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The importance of correlation in financial markets has spawned a broad literature

documenting that asset return correlations are stochastic and countercyclical. In par-

ticular, there is evidence from the equity market that correlation carries a significant

risk premium, arguably due to the deterioration of investors’ investment opportunities

that results from a reduction in diversification benefits when asset return correlations

increase. Yet, the existing literature has largely ignored the foreign exchange (FX) mar-

ket. In this paper, we provide novel empirical evidence that correlation risk is priced in

FX markets and we propose a reduced-form, no-arbitrage model that is consistent with

our empirical findings.

Empirically, we start by documenting large cross-sectional differences in both aver-

age FX correlations and average FX correlation risk premia, defined as the difference

between FX correlations under the risk-neutral and objective measures. Moreover, we

show that there is a negative cross-sectional relationship between average FX corre-

lations and average correlation risk premia: on average, FX pairs characterized by low

average correlation exhibit high correlation risk premia whereas FX pairs that are highly

correlated on average have low correlation risk premia.

We then explore the time series properties of FX correlations and FX correlation risk

premia. First, we find a negative relationship between the average level of FX correla-

tions and cyclicality. In particular, using several business cycle proxies, we show that

currencies with high average correlations become more correlated in adverse economic

times, whereas FX pairs with low average correlations become even less correlated. This

can be best illustrated by focusing on the USD exchange rate of the Japanese Yen (JPY),

a typical low interest rate currency, and the USD exchange rates of the Australian and

the New Zealand Dollar (AUD and NZD), two high interest rate currencies. The average

correlation between the JPY exchange rate and either the AUD or the NZD exchange

rate is countercyclical and fairly low at 16% and 15%, respectively. On the other hand,

the average correlation of the USD exchange rates of the two high interest rate cur-

rencies is 76% and procyclical. Thus, the cross-sectional dispersion of FX correlations

widens in bad states of the world and tightens in good states of the world. Second, we

show that there is a very strong negative time series relationship between FX correla-

tions and FX correlation risk premia, both in levels and in changes, for virtually all FX
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pairs. Furthermore, we find that FX pairs with high average correlation risk premia have

countercyclical correlation risk premia, whereas pairs with low correlation risk premia

have procyclical correlation risk premia. Thus, bad states amplify the magnitude of FX

correlation risk premia, increasing their cross-sectional dispersion.

We exploit the countercyclical behavior of cross-sectional FX correlation dispersion

by defining a novel FX correlation factor, FXC, which measures cross-sectional differ-

ences in the conditional FX correlations of the G10 currencies. To construct our factor,

we sort FX pairs into deciles based on their conditional FX correlation and subtract the

average conditional FX correlation of the bottom decile from the average conditional

FX correlation of the top decile. As suggested by the simple three currency example,

we find that the resulting factor is strongly countercyclical.

We use our FX correlation factor in order to quantify the compensation for exposure

to FX correlation risk using a portfolio sorting approach, in line with the recent inter-

national finance literature (see, e.g., Lustig and Verdelhan (2007), Lustig, Roussanov,

and Verdelhan (2011), Burnside (2011), and Menkhoff, Sarno, Schmeling, and Schrimpf

(2012)). We find that correlation risk is priced in currency markets, yielding a nega-

tive price of risk: currencies with low FX correlation betas have higher average excess

returns, whereas currencies that appreciate strongly when FX correlation differentials

increase yield lower excess returns. Shorting the high correlation beta currencies and in-

vesting in the low correlation beta currencies generates an average annual excess return

of between 4% (all countries) and 5.6% (developed countries) and Sharpe ratios of 0.46

and 0.59, respectively. Using various test assets, we estimate the price of FX correlation

risk to be about minus 48 basis points (bps) per month. This means that shorting an

asset with a beta of one would result in an annual excess return of 5.7%.

We rationalize our empirical findings with a no-arbitrage model of exchange rates.

