t exp (−α̂yε̂i,t)]

E [exp (−α̂yε̂i,t)]
, (A.10)

and differentiating twice we find

f ′′(y) = α̂
E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)]− {E [ε̂i,t exp (−α̂yε̂i,t)]}

2

{E [exp (−α̂yε̂i,t)]}
2 . (A.11)
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The numerator in (A.11) is positive because of the Cauchy-Schwarz inequality [E(XY )]2 ≤ E(X2)E(Y 2),

which is strict when the random variables X and Y are not proportional. We can use the Cauchy-

Schwarz inequality by setting

X ≡ ε̂i,t exp

(
−
α̂yε̂i,t
2

)
,

Y ≡ exp

(
−
α̂yε̂i,t
2

)
,

and noting that X and Y are not proportional because ε̂i,t is stochastic. Therefore, f
′′(y) > 0. To

show that limy→∞ f ′(y) = 1, we show that |f ′(y)−1| can be made smaller than 2η for any arbitrary

η > 0 when y goes to infinity. Using (A.10) and the fact that ε̂i,t is distributed symmetrically around

zero with the supremum of its support being one, we find

|f ′(y)− 1| =
E [(1 + ε̂i,t) exp (−α̂yε̂i,t)]

E [exp (−α̂yε̂i,t)]

=
E
[
(1 + ε̂i,t) exp (−α̂yε̂i,t) 1{ε̂i,t∈[−1,−1+η]}

]
E [exp (−α̂yε̂i,t)]

+
E
[
(1 + ε̂i,t) exp (−α̂yε̂i,t)1{ε̂i,t∈(−1+η,1]}

]
E [exp (−α̂yε̂i,t)]

.

(A.12)

Since

(1 + ε̂i,t)1{ε̂i,t∈[−1,−1+η]} ≤ η,

the first term in the right-hand side of (A.12) is smaller than η. The second term can also be made

smaller than η for large y. Indeed, multiplying numerator and denominator by exp (−α̂y(1− η)),

we can write this term as

E
[
(1 + ε̂i,t) exp (−α̂y(ε̂i,t + 1− η)) 1{ε̂i,t∈(−1+η,1]}

]
E [exp (−α̂y(ε̂i,t + 1− η))]

. (A.13)

Since ε̂i,t in the numerator of (A.13) exceeds −1 + η, the numerator remains bounded when y goes

to infinity. The denominator of (A.13) converges to infinity, however, because εi,t takes values in

[−1,−1 + η) with positive probability.
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Proof of Proposition 2: The arbitrageur’s Bellman equation is

Vt(Wt) = max
ct+1,{xi,t}i∈At

{β log(ci,t+1) + βVt+1(Wt+1)} . (A.14)

Substituting (20) and (22) into (A.14), we find

B log(Wt)+Gt = max
ct+1,{xi,t}i∈At

{
β log(ci,t+1) + βB log

(
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t − ct+1

)
+ βGt+1

}
.

(A.15)

The first-order condition with respect to consumption is

1

ci,t+1
−

B

(1 + r)Wt + 2
∑

i∈At
xi,tΦi,t − ct+1

= 0

⇒ ci,t+1 =
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t − ct+1

B
=
Wt+1

B
(A.16)

⇒ ci,t+1 =
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t

B + 1
, (A.17)

where the second equality in (A.16) follows from (20). Using (A.17), we can write the right-hand

side of (A.15) as

max
{xi,t}i∈At

{
β(B + 1) log

(
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t

)
+ βB log(B)− β(B + 1) log(B + 1) + βGt+1

}
.

(A.18)

The maximization in (A.18) is subject to the financial constraint (21). Expected excess returns are

assumed to satisfy Φi,t ≥ 0 for all i ∈ At. Moreover, (15) and Lemma 1 imply that Φi,t < εi for all

i ∈ At.

When Φi,t = 0 for all i ∈ At, the arbitrageur is indifferent between any combination of positions

in the active opportunities. When Φi,t > 0 for some i ∈ At, (21) binds, and this implies that

xi,t ≥ 0 for all i ∈ At. Indeed, if xi,t < 0 for some i ∈ At, then setting those xi,t to zero would

relax (21). Hence, (A.18) could be raised by increasing those xi,t for which Φi,t > 0. Since xi,t ≥ 0

for all i ∈ At, (21) becomes (26). Maximizing (A.18) subject to (26) and xi,t ≥ 0, we find that the

arbitrageur holds non-zero positions only in opportunities i ∈ Mt ≡ argmaxj∈At

Φj,t

εj
.
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Setting

Πt ≡ max
j∈At

Φj,t

εj
∈ [0, 1)

and using the characterization of the arbitrageur’s optimal positions, we find

(1 + r)Wt + 2
∑
i∈At

xi,tΦi,t =
1 + r

1−Πt
Wt. (A.19)

When Πt = 0, (A.19) follows because Φi,t = 0 for all i ∈ At. When Πt > 0, (A.19) follows by

writing the left-hand side as

(1 + r)Wt + 2
∑
i∈Mt

xi,tΦi,t = (1 + r)Wt + 2Πt

∑
i∈Mt

xi,tεi,

and combining with (26), which binds and can be written as

Wt = 2
∑
i∈Mt

xi,t (εi − Φi,t)

1 + r
= 2(1−Πt)

∑
i∈Mt

xi,tεi
1 + r

.

Substituting (A.19) into (A.18), and equating (A.18) to the right-hand side of (A.15), we find that

the Bellman equation holds for all values of the single state variable Wt if

B = β(B + 1), (A.20)

Gt = β(B + 1) log

(
(1 + r)Πt

1−Πt

)
+ βB log(B)− β(B + 1) log(B + 1) + βGt+1. (A.21)

Eq. (A.7) implies that B = β
1−β

. Substituting into (A.16), we find (23). Eq. (A.21) and the

transversality condition lims→∞ βsGt+s = 0 determine Gt.

Proof of Proposition 3: We define Πt as in the proof of Proposition 2. Proposition 2 implies that

if arbitrageurs trade opportunity (i,−i) then
Φi,t

εi
= Πt, and if they do not trade it then

Φi,t

εi
≤ Πt.

In the former case, xi,t > 0 and (9) imply that yi,t < 0. Substituting into (15) and using the

convexity of f(y), we find f ′(uiεi) >
Φi,t

εi
= Πt. In the latter case, xi,t = 0 and (9) imply that

yi,t = 0. Substituting into (15), we find f ′(uiεi) =
Φi,t

εi
≤ Πt.
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Proof of Proposition 4: Substituting ct+1 from (23) into (20), and solving for Wt+1, we find

(25). Combining with (A.19) yields (27).

If Πt = 0, then Proposition 3 implies that all active opportunities are traded, and (A.19) implies

that arbitrageurs earn the riskless rate r. To determine a lower bound onWt, we use market clearing

and the financial constraint. Eq. (15) implies that f ′[(yi,t + ui)εi] =
Φi,t

εi
= 0 for all i ∈ At. Since

f(y) is symmetric around the vertical axis (Lemma 1), f ′(0) = 0. Strict convexity of f(y) implies

that f ′(y) is invertible and hence yi,t+ui = 0. Combining with (9), we find xi,t = μiui. Substituting

xi,t = μiui into (26) and using Φi,t = 0 for all i ∈ At, we find Wt ≥Wc,t.