The main tension we address is between the dynamics of FX correlation in the physical

and the risk-neutral measure. Under the physical measure, the FX correlation differential

between high and low average correlation FX pairs is countercyclical. At the same time,

high correlation exchange rate pairs on average have low or negative correlation risk

premia whereas low average correlation pairs exhibit rather high correlation risk premia,
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suggesting that U.S. investors attach significant prices to states in which the cross section

of FX correlations tightens.

Our model builds on the work of Lustig, Roussanov, and Verdelhan (2011), Lustig,

Roussanov, and Verdelhan (2014) and Verdelhan (2013). Their models feature both

common (global) and country-specific (local) pricing factors. The former price purely

global SDF shocks, common to all countries, whereas the latter price purely local SDF

shocks, independent across countries. Importantly, they assume that innovations in the

local pricing factors are uncorrelated across countries, as they are perfectly negatively

correlated with the corresponding local shocks. They also assume that innovations in

the global pricing factors are countercyclical, perfectly negatively correlated with the

corresponding global shocks. In order to address the tension mentioned above we deviate

in one key aspect from this setup: we allow the local pricing factors to also be exposed

to global shocks, an assumption which generates comovement in local pricing factors

across countries. Indeed, in our benchmark model we consider the polar case that all

local pricing factors are solely exposed to global shocks and, thus, are identical across

countries. In that case, there are only two pricing factors, common to all countries: a

global one and a local one.

In our benchmark model, exchange rates are exposed to two kinds of shocks: (i) local,

country-specific shocks, each of which is priced by the common local pricing factor, and

(ii) a single global shock that is priced by the global pricing factor. Countries are

assumed to have heterogenous exposure to the global shock and identical exposure to

their corresponding local shock, so the only source of heterogeneity across countries is

the heterogeneous loading on the global innovation. The cross section of average FX

correlations is determined by the cross section of exposures to the global shock: FX pairs

that correspond to foreign countries with similar exposure to global risk (called similar

FX pairs) are more correlated on average than FX pairs of countries with dissimilar

global risk exposure (called dissimilar FX pairs).

The dynamics of conditional FX correlations in the physical measure depend on the

relative importance of changes in the local and the global pricing factor. In particular,

an increase of the local risk factor increases the variance of all exchange rates, as country-

specific shocks are not offset across countries. As a result, when local shocks become
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more highly priced, the cross section of conditional FX correlations tightens, with high

correlation FX pairs becoming less correlated and low correlation FX pairs becoming

more correlated. On the other hand, an increase in the price of the first global shock

amplifies the significance of the exchange rate fluctuations that are driven by global risk

exposure, increasing the correlation of similar FX pairs and decreasing the correlation

of dissimilar FX pairs. Thus, when the price of global risk increases, the cross section

of conditional FX correlations widens. As a result, for the dynamics of FX correlation

in the model to replicate the empirical FX dynamics, with dispersion in conditional FX

correlation being countercylical, it must be the case that the dominant fluctuations in

the physical measure are those of the global pricing factor, with changes in the local

pricing factor having a second-order effect on conditional FX correlation. This provides

the rationale for the construction of our empirical FX correlation factor FXC.

The key to resolving the tension between the objective and the risk-neutral measure

lies in the different pricing of innovations in the two pricing factors by the domestic

(United States) investor. In particular, the U.S. investor prices fluctuations of the local

pricing factor more than those of the global pricing factor, thus attaching a higher price

to states characterized by high value of the local pricing factor and low values of the

global pricing factor. As we have seen, those are exactly the states characterized by

low cross-sectional dispersion in FX correlations. Calibrating our model, we find that

it generates realized FX correlations, implied FX correlations and FX correlation risk

premia that match the joint time series and cross sectional properties of their empirical

counterparts, all the while matching the standard moments of exchange rates, interest

rates and inflation.

Related literature: This paper builds on the literature addressing the risk–return

relationship in FX markets. Lustig, Roussanov, and Verdelhan (2011) identify two risk

factors: the average forward discount of the U.S. dollar against foreign currencies (DOL

factor) and the return to the carry trade portfolio itself (HML factor). They show that

the cross section of interest rate sorted currency portfolio returns can be mapped to

differential exposure to the HML factor. They interpret the HML factor to be a global

risk factor, so carry trade excess returns compensate U.S. investors for exposure to global

risk. Lustig, Roussanov, and Verdelhan (2014) study a different investment strategy
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that exploits the time series variation in the average U.S. interest rate differential vis-

à-vis the rest of the world. This dollar carry trade is shown to be predictable by the

average forward discount. In a similar vein, Verdelhan (2013) studies beta-sorted dollar

portfolios and finds that similar to the carry factor, the dollar factor is a priced risk

factor in the cross section of currencies. We contribute to this literature by presenting

a new priced risk factor and by showing that distinguishing the relative importance of

country-specific variation from global variation is key for understanding time-varying

correlations in currency markets.

In other recent work on the carry trade, Cenedese, Sarno, and Tsiakas (2014) find

that higher (lower) average currency excess return variance (correlation) leads to larger

carry trade losses (gains). Menkhoff, Sarno, Schmeling, and Schrimpf (2012) show that

the carry trade can be explained as compensation for global FX volatility risk. Mancini,

Ranaldo, and Wrampelmeyer (2013) study the impact of FX liquidity on carry returns,

and Lettau, Maggiori, and Weber (2014) and Dobrynskaya (2014) argue that the high

returns are due to high conditional exposure to the equity market return in bad periods.

Jurek (2014) shows that returns to selling put options which are exposed to downside

risk can explain carry returns.

The rest of the paper is organized as follows. Section 1 describes the data and

details the construction of the implied variance and correlation measures. Section 2

contains our empirical findings regarding the cross section and time series properties of

FX correlations and FX correlation risk premia, as well as the pricing of correlation risk

in currency markets. Section 3 presents our no-arbitrage model, and Section 4 concludes.

We provide additional material on our model in the Appendix. Finally, additional results

and robustness checks are presented in an Online Appendix.

1 Data and measures of FX correlation

We start by describing the data and the procedure to estimate realized and implied

correlations. To construct measures of implied FX variances and correlations we use

daily FX options data for the G10 currencies. Realized variances and correlations are
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calculated using daily spot exchange rates. Our benchmark sample period starts in 1996

and is dictated by the availability of the options data.

1.1 Data description

Currency options: We use daily over-the-counter (OTC) currency options data from

J.P.Morgan for the G10 currencies (AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD,

SEK, USD). In addition to the nine FX pairs versus the U.S. dollar we also have op-

tions data for the 36 cross rates. Using OTC options data has several advantages over

exchange-traded options data. First, the trading volume in the OTC FX options market

is several times larger than the corresponding volume on exchanges such as the Chicago

Mercantile Exchange, and this leads to more competitive quotes in the OTC market.

Second, the conventions for writing and quoting options in the OTC markets exhibit

several features that are appealing when performing empirical studies. In particular,

new option series with fixed times to maturity and fixed strike prices, defined by sticky

deltas, are issued daily; in comparison, the time to maturity of an exchange-traded op-

tion series gradually declines with the approaching expiration date and so the moneyness

continually changes as the underlying exchange rate moves. As a result, OTC options

data allows for better comparability over time because the series’ main characteristics

do not change from day to day. The options used in this study are plain-vanilla Euro-

pean calls and puts with five option series per currency pair. Specifically, we consider a

one-month maturity and a total of five different strikes: at-the-money (ATM), 10-delta

and 25-delta calls, as well as 10-delta and 25-delta puts. The options data is available

starting in 1996.