If Πt > 0, then Proposition 2 implies that the financial constraint binds, and (A.19) implies

that arbitrageurs earn the riskless return 1+r
1+Πt

− 1 > r. To determine how Πt relates to Wt, we use

market clearing and the financial constraint. Eq. (15) and Proposition 3 imply that f ′[(yi,t+ui)εi] =

Φi,t

εi
= Πt for all i ∈ Tt. Inverting this equation yields

(yi,t + ui)εi = (f ′)−1(Πt)

⇒ xi,t = μiui − μi
(f ′)−1(Πt)

εi
, (A.22)

where the second step follows from (9). Since xi,t = 0 for all i ∈ At/Tt, we can write (26) (which

binds) as

Wt = 2
∑
i∈Tt

xi,t (εi − Φi,t)

1 + r
(A.23)

= 2(1−Πt)
∑
i∈Tt

xi,tεi
1 + r

, (A.24)

where the second step follows from Proposition 3. Since 0 < xi,t < μiui,t for all i ∈ Tt (because

of (A.22)) and Πt ∈ (0, 1), (A.23) implies that Wt < Wc,t . Substituting xi,t from (A.22) into

(A.24), we find (28). The left-hand side of (28) decreases in Πt because f ′′(y) > 0 implies that

f ′(y) is increasing. Moreover, it is equal to zero for Πt = maxi∈At f
′(uiεi) and to Wc,t for Πt = 0.

Therefore, (28) has a unique positive solution for Wt ∈ (0,Wc,t), which decreases in Wt.

To show convexity of Πt, we differentiate (28) implicitly with respect to Wt. We find

dΠt

dWt
= −

1

2
1+r

∑
i∈Tt

μi

[
uiεi − (f ′)−1(Πt) +

1−Πt

f ′′[(f ′)−1(Πt)]

] . (A.25)
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The derivative dΠt

dWt
is continuous, except at Wt =Wc,t and at the points where the set Tt changes.

For those values of Wt, the left derivative is smaller than the right derivative. For Wt = Wc,t,

this is because the left derivative is negative and the right derivative is zero. For a point where Tt

changes, this is because the denominator for the right derivative minus that for the left derivative

is

2

1 + r

∑
i∈DT t

μi

[
uiεi − (f ′)−1(Πt) +

1−Πt

f ′′ [(f ′)−1(Πt)]

]
=

2

1 + r

∑
i∈DT t

μi

[
1−Πt

f ′′ [(f ′)−1(Πt)]

]
> 0,

where DT t denotes the additional opportunities that become traded to the right of that point.

Therefore, Πt is convex if the function

uiεi − (f ′)−1(Πt) +
1−Πt

f ′′ [(f ′)−1(Πt)]

is increasing in Wt, or equivalently is decreasing in Πt. This is also equivalent to the function

G(y) ≡ −y +
1− f ′(y)

f ′′(y)

being decreasing in y because f ′(y) is increasing. The derivative of G(y) with respect to y has the

same sign as the function

G1(y) ≡ −2f ′′(y)2 − f ′′′(y)
(
1− f ′(y)

)
.

Differentiating (A.11) we find

f ′′′(y) = α̂2

⎡
⎣2E [ε̂i,t exp (−α̂yε̂i,t)]

E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)]− {E [ε̂i,t exp (−α̂yε̂i,t)]}

2

{E [exp (−α̂yε̂i,t)]}
3

+
E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [ε̂i,t exp (−α̂yε̂i,t)]− E

[
ε̂3i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)]

{E [exp (−α̂yε̂i,t)]}
2

⎤
⎦ .

(A.26)

40



Using (A.10), (A.11) and (A.26), we find

G1(y) = −α̂2

[
2
(
E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)] + E [ε̂i,t exp (−α̂yε̂i,t)]

)

×
E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)]− {E [ε̂i,t exp (−α̂yε̂i,t)]}

2

{E [exp (−α̂yε̂i,t)]}
4

+ E [(1 + ε̂i,t) exp (−α̂yε̂i,t)]

×
E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
E [ε̂i,t exp (−α̂yε̂i,t)]− E

[
ε̂3i,t exp (−α̂yε̂i,t)

]
E [exp (−α̂yε̂i,t)]

{E [exp (−α̂yε̂i,t)]}
3

⎤
⎦ .

When the distribution of εi,t is binomial, ε̂i,t has also a binomial distribution that takes the values

1 and -1 with equal probabilities. Therefore,

E [exp (−α̂yε̂i,t)] = E
[
ε̂2i,t exp (−α̂yε̂i,t)

]
= cosh(α̂y),

E [ε̂i,t exp (−α̂yε̂i,t)] = E
[
ε̂3i,t exp (−α̂yε̂i,t)

]
= − sinh(α̂y),

and the function G1(y) becomes

G1(y) = −α̂2 2
(
cosh2(α̂y)− sinh(α̂y)

)
cosh4(α̂y)

.

Since cosh(x) ≥ 1 and cosh(x) > sinh(x), G1(y) is negative and hence G(y) is decreasing.

Proof of Proposition 5: Suppose that in equilibrium (i) expected excess returns Φi,t for assets

i ∈ At are given by Propositions 3 and 4, (ii) risk premia φi,t for assets i ∈ At are given by solving

(12) backwards with the terminal condition φi,hi
= 0:

φi,t =

hi−t−1∑
s=0

Φi,t+s

(1 + r)s+1
, (A.27)

(iii) expected excess returns and risk premia for assets −i, i ∈ At, are opposites to those for assets i,

and (iv) expected excess returns and risk premia for assets that are not part of active opportunities

are zero. The optimization problems of investors and arbitrageurs are then as in Sections 3.2 and

3.3. The analysis in these sections and in Section 3.4 ensures that the markets for all assets clear

and that the quantities (φi,t, yi,t, xi,t,Wt) have the properties in the proposition.
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Proof of Proposition 6: The dynamics of Wt in the three cases of the proposition are as follows:

• If β(1 + r) > 1, then (27) implies that Wt increases to W = ∞.

• If β(1+ r) < 1−Π, then (27) implies that Wt decreases to W = 0 because Π is the maximum

value of Πt.

• If 1−Π < β(1 + r) < 1, then (27) implies that Wt remains constant when Πt is equal to the

steady-state value Π given by (30). The steady-state value W of Wt is given by (29) because

of (28). When Wt < W , (27) implies that Wt+1 > Wt because Πt > Π. Conversely, when

Wt > W , (27) implies that Wt+1 < Wt because Πt < Π. To show that convergence of Wt to

W is monotone, we need to show that Wt+1 < W in the former case and Wt+1 > W in the

latter case. Since (27) implies that

Wt+1 −W = β(1 + r)

(
Wt

1−Πt
−

W

1−Π

)
,

convergence is monotone if the function F (Wt) =
Wt

1−Πt
is increasing inWt, where Πt is defined

implicitly as function of Wt from Proposition 4. When Wt > Wc, F (Wt) is increasing in Wt

because Πt = 0. When Wt < Wc, (28) implies that

F (Wt) =
2

1 + r

∑
i∈Tt

μi
[
uiεi − (f ′)−1(Πt)

]
.

Since f(y) is strictly convex and Πt decreases in Wt, F (Wt) is increasing in Wt. Since Π > 0,

Proposition 4 implies that W ∈ (0,Wc).

The dynamics of Πt in each of the three cases follow from the dynamics of Wt, and from the

dependence of Πt on Wt derived in Proposition 4.

Proof of Corollary 1: We first show the properties of returns. Since arbitrageurs’ return per unit

of volatility is decreasing in their wealth within the constrained region (Proposition 4), it increases

to a value Πt > Π when wealth drops to Wt < W . It then decreases over time and converges

back to Π (Proposition 6). Proposition 3 implies that an opportunity (n,m) traded in steady

state satisfies Φn = εnΠ and f ′(unεn) > Π. If arbitrageurs remain invested in this opportunity

after their initial drop in wealth, then Φn,t = εnΠt > εnΠ. If they exit the opportunity, then

Φn,t = εnf
′(unεn) > εnΠ. In both cases, Φn,t > Φn. If the opportunity is traded in a period

t+ s for s = 0, ..,m − 2, then it is traded in all periods until t+m− 1 because Πt decreases over
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time. Moreover, Φn,t+s = εnΠt+s > εnΠt+s+1 = Φn,t+s+1 > εnΠ. If the opportunity is not traded in

period t+s but is traded in period t+s+1, then Φn,t+s = εnf
′(unεn) > εnΠt+s+1 = Φn,t+s+1 > εnΠ.

If the opportunity is not traded in both periods, then Φn,t+s = εnf
′(unεn) = Φn,t+s+1 > εnΠ. In

all three cases, Φn,t+s ≥ Φn,t+s+1 > Φn.

We next show the properties of spreads. Using (31), its steady-state version

φn,m =
m−1∑
s=0

Φn

(1 + r)s+1
, (A.28)

and Φn,t+s > Φn for s = 0, ..,m − 1, we find φn,m,t > φn,m. Using (31) written for (m − s, t + s)

and (m− s− 1, t+ s+1) instead of (m, t), (A.28), and Φn,t+s ≥ Φn,t+s′ for s
′ = s+1, ..,m− 1, we

find
φn,m−s,t+s

φn,m−s
≥

φn,m−s−1,t+s+1

φn,m−s−1
for s = 0, ..,m − 2.

The properties of positions follow from those of returns by using (9), (15) and the fact that

f ′(y) is increasing.

Proof of Corollary 2: We first show the properties of returns. Since opportunities (n,m) and

(n′,m) are traded in steady state, Φn = εnΠ > εn′Π = Φn′ . If arbitrageurs remain invested in both

opportunities after their initial drop in wealth, then

Φn,t − Φn = εn(Πt −Π) > εn′(Πt −Π) = Φn′,t − Φn′ .

If they remain invested only in one opportunity, it has to be (n,m): if they remained invested only

in (n′,m), then

Φn,t

εn
= f ′(unεn) ≤ Πt =

Φn′,t

εn′

< f ′(un′εn′),

which contradicts εn > εn′ and un = un′ . Since they are invested in (n,m) and not in (n′,m),

Φn,t − Φn = εn(Πt −Π) > εn′(Πt −Π) ≥ εn′

(
f ′(un′εn′)−Π

)
= Φn′,t −Φn′ .

If they exit both opportunities, then

Φn,t − Φn = εn
(
f ′(unεn)−Π

)
> εn′

(
f ′(un′εn′)−Π

)
= Φn′,t − Φn′ .

In all three cases, Φn,t−Φn > Φn′,t−Φn′ . If opportunities (n,m) and (n′,m) are traded in a period
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t+ s+ 1 for s = 0, ..,m − 2, then the inequality

Φn,t+s − Φn,t+s+1 ≥ Φn′,t+s − Φn′,t+s+1 (A.29)

follows from the previous arguments by replacing Π by Πt+s+1. If only one opportunity is traded

in period t+ s+ 1, it has to be (n,m) from the previous arguments. Eq. (A.29) then follows from

Φn,t+s > Φn,t+s+1, shown in the proof of Corollary 1, and Φn′,t+s = Φn′,t+s+1 = f ′(un′εn′). If both

opportunities are not traded in period t + s + 1, then (A.29) follows from Φn,t+s = Φn,t+s+1 =

f ′(unεn) and Φn′,t+s = Φn′,t+s+1 = f ′(un′εn′). In all three cases, (A.29) holds.

We next show the properties of spreads. Using (A.28) and Φn > Φn′ , we find φn,m > φn′,m.

Subtracting (31) from (A.28), and using Φn,t+s−Φn > Φn′,t+s−Φn′ for s = 0, ..,m−1 (which holds

for s > 0 by the same argument as for s = 0), we find φn,m,t − φn,m > φn′,m,t − φn′,m. Subtracting

(31) written for (m− s− 1, t+ s+ 1) from the same equation written for (m− s, t+ s), and using

Φn,t+s′ −Φn,t+s′+1 ≥ Φn′,t+s′ −Φn′,t+s′+1 for s′ = s, ..,m−1, we find φn,m−s,t+s−φn,m−s−1,t+s+1 ≥

φn′,m−s,t+s − φn′,m−s−1,t+s+1 for s = 0, ..,m − 2.

We finally show the properties of positions. Since opportunities (n,m) and (n′,m) are traded

in steady state, and (μn, un) = (μn′ , un′), (A.22) implies that

xn = μnun − μn
(f ′)−1(Π)

εn
> μn′un′ − μn′

(f ′)−1(Π)

εn′

= xn′ .

If both opportunities are traded in period t, and hence in all periods until t+m− 1, then (A.22)

implies that

xn − xn,t =
μn
εn

[
(f ′)−1(Πt)− (f ′)−1(Π)

]
<
μn′

εn′

[
(f ′)−1(Πt)− (f ′)−1(Π)

]
= xn′ − xn′,t,

and

xn,t+s+1 − xn,t+s =
μn
εn

[
(f ′)−1(Πt+s)− (f ′)−1(Πt+s+1)

]

<
μn′

εn′

[
(f ′)−1(Πt+s)− (f ′)−1(Πt+s+1)

]

= xn′,t+s+1 − xn′,t+s

for s = 0, ..,m − 2. If only one opportunity is traded in period t, it has to be (n,m) as shown

previously.
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Proof of Corollary 3: Combining (A.28) and Φn > 0, we find φn,m > φn,m′ . Combining (31),

(A.28) and Φn,t+s > Φn for s = 0, ..,m− 1, we find φn,m,t−φn,m > φn,m′,t−φn,m′ . Combining (31)

written for (m− s, t+ s) and (m− s− 1, t+ s+ 1), and Φn,t+s′ > 0 for s′ = m′, ..,m − 1, we find

φn,m−s,t+s − φn,m−s−1,t+s+1 ≤ φn,m′−s,t+s − φn,m′−s−1,t+s+1 for s = 0, ..,m′ − 2.

Proof of Corollary 4: The proof follows from the argument in the paragraph just before the

proposition.

Proof of Proposition 7: We first compute the partial derivatives of Wt under integration. Dif-

ferentiating (32) with respect to ηnt, and using Mn =M for all n = 1, .., N , we find

∂Wt

∂ηnt
=

2βMxnεn

1 + 2β
∑

n′′∈N xn′′

∑M−1
m=1

∂φn′′,m,t

∂Wt

=
2βMμn

[
unεn − (f ′)−1(Π)

]
1 + 2β

∑
n′′∈N μn′′

[
un′′ − (f ′)−1(Π)

εn′′

]∑M−1
m=1

∂φn′′,m,t

∂Wt

, (A.30)

where the second step follows by assuming n ∈ N and using (A.22). (For n �∈ N , ∂Wt

∂ηnt
= 0 because

xn = 0.) Using (31), we find that for n′ ∈ N ,

∂φn′,m,t

∂Wt
=

m−1∑
s=0

∂Φn′,t+s

∂Wt

1

(1 + r)s+1

= εn′

m−1∑
s=0

∂Πt+s

∂Wt

1

(1 + r)s+1

= εn′

m−1∑
s=0

∂Πt+s

∂Wt+s

∂Wt+s

∂Wt

1

(1 + r)s+1

= εn′

m−1∑
s=0

∂Πt+s

∂Wt+s

(
s−1∏
s′=0

∂Wt+s′+1

∂Wt+s′

)
1

(1 + r)s+1
, (A.31)

where the second step follows from Proposition 3 and because opportunities that are traded in

steady state remain traded close to steady state. The partial derivatives in (A.30) and (A.31) are

evaluated at the steady state. Eq. (A.25), written for t+ s instead of t, implies that in steady state

∂Πt+s

∂Wt+s
= −

1

2M
1+r

∑
n′′∈N μn′′

[
un′′εn′′ − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] (A.32)
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for all s ≥ 0. Writing (27) for t+ s instead of t, and differentiating with respect to Wt+s, we find

∂Wt+s+1

∂Wt+s
= β

1 + r

1−Πt
+ β

1 + r

(1−Πt)2
Wt+s

∂Πt+s

∂Wt+s
. (A.33)

Eq. (A.33) implies that in steady state

∂Wt+s+1

∂Wt+s
= β

1 + r

1−Π
+ β

1 + r

(1−Π)2
W
∂Πt+s

∂Wt+s

= 1 +
2M

1 + r

∑
n′′∈N

μn′′

[
un′′εn′′ − (f ′)−1(Π)

] ∂Πt+s

∂Wt+s
= Z, (A.34)

where the second step follows from (29) and (30), and the third from (A.32) and by setting

Z ≡

∑
n′′∈N μn′′

1−Π
f ′′[(f ′)−1(Π)]∑

n′′∈N μn′′

[
un′′εn′′ − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] .