Spot and forward rates: To calculate realized variances and correlations we use

daily spot exchange rates from WM/Reuters obtained through Datastream. In order to

form currency portfolios we also collect one-month forward rates from WM/Reuters.1

Following the previous literature (see, e.g., Fama, 1984), we work with the log spot and

1The spot and forward rates are fixed at 4 p.m. UK time, which is standard in the FX market.
For our benchmark sample period, we can use spot rates from a single source. This is important as
we use daily exchange rates to calculate realized correlations and we therefore require that rates are
measured in a consistent way. In order to conduct robustness checks we extend our sample to January
1984 by combining various data sources. We verify that for the overlapping period the spot rates from
the additional sources are virtually identical.
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one-month forward exchange rates, denoted sit = ln(Si
t) and f

i
t = ln(F i

t ), respectively.
2

We use the U.S. dollar as the base currency, so superscript i always denotes the foreign

currency. In addition to the G10 currencies for which we have options data, our sample

includes the following countries: Austria, Belgium, Czech Republic, Denmark, Finland,

France, Germany, Greece, Hungary, India, Indonesia, Ireland, Italy, Kuwait, Malaysia,

Mexico, Netherlands, Philippines, Poland, Portugal, Singapore, South Africa, South

Korea, Spain, Taiwan and Thailand.3 We run a separate analysis using only the sample

of developed countries that includes Australia, Austria, Belgium, Canada, Denmark,

France, Finland, Germany, Greece, Italy, Ireland, Japan, Netherlands, New Zealand,

Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom, as well as the

Euro.

To summarize, we conduct our analysis for three samples: The full sample consists

of a maximum of 34 currencies before the introduction of the Euro and of 24 currencies

thereafter. The sample of developed currencies consists of 20 (10 after the introduction

of the Euro) currencies and the sample of G10 currencies consists of a total of nine

currencies (throughout the paper we use the German mark before the introduction of

the Euro).

To illustrate the cross-sectional properties of our nine G10 currencies, we rank them

according to their average nominal interest rate differential (forward discount) against

the USD and report the average excess returns over the options data sample period

starting in 1996. As can be seen from Panel A in Table 1, the NZD, AUD and NOK

are characterized by high nominal interest rates, as well as high average currency excess

returns. The reverse is true for the JPY, CHF and EUR/DEM. In line with the extant

literature on the FX carry trade, currencies with high nominal interest rates achieve

higher average dollar excess returns.

2WM/Reuters forward rates are available since 1997. For 1996 (and for the extended sample used
for robustness checks we either use forward rates from alternative sources or we construct ‘implied’
forward rates using the interest rate differential between the U.S. and the foreign country (again, we
collect interest rate data from Datastream). We thus exploit the fact that during normal conditions

covered interest rate parity holds and, hence, ft− st ≈ r
i,$
t − r0,$t , where ri,$t and r0,$t denote the foreign

and domestic nominal risk-free rates over the maturity of the contract, respectively. We verify that all
results are robust to using the WM/Reuters data only.

3We start with the same set of currencies used in Lustig, Roussanov, and Verdelhan (2011). However,
we exclude some currencies such as the Hong Kong dollar as they are pegged to the U.S. dollar. We
also exclude the Danish krone after the introduction of the Euro.
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[Insert Table 1 here.]

Carry portfolios: At the end of each month t, we allocate currencies into four portfolios

(three portfolios for the G10 sample) based on their end-of-the-month forward discount

and re-balance every month. Since covered interest rate parity holds in the data at

the monthly frequency, sorting on forward discounts is equivalent to sorting on interest

rate differentials. Portfolio 1 contains currencies with the lowest interest rates (smallest

forward discounts) while Portfolio 4 contains currencies with the highest interest rates

(largest forward discounts). Monthly excess returns from holding the foreign currency i

are computed as rxit+1 ≈ f i
t − sit+1.

We follow Lustig, Roussanov, and Verdelhan (2011) and build a long–short carry

factor (HML) by investing in Portfolio 4 and shorting Portfolio 1. We also build a zero-

cost dollar portfolio (DOL), which is an equally weighted average of the four currency

portfolios and, thus, consists of borrowing U.S. dollars and investing in global money

markets outside the United States in equal weights.