Using (A.32) and (A.34), we can write (A.31) as

∂φn′,m,t

∂Wt
= −

εn′

∑m−1
s=0

Zs

(1+r)s

2M
∑

n′′∈N μn′′

[
un′′εn′′ − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] , (A.35)

and (A.30) as

∂Wt

∂ηnt
=

2βMμn
[
unεn − (f ′)−1(Π)

]
1−

β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M
∑

n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
. (A.36)

We next compute the partial derivatives ofWt under segmentation. Denoting byWnt the wealth

of arbitrageurs in segmented market n ∈ N , and differentiating their budget constraint with respect

to ηnt, we find the following counterpart of (A.30):

∂Wnt

∂ηnt
=

2βMμn
[
unεn − (f ′)−1(Π)

]
1 + 2βμn

[
un − (f ′)−1(Π)

εn

]∑M−1
m=1

∂φn,m,t

∂Wt

. (A.37)
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The counterparts of (A.35) and (A.36) are

∂φn,m,t

∂Wnt
= −

εn
∑m−1

s=0
Zs
n

(1+r)s

2Mμn

[
unεn − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] , (A.38)

∂Wnt

∂ηnt
=

2βMμn
[
unεn − (f ′)−1(Π)

]
1−

β[unεn−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs
n

(1+r)s

M

[
unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
, (A.39)

respectively, where

Zn ≡

1−Π
f ′′[(f ′)−1(Π)]

unεn − (f ′)−1(Π) + 1−Π
f ′′[(f ′)−1(Π)]

.

Since Wt =
∑

n′∈N and the shock ηnt does not affect Wn′t for n
′ �= n, ∂Wt

∂ηnt
is also given by (A.39).

When opportunities are symmetric, N = {1, .., N} and

Zn = Z =

1−Π
f ′′[(f ′)−1(Π)]

uε− (f ′)−1(Π) + 1−Π
f ′′[(f ′)−1(Π)]

for all n = 1, .., N . In the case of segmentation, (A.39) implies that

∂Wnt

∂ηnt
=
∂Wt

∂ηnt
=

2βMμ
[
uε− (f ′)−1(Π)

]
1−

β[uε−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M

[
uε−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
≡ DW . (A.40)

Therefore, (33) implies that the variance of the arbitrageurs’ total wealth is ND2
WVar(η), and of

the wealth of arbitrageurs in market n is D2
WVar(η). Eqs. (A.38) and (A.39) imply that

∂φn,m,t

∂ηnt
=
∂φn,m,t

∂Wnt

∂Wnt

∂ηnt

= −
βε
[
uε− (f ′)−1(Π)

]∑m−1
s=0

Zs

(1+r)s

uε− (f ′)−1(Π) + 1−Π
f ′′[(f ′)−1(Π)]

−
β[uε−(f ′)−1(Π)]

∑M−1
m=1

∑m−1
s=0

Zs

(1+r)s

M

≡ Dφ

m−1∑
s=0

Zs

(1 + r)s
.
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Since the shock ηnt does not affect φn′,m,t for n′ �= n, its effect on the aggregate spread φt ≡∑N
n′=1 xn′

∑M−1
m=1 φn′,m,t is

D̂φ

M−1∑
m=1

m−1∑
s=0

Zs

(1 + r)s
,

where

D̂φ ≡
μ

ε

[
uε− (f ′)−1(Π)

]
Dφ.

Therefore, the variance of the aggregate spread is ND̂2
φ

(∑M−1
m=1

∑m−1
s=0

Zs

(1+r)s

)2
Var(η), and of φn,m,t

is D2
φ

(∑m−1
s=0

Zs

(1+r)s

)2
Var(η).

In the case of integration, (A.36) implies that ∂Wt

∂ηnt
= DW . This is the same as under segmen-

tation, and so is the variance of the arbitrageurs’ total wealth. Since Wnt is equal to Wt

N
under

integration, its variance is 1
N
D2

WVar(η), lower than under segmentation. Eqs. (A.35) and (A.36)

imply that

∂φn′,m,t

∂ηnt
=
∂φn′,m,t

∂Wt

∂Wt

∂ηnt
=

1

N
Dφ

m−1∑
s=0

Zs

(1 + r)s
.

Since this effect is independent of n′, the effect of ηnt on the aggregate spread φt is

D̂φ

M−1∑
m=1

m−1∑
s=0

Zs

(1 + r)s
.

This is the same as under segmentation, and so is the variance of the aggregate spread. The variance

of φn,m,t is
1
N
D2

φ

(∑m−1
s=0

Zs

(1+r)s

)2
Var(η), lower than under segmentation.

Before proving Proposition 8, we prove the following lemma:

Lemma 2. Consider N positive scalars (a1, .., aN ) that are not all equal, and an increasing and
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differentiable function F (a). If the function a2F ′(a) is increasing, then

N∑
n=1

a2nF (an) >

(
N∑

n=1

a2n

)
F

(∑N
n=1 an
N

)
. (A.41)

Proof: Setting a ≡
∑N

n=1 an
N

, we can write the difference between the left- and right-hand side of

(A.41) as

N∑
n=1

a2n [F (an)− F (a)] =

N∑
n=1

a2n

∫ an

a

F ′(b)db

>
N∑

n=1

∫ an

a

b2F ′(b)db

>

N∑
n=1

∫ an

a

a2F ′(a)db

= a2F ′(a)

N∑
n=1

∫ an

a

db

= a2F ′(a)
N∑

n=1

(an − a) = 0,

where the second step follows because F (a) is increasing, and the third because a2F ′(a) is increasing.

Therefore, (A.41) holds.

Proof of Proposition 8: Eqs. (33) and (A.36) imply that the variance of the arbitrageurs’ total

wealth under integration is

∑
n∈N

⎛
⎜⎜⎜⎜⎝

2βMμn
[
unεn − (f ′)−1(Π)

]
1−

β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M
∑

n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

⎞
⎟⎟⎟⎟⎠

2

Var(η). (A.42)

Likewise, (33) and (A.39) imply that the variance of the arbitrageurs’ total wealth under segmen-
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tation is

∑
n∈N

⎛
⎜⎜⎜⎜⎜⎝

2βMμn
[
unεn − (f ′)−1(Π)

]
1−

β[unεn−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs
n

(1+r)s

M

[
unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

⎞
⎟⎟⎟⎟⎟⎠

2

Var(η). (A.43)

Eq. (A.42) and (A.43) imply that the variance under segmentation exceeds that under integration

if and only if

∑
n∈N

μ2na
2
nG(an)

2 >

(∑
n∈N

μ2na
2
n

)
G

(∑
n∈N μnan∑
n∈N μn

)2

, (A.44)

where

an ≡ unεn − (f ′)−1(Π) > 0, (A.45)

G(a) ≡
1

1−H(a)
, (A.46)

H(a) ≡
βa
∑M−1

m=1

∑m−1
s=0

Z(a)s

(1+r)s

M
[
a+ 1−Π

f ′′[(f ′)−1(Π)]

] , (A.47)

Z(a) ≡

1−Π
f ′′[(f ′)−1(Π)]

a+ 1−Π
f ′′[(f ′)−1(Π)]

. (A.48)

When μn = μ for all n = 1, .., N , (A.44) becomes equivalent to (A.41). Hence, Lemma 2 implies

that (A.44) holds if F (a) ≡ G(a)2 and a2F ′(a) are increasing. Since

F ′(x) = 2G(a)G′(a) =
2H ′(a)

[1−H(a)]3
,

both properties will follow if we show that H(a) < 1 and that H(a) and a2H ′(a) are increasing.

(Note that H(a) < 1 ensures that small shocks have small effects despite the amplification, and
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validates our linearization around the steady state.) We can write H(a) as

H(a) =
β [1− Z(a)]

M

M−1∑
m=1

m−1∑
s=0

Z(a)s

(1 + r)s

=
βH1(a)

M

M−1∑
m=1

[
1−

Z(a)m

(1 + r)m

]
(A.49)

= βH1(a)

⎡
⎣M − 1

M
−

Z(a)
1+r

− Z(a)M

(1+r)M

M
[
1− Z(a)

1+r

]
⎤
⎦ , (A.50)

where

H1(a) ≡
1− Z(a)

1− Z(a)
1+r

.

Since Z(a) ∈ (0, 1), H1(a) ∈ (0, 1), and (A.50) implies that H(a) < 1. Since, in addition, Z(a) is

decreasing and H1(a) is increasing, (A.49) implies that H(a) is increasing. Eq. (A.49) implies that

a2H ′(a) = −
a2βZ ′(a)

M(1 + r)

⎧⎪⎨
⎪⎩

r[
1− Z(a)

1+r

]2
M−1∑
m=1

[
1−

Z(a)m

(1 + r)m

]
+H1(a)

M−1∑
m=1

mZ(a)m−1

(1 + r)m−1

⎫⎪⎬
⎪⎭

=
β [1− Z(a)]2

M(1 + r)

⎧⎪⎨
⎪⎩

r[
1− Z(a)

1+r

]2
M−1∑
m=1

[
1−

Z(a)m

(1 + r)m

]
+H1(a)

M−1∑
m=1

mZ(a)m−1

(1 + r)m−1

⎫⎪⎬
⎪⎭

=
β [1− Z(a)]2

M(1 + r)

⎧⎪⎨
⎪⎩

r[
1− Z(a)

1+r

]2
M−1∑
m=1

[
1−

Z(a)m

(1 + r)m

]
+
H1(a)K[Z(a)][

1− Z(a)
1+r

]2
⎫⎪⎬
⎪⎭

=
βH1(a)

2

M(1 + r)

{
r

M−1∑
m=1

[
1−

Z(a)m

(1 + r)m

]
+H1(a)K[Z(a)]

}
, (A.51)

where

K(z) ≡ 1−
zM

(1 + r)M
−

MzM−1

(1 + r)M−1

(
1−

z

1 + r

)
=

(
1−

z

1 + r

)2 M−1∑
m=1

mzm−1

(1 + r)m−1
.

Since Z(a) ∈ (0, 1) is decreasing, H1(a) is increasing, and K(z) is decreasing, a2H ′(a) is increasing.

51



Therefore, if μn = μ for all n = 1, .., N , then the variance of the arbitrageurs’ total wealth under

segmentation exceeds that under integration. To construct an example where the reverse holds if

μn differs across n, we assume that N = 2, β is high enough so that N = {1, 2}, and μ2 is close to

zero. Omitting terms in μ22 and smaller, we can write (A.44) as

μ21a
2
1G(a1)

2 > μ21a
2
1G

(
μ1a1 + μ2a2
μ1 + μ2

)2

⇔G(a1) > G

(
μ1a1 + μ2a2
μ1 + μ2

)

⇔a1 >
μ1a1 + μ2a2
μ1 + μ2

,

which is violated if a2 > a1.

We next determine the variance of the aggregate spread φt. Under integration,

∂φt
∂ηnt

=
∑
n′∈N

xn′

M−1∑
m=1

∂φn′,m,t

∂ηnt

=
∑
n′∈N

xn′

M−1∑
m=1

∂φn′,m,t

∂Wt

∂Wt

∂ηnt

= −

μn
[
unεn − (f ′)−1(Π)

] β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s∑
n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

1−
β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M
∑

n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
, (A.52)

where the last step follows from (A.22), (A.35) and (A.36). Under segmentation, the shock ηnt

does not affect φn′,m,t for n
′ �= n. Therefore,

∂φt
∂ηnt

= xn

M−1∑
m=1

∂φn,m,t

∂ηnt

= xn

M−1∑
m=1

∂φn,m,t

∂Wnt

∂Wnt

∂ηnt

= −

μn
[
unεn − (f ′)−1(Π)

] β[unεn−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs
n

(1+r)s

unεn−(f ′)−1(Π)+ 1−Π
f ′′[(f ′)−1(Π)]

1−
β[unεn−(f ′)−1(Π)]

∑M−1
m=1

∑m−1
s=0

Zs
n

(1+r)s

M

[
unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
, (A.53)

52



where the last step follows from (A.22), (A.38) and (A.39). Eqs. (A.52) and (A.53) imply that the

variance of the aggregate spread under segmentation exceeds that under integration if and only if

(A.44) holds with

G(a) ≡
H(a)

1−H(a)
(A.54)

and an, H(a) and Z(a) defined by (A.45), (A.47) and (A.48), respectively. Since the derivative of

F (a) ≡ G(a)2 is

F ′(a) = 2G(a)G′(a) =
2H(a)H ′(a)

[1−H(a)]3
,

and H(a) and a2H ′(a) are increasing, F (a) and a2F ′(a) are also increasing. Therefore, Lemma

2 implies that if μn = μ for all n = 1, .., N , then the variance of the aggregate spread under

segmentation exceeds that under integration. The example constructed earlier in the proof implies

that the reverse can hold if μn differs across n.

We finally determine the variance of individual spreads. Eqs. (A.35) and (A.36) imply that

under integration,

∂φn,m,t

∂ηn′t

=
∂φn,m,t

∂Wt

∂Wt

∂ηn′t

= −

βμn′ [un′ εn′−(f ′)−1(Π)]
∑m−1

s=0
Zs

(1+r)s∑
n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

1−
β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M
∑

n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
,

and hence

Var

(
M−1∑
m=1

φn,m,t

)
=

N∑
n′=1

⎛
⎜⎜⎜⎜⎝

βμn′ [un′ εn′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s∑
n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

1−
β
∑

n′′∈N μn′′ [un′′ εn′′−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs

(1+r)s

M
∑

n′′∈N μn′′

[
un′′ εn′′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

⎞
⎟⎟⎟⎟⎠

2

Var(η). (A.55)
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Eqs. (A.38) and (A.39) imply that under segmentation,

∂φn,m,t

∂ηnt
=
∂φn,m,t

∂Wnt

∂Wnt

∂ηnt
= −

β[unεn−(f ′)−1(Π)]
∑m−1

s=0
Zs
n

(1+r)s

unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

1−
β[unεn−(f ′)−1(Π)]

∑M−1
m=1

∑m−1
s=0

Zs
n

(1+r)s

M

[
unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
.

Since, in addition, the shock ηn′t does not affect φn,m,t for n
′ �= n,

Var

(
M−1∑
m=1

φn,m,t

)
=

⎛
⎜⎜⎜⎜⎜⎝

β[unεn−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

Zs
n

(1+r)s

unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

1−
β[unεn−(f ′)−1(Π)]

∑M−1
m=1

∑m−1
s=0

Zs
n

(1+r)s

M

[
unεn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

⎞
⎟⎟⎟⎟⎟⎠

2

Var(η). (A.56)

Eqs. (A.55) and (A.56) imply that the variance of
∑M−1

m=1 φn,m,t under segmentation exceeds that

under integration if and only if

G(an)
2 >

∑
n′∈N μ2n′a2n′(∑
n′∈N μn′an′

)2G
(∑

n′∈N μn′an′∑
n′∈N μn′

)2

, (A.57)

where an, G(a), H(a) and Z(a) are defined by (A.45), (A.54), (A.47) and (A.48), respectively.

Since G(a) is increasing and
∑

n′∈N μ2
n′a

2
n′

(
∑

n′∈N μn′an′)
2 < 1, (A.57) holds for the n that maximizes an. On the

other hand, (A.57) fails to hold if an is close to zero and an′ is not for n′ �= n. The comparisons of

the variance of
∑M−1

m=1 φn,m,t under integration and segmentation extend to the variance of φn,m,t

for at least one m. This is because φn,m,t are perfectly correlated for m = 1, ..,M − 1, under both

integration and segmentation.

B General Contracts

B.1 Contracts and Equilibrium

A contract ω that arbitrageurs can trade with i-investors in period t is characterized by (i) payments

πω,t′ that the seller of the contract must make to the buyer in periods t′ > t, (ii) a price qω,t that

the seller of the contract receives from the buyer in period t, and (iii) collateral that the seller of

the contract must post with the buyer. The payments πω,t′ can depend on information available in
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all markets including market i. We assume that payments are non-negative and are not all equal

to zero. No-arbitrage then implies that the price qω,t must be positive. Collateral must be in the

form of cash or other contracts. A contract ω can be traded in any period t ∈ {tω, .., tω − 1}, where

tω occurs before the first positive payment and tω is when the last positive payment is made. The

period tω can be infinite, and if it is finite we set qω,tω = 0. We denote by Ωi,t the set of contracts

that can be traded in market i and period t.

To specify how contracts can be collateralized using other contracts, we define contracts recur-

sively. Contracts of level 1 are collateralized by the riskless asset. Contracts of level n + 1 are

collateralized by the riskless asset and by a finite number of contracts of levels 1 up to n. For

a contract ω ∈ Ωi,t and period t, we denote by ψω,t ≥ 0 the units of the riskless asset and by

ψω,ω′,t ≥ 0 the units of a lower-level contract ω′ ∈ Ωi,t that are required as collateral. We also

denote by �(ω, t) the level of the contract. The collateral amounts ψω,t and ψω,ω′,t and the level

�(ω, t) can depend on information available in all markets including market i.

We denote by yω,t the position of i-investors and xω,t the position of arbitrageurs in a contract

ω ∈ Ωi,t and period t. Because the number of contracts is infinite, there is an infinite set of positions.

We assume that only a finite number of the positions are non-zero.

The collateral that short positions require must be covered by long positions. Suppose, for

example, that arbitrageurs have a short position in a contract ω ∈ Ωi,t, which requires contract

ω′ ∈ Ωi,t as collateral. This does not necessarily imply that arbitrageurs must have an overall long

position in contract ω′: they must buy contract ω′ to post as collateral for the short position in

contract ω, but they could undertake an additional transaction in contract ω′ to establish an overall

short position in that contract. We decompose the position xω′,t in contract ω′ into

xω′,t = xcω′,t + x̂ω′,t,

where xcω′,t ≥ 0 is collateral set aside for short positions in higher-level contracts ω ∈ Ωi,t, and x̂ω′,t

is the remainder of the position, which can be negative. The collateral xcω′,t must satisfy

xcω′,t =
∑

ω∈Ωi,t

�(ω,t)>�(ω′,t) and x̂ω,t<0

(−x̂ω,t)ψω,ω′,t. (B.1)
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The collateral vi,t in the riskless asset required for contracts in market i must likewise satisfy

vi,t =
∑

ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)ψω,t. (B.2)

The wealth that arbitrageurs “tie up” in market i is
∑

ω∈Ωi,t
xω,tqω,t + vi,t, the value of their

positions in the contracts traded in market i and of the riskless collateral. The financial constraint of

arbitrageurs requires that the sum of that quantity across markets does not exceed the arbitrageurs’

total wealth Wt:

Wt ≥
∑
i∈I

⎛
⎝ ∑

ω∈Ωi,t

xω,tqω,t + vi,t

⎞
⎠ . (B.3)

As in Section 2.3.2, we assume that i-investors have enough wealth so that their financial constraint

is never binding.

Investors and arbitrageurs can default on their short positions in the contracts. Defaulting

on a unit short position in a contract ω ∈ Ωi,t in period t + 1 raises the wealth of an agent by

πω,t+1 + qω,t+1 since the agent does not make the payment πω,t+1 and no longer has the liability

qω,t+1. At the same time, the agent loses the collateral associated to the position. Default is costlier

to the agent than no default if

πω,t+1 + qω,t+1 ≤ (1 + r)ψω,t +
∑

ω′∈Ωi,t

�(ω,t)>�(ω′,t)

ψω,ω′,t(πω′,t+1 + qω′,t+1), (B.4)

i.e., the amount saved by not making the payment is smaller than the value of the collateral seized.

Without loss of generality, we can assume that there is no default. This is because we can replace a

contract ω that involves default by one with the same collateral and with required payments equal

to the actual payments (including the effects of default) under ω.

Under no default, the budget constraint of an i-investor is

wi,t+1 =
∑

ω∈Ωi,t

yω,t(πω,t+1 + qω,t+1) + (1 + r)

⎛
⎝wi,t −

∑
ω∈Ωi,t

yω,tqω,t

⎞
⎠+ ui,tεi,t+1 − ci,t+1, (B.5)
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and of an arbitrageur is

Wt+1 =
∑
i∈I

∑
ω∈Ωi,t

xω,t(πω,t+1 + qω,t+1) + (1 + r)

⎛
⎝Wt −

∑
i∈I

∑
ω∈Ωi,t

xω,tqω,t

⎞
⎠− ct+1. (B.6)

Eqs. (B.5) and (B.6) are counterparts of (13) and (17), with the positions in the contracts replacing

those in the risky assets.

Definition 3. A competitive equilibrium with no default consists of prices qω,t for all contracts

ω ∈ Ωi,t, and positions in the contracts yω,t for the i-investors and xω,t for the arbitrageurs, such

that (B.4) holds, positions are optimal given prices, and the markets for all contracts clear:

μiyω,t + xω,t = 0. (B.7)

B.2 Binomial Payoffs

We next assume that the variables εi,t have a binomial distribution. Given symmetry, this amounts

to assuming that the variables
εi,t
εi

take the values 1 and -1 with probabilities one-half.

Proposition B.1. There exists a competitive equilibrium with no default such that the dynamics

of wealth of i-investors and arbitrageurs are as in Section 3.4 and the prices qω,t of all contracts

ω ∈ Ωi,t are given by

qω,t =
exp(−Zi,t)Et (πω,t+1 + qω,t+1|εi,t+1 = εi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|εi,t+1 = −εi)

(1 + r) [exp(−Zi,t) + exp(Zi,t)]
, (B.8)

where

Zi,t ≡
αA

α+A
(yi,t + ui,t)εi

and yi,t is as in Section 3.4.

Proof of Proposition B.1: We first study optimization by i-investors. We proceed as in the

proof of Proposition 1, conjecture the value function (14) with A = rα and Fi,t given by (A.9), and

use the budget constraint (B.5) instead of (13). Optimal consumption is given by

ci,t+1 =
A
[
(1 + r)wi,t +

∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tεi,t+1

]
+ Fi,t+1 + log

(
α
A

)
α+A

,
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(B.9)

which is the counterpart of (A.4). Optimal positions in the contracts solve

max
yω,t

Et

⎧⎨
⎩− exp

⎛
⎝−

αA

α+A

⎡
⎣(1 + r)wi,t +

∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tεi,t+1

⎤
⎦
⎞
⎠
⎫⎬
⎭ ,

(B.10)

which is the counterpart of (A.5) after omitting terms that are known in period t. The first-order

condition with respect to yω,t is

Et

⎧⎨
⎩[πω,t+1 + qω,t+1 − (1 + r)qω,t]

× exp

⎛
⎝−

αA

α+A

⎡
⎣ ∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tεi,t+1

⎤
⎦
⎞
⎠
⎫⎬
⎭ = 0. (B.11)

Eq. (B.8) that characterizes equilibrium prices can be written as

Et

{
[πω,t+1 + qω,t+1 − (1 + r)qω,t] exp

(
−

αA

α+A
(yi,t + ui,t)εi,t+1

)}
= 0. (B.12)

Eqs. (B.11) and (B.12) imply that if positions in the contracts satisfy

∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] = yi,tεi,t+1 + Gt, (B.13)

where Gt is known in period t, then they are optimal because the first-order condition (B.11) is

met. Positions satisfying (B.13) are not unique, and we present one implementation at the end of

this proof. Eq. (B.13) implies that the dynamics of wealth of i-investors are the same as in Section

3.4. Indeed, multiplying (B.12) by yω,t and summing across ω ∈ Ωi,t, we find

Et

⎧⎨
⎩
∑

ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] exp

(
−

αA

α+A
(yi,t + ui,t)εi,t+1

)⎫⎬
⎭ = 0. (B.14)
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Moreover, the maximization in (A.5) implies that

Et

{
yi,t (Φi,t + εi,t+1) exp

(
−

αA

α+A
(yi,t + ui,t)εi,t+1

)}
= 0. (B.15)

Substituting
∑

ω∈Ωi,t
yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] from (B.13) into (B.14), and comparing with

(B.15), we find Gt = Φi,t. Substituting Gt = Φi,t into (B.13), we find that budget constraint (B.5)

of i-investors becomes identical to the budget constraint (13) in Section 3.4. Since the dynamics of

the wealth of i-investors are the same as in Section 3.4, the conjectured value function (14) satisfies

the Bellman equation.

We next study optimization by arbitrageurs. We proceed in two steps: in Step 1 we show that

the dynamics of arbitrageur wealth are deterministic, and in Step 2 that they are as in Section 3.4.

Step 1: To show deterministic dynamics, we show that if arbitrageurs choose in period t a

portfolio of contracts whose aggregate payoff in period t + 1 is risky, then there exists another

portfolio that is riskless and has a return that is at least as high as the expected return of the

risky portfolio. We construct a “dominant” riskless portfolio for each market i separately, and then

aggregate across markets. From the budget constraint (B.6), the (excess) return that arbitrageurs

earn on their portfolio of contracts in market i is

∑
ω∈Ωi,t

xω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] . (B.16)

Consider first a market i without an endowment shock, i.e., ui,t = 0. Since Zi,t = 0, (B.8)

implies that

qω,t =
Et (πω,t+1 + qω,t+1|εi,t+1 = εi) + Et (πω,t+1 + qω,t+1|εi,t+1 = −εi)

2(1 + r)
=
Et (πω,t+1 + qω,t+1)

1 + r
,

and hence the expected return in (B.16) is zero. A dominant riskless portfolio is one with zero

positions.

Consider next a market i with an endowment shock. If the expected return in (B.16) is non-

positive, then a dominant riskless portfolio is one with zero positions. If the expected return in

(B.16) is positive, then we will construct a dominant riskless portfolio that involves positions in

markets i and −i. As an intermediate step in this construction, we show that the original risky

portfolio has the same expected return and ties up the same amount of arbitrageur wealth as a unit

long position in a single contract ω̂i that is traded in market i and has binary payoffs. The payoffs
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of ω̂i are

Et

⎡
⎣ ∑

ω∈Ωi,t

xω,t (πω,t+1 + qω,t+1)

∣∣∣∣∣∣ εi,t+1 = εi

⎤
⎦+ (1 + r)vi,t ≡ Qi,t+1 + (1 + r)vi,t,

Et

⎡
⎣ ∑

ω∈Ωi,t

xω,t (πω,t+1 + qω,t+1)

∣∣∣∣∣∣ εi,t+1 = −εi

⎤
⎦+ (1 + r)vi,t ≡ Q

i,t+1
+ (1 + r)vi,t,

in period t+ 1 and states εi,t+1 = εi and εi,t+1 = −εi, respectively, and zero afterwards. The price

of ω̂i in period t is

exp(−Zi,t)
[
Qi,t+1 + (1 + r)vi,t

]
+ exp(Zi,t)

[
Q

i,t+1
+ (1 + r)vi,t

]
(1 + r) [exp(−Zi,t) + exp(Zi,t)]

=
∑

ω∈Ωi,t

xω,t
exp(−Zi,t)Et (πω,t+1 + qω,t+1|εi,t+1 = εi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|εi,t+1 = −εi)

(1 + r) [exp(−Zi,t) + exp(Zi,t)]
+ vi,t

=
∑

ω∈Ωi,t

xω,tqω,t + vi,t

≡ Qi,t + vi,t,

where the first step follows from (B.8), the second by using the definitions of (Qi,t+1, Qi,t+1
) and

rearranging terms, and the third from (B.8). Therefore, the wealth Qi,t + vi,t that arbitrageurs tie

up in market i is the same as under the original risky portfolio. The expected return from buying

ω̂i is

1

2

[
Qi,t+1 + (1 + r)vi,t

]
+

1

2

[
Q

i,t+1
+ (1 + r)vi,t

]
− (1 + r) (Qi,t + vi,t)

=
1

2

(
Qi,t+1 +Q

i,t+1

)
− (1 + r)Qi,t

=
∑

ω∈Ωi,t

xω,t

[
1

2
[Et (πω,t+1 + qω,t+1|εi,t+1 = εi) + Et (πω,t+1 + qω,t+1|εi,t+1 = −εi)]− (1 + r)qω,t

]

=
∑

ω∈Ωi,t

xω,tEt [πω,t+1 + qω,t+1 − (1 + r)qω,t] ,

where the third step follows from the definitions of (Qi,t, Qi,t+1, Qi,t+1
). The expected return from

buying ω̂i is thus the same as under the original risky portfolio. To complete the analysis of ω̂i, we
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must show that it is a proper contract in the sense that its payoffs are non-negative. Multiplying

(B.4) by −x̂ω,t for those ω ∈ Ωi,t for which x̂ω,t < 0, and summing across ω, we find

∑
ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)(πω,t+1 + qω,t+1)

≤ (1 + r)
∑

ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)ψω,t +
∑

ω∈Ωi,t
x̂ω,t<0

∑
ω′∈Ωi,t

�(ω,t)>�(ω′,t)

(−x̂ω,t)ψω,ω′,t(πω′,t+1 + qω′,t+1)

= (1 + r)vi,t +
∑

ω′∈Ωi,t

∑
ω∈Ωi,t

�(ω,t)>�(ω′,t) and x̂ω,t<0

(−x̂ω,t)ψω,ω′,t(πω′,t+1 + qω′,t+1)

= (1 + r)vi,t +
∑

ω′∈Ωi,t

xcω′,t(πω′,t+1 + qω′,t+1), (B.17)

where the second step follows from (B.1) and the third from (B.2). Eq. (B.17) implies that

∑
ω∈Ωi,t

(−x̂ω,t)(πω,t+1 + qω,t+1) ≤ (1 + r)vi,t +
∑

ω∈Ωi,t

xcω,t(πω,t+1 + qω,t+1)

⇒ (1 + r)vi,t +
∑

ω∈Ωi,t

xω,t(πω,t+1 + qω,t+1) ≥ 0. (B.18)

Taking expectations in (B.18) conditional on εi,t+1 = εi and εi,t+1 = −εi, we find that Qi,t+1 +(1+

r)vi,t and Qi,t+1
+ (1 + r)vi,t, respectively, are non-negative.

We next combine the unit long position in the contract ω̂i with a unit short position in a contract

ω̂−i that is traded in market −i, has the same payoffs as ω̂i, and is collateralized with v−i,t units

of the riskless asset. The price of ω̂−i in period t is

exp(−Z−i,t)
[
Qi,t+1 + (1 + r)vi,t

]
+ exp(Z−i,t)

[
Q

i,t+1
+ (1 + r)vi,t

]
(1 + r) [exp(−Z−i,t) + exp(Z−i,t)]

=
exp(Zi,t)Qi,t+1 + exp(−Zi,t)Qi,t+1

(1 + r) [exp(Zi,t) + exp(Zi,t)]
+ vi,t

=
Qi,t+1 +Q

i,t+1

1 + r
−Qi,t + vi,t

≡ Q−i,t + vi,t, (B.19)
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where the first step follows from (B.8), the second because Z−i,t = −Zi,t, and the third from the

definition of Qi,t. The wealth that arbitrageurs tie up in market −i is

−(Q−i,t + vi,t) + v−i,t

and is equal to the wealth that they tie up in market i if

v−i,t = Qi,t +Q−i,t + 2vi,t. (B.20)

The expected return from shorting ω̂−i is

−
1

2

[
Qi,t+1 + (1 + r)vi,t

]
−

1

2

[
Q

i,t+1
+ (1 + r)vi,t

]
+ (1 + r) (Q−i,t + vi,t)

= −
1

2

(
Qi,t+1 +Q

i,t+1

)
+ (1 + r)Q−i,t

=
1

2

(
Qi,t+1 +Q

i,t+1

)
− (1 + r)Qi,t,

where the third step follows from the definition of Q−i,t. Therefore, the expected return of the

short position in ω̂−i is the same as that of the long position in ω̂i. To complete the analysis of

ω̂−i, we must show that arbitrageurs do not default on their short position. Eq. (B.4) implies that

default does not occur if

max{Qi,t+1, Qi,t+1
}+ (1 + r)vi,t ≤ (1 + r)v−i,t

⇔ max{Qi,t+1, Qi,t+1
} ≤ (1 + r) (Qi,t +Q−i,t + vi,t)

⇔ max{Qi,t+1, Qi,t+1
} ≤ Qi,t+1 +Q

i,t+1
+ (1 + r)vt, (B.21)

where the second step follows from (B.20) and the third from the definition of Q−i,t. Eq. (B.21)

holds because the payoffs Qi,t+1 + (1 + r)vi,t and Qi,t+1
+ (1 + r)vi,t of ω̂i are non-negative.

The riskless portfolio that dominates the original risky portfolio in market i consists of a half-

unit long position in ω̂i and a half-unit short position in ω̂−i. Since a unit long position in ω̂i and

a unit short position in ω̂−i each has the same expected return as the original risky portfolio, the

combination of two half-unit positions also has the same expected return. The same applies to the

amount of arbitrageur wealth that is tied up: it is the same under the combination of two half-unit

positions as under the original risky portfolio. Therefore, the arbitrageurs’ financial constraint is

still met. Finally, the portfolio is riskless because ω̂i and ω̂−i have the same payoffs.
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Step 2: From Step 1, we can assume that the portfolio of arbitrageurs in period t is as follows:

(i) in each market i with ui,t > 0, arbitrageurs hold a long position in a contract with one-period

payoffs, (ii) in each market −i with ui,t < 0, arbitrageurs hold a short position of the same size as in

market i and in a contract with the same payoffs, (iii) the payoffs of the contracts in markets i and

−i are binary and contingent on εi,t+1, (iv) the short position in market −i is collateralized with

an investment in the riskless asset such that the arbitrageur wealth tied up in market −i equals

that in market i, (v) in each market i with ui,t = 0, arbitrageurs hold a zero position.

Since the long position in the contract traded in each market i with ui,t > 0 must have positive

expected return, (B.8) implies that the contract must have larger payoff when εi,t+1 = εi than when

εi,t+1 = −εi. Moreover, we can take the payoff when εi,t+1 = −εi to be zero since the contract

price would then be lower, and hence arbitrageurs would be able to tie up less wealth in their long

position in market i. We normalize the payoff when εi,t+1 = εi to 2εi, and denote by ω′
i the contract

in market i and by ω′
−i the contract in market −i. We also denote by xi,t the number of units of

the long position in ω′
i and of the short position in ω′

−i, by qi,t the price of ω
′
i, and by q−i,t the price

of ω′
−i.

The budget constraint (B.6) of arbitrageurs can be written as

Wt+1 = (1 + r)Wt + (1 + r)
∑
i∈At

xi,t(q−i,t − qi,t)− ct+1

= (1 + r)Wt + 2
∑
i∈At

xi,t [εi − (1 + r)qi,t]− ct+1, (B.22)

where the second step follows because the same calculations as in (B.19) imply that

q−i,t =
2εi
1 + r

− qi,t.

Since arbitrageurs must tie up wealth xi,tqi,t in each of markets i and −i, their financial constraint

(B.3) becomes

Wt ≥ 2
∑
i∈At

xi,tqi,t. (B.23)

Eqs. (B.22) and (B.3) become identical to (20) and (26), respectively, by setting

Φi,t ≡ εi − (1 + r)qi,t.
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Because of this equivalence, if the dynamics of Φi,t are as in Section 3.4, then arbitrageurs’ optimal

positions xi,t and the dynamics of their wealth are also as in that section. Using (B.8) to substitute

for qi,t, we find

Φi,t = εi −
2 exp(−Zi,t)εi

exp(−Zi,t) + exp(Zi,t)
= εi

exp(Zi,t)− exp(−Zi,t)

exp(−Zi,t) + exp(Zi,t)
.

This coincides with Φi,t given by (15) when εi,t+1 has a binomial distribution. Therefore, ar-

bitrageurs’ optimal positions xi,t and the dynamics of their wealth are the same as in Section

3.4. Eq. (B.13) implies that the optimal positions of i-investors are yi,t, as in Section 3.4. Since

μiyi,t + xi,t = 0, markets clear.

An alternative implementation of the equilibrium derived in Proposition B.1 is through the

contracts assumed in Section 2. Two contracts are traded in market i. The first is asset i, with

short positions in that contract being collateralized by the riskless asset. The second is a contract

with a riskless payoff, with short positions in that contract being collateralized by asset i. The

first contract is level 1, and the second is level 2. The collateral for each contract is the minimum

required so that the no-default condition (B.4) is met. A short position of arbitrageurs in the first

contract, combined with the required collateral, yields zero if εt+1 = εi and 2εi if εt+1 = −εi. A

short position of arbitrageurs in the second contract, combined with the required collateral, yields

2εi if εt+1 = εi and zero if εt+1 = −εi. The former is equivalent to the short position in ω′
−i, and

the latter is equivalent to the long position in ω′
i.
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