Summary statistics on the interest rate sorted currency portfolios, the HML factor,

and the DOL factor are presented in Table 1. Panels B and C report the summary

statistics for portfolios over the full sample period based on all countries and developed

countries only, respectively. In line with previous findings, there is a monotonic increase

in the average excess return from the lowest to the highest forward discount-sorted

portfolio. The unconditional average excess return from holding an equally weighted

average carry portfolio (DOL) is about 1.5% per annum for the full set of countries and

1.1% for the sample of developed countries. The HML portfolio is highly profitable;

it has an average annual return of 6.1% (5.4%) for the set of all (developed) countries

with an associated annualized Sharpe ratio of 0.79 (0.55). For the sample of the nine

G10 currencies sorting on the average forward discount and sorting on average excess

returns is nearly the same as can be seen from Panel A in Table 1. Sorting the G10

currencies into three different bins, we find that the average annual return to the G10

HML portfolio is 5.2% with a Sharpe ratio equal to 0.61.4

4The summary statistics for the extended sample starting in 1984 are very similar. The Sharpe ratios
for the HML portfolios are 0.83 (all countries) and 0.54 (developed and G10 countries), respectively.
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1.2 Construction of realized and implied volatility and correlation measures

In this section, we construct empirical measures of realized and implied exchange rate

correlation for the G10 currencies sample. For the former we use daily exchange rate

data, and for the latter we rely on a cross section of options written on those exchange

rates.

1.2.1 Realized variance and correlation

We use daily spot exchange rates to calculate measures of realized variances and cor-

relations. Denote ∆sit = ln (Si
t) − ln(Si

t−1) the daily log change for currency i. The

annualized realized variance observed at t is then calculated as follows:

RVt =
252

K

K−1
∑

k=0

∆s2t−k,

where K refers to a three month window to estimate the rolling realized variances.

Following Bollerslev, Tauchen, and Zhou (2009) we use this rolling estimate to proxy for

the expected variance over the next month.5

In a similar spirit, we derive the annualized realized covariance between exchange

rates si and sj :

RCovi,jt =
252

K

K−1
∑

k=0

∆sit−k∆s
j
t−k.

The realized correlation is then the ratio between the realized covariance and the product

of the respective standard deviations:

RCi,j
t = RCovi,jt /

√

RVi
t

√

RVj
t .

1.2.2 Implied variance and correlation

We follow Demeterfi, Derman, Kamal, and Zhou (1999) and Britten-Jones and Neu-

berger (2000) to obtain a model-free measure of implied volatility. They show that if

5Della Corte, Ramadorai, and Sarno (2014) use a similar approach in their analysis of the relation-
ship between FX volatility risk premia and exchange rate predictability.
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the underlying asset price is continuous, then the risk-neutral expectation over a horizon

T − t of total return variance is defined as an integral of option prices over an infinite

range of strike prices:

EQ
t

(
∫ T

t

(

σi
u

)2
du

)

= 2er(T−t)

(

∫ Si
t

0

1

K2
P(K, T ) dK +

∫

∞

Si
t

1

K2
C(K, T ) dK

)

, (1)

where St is the underlying spot exchange rate and P(K, T ) and C(K, T ) are the respective

put and call prices with maturity date T and strike K. In practice, the number of traded

options for any underlying asset is finite; hence the available strike price series is a finite

sequence. Calculating the model-free implied variance involves the entire cross section

of option prices: for each maturity T , all five strikes are taken into account. These are

quoted in terms of the option delta. In addition, we use daily spot rates and one-month

Eurocurrency (LIBOR) rates from Datastream. Following the conventions in the FX

market we use the use the Garman and Kohlhagen (1983) valuation formula to extract

the relevant strike prices and to calculate the corresponding option prices.6

To approximate the integral in equation (1), we adopt a trapezoidal integration

scheme over the range of strike prices covered by our dataset. Jiang and Tian (2005) re-

port two types of implementation errors: (i) truncation errors due to the non-availability

of an infinite range of strike prices; and (ii) discretization errors that arise due to the un-

availability of a continuum of available options. We find that both errors are extremely

small when currency options are used. For example, the size of the errors totals only

half a percentage point in terms of volatility.

Model-free implied correlations are constructed from the available model-free implied

volatilities.7 For the construction we require all cross rates for three currencies, Si
t , S

j
t ,

6See, e.g., Wystup (2006) or, more recently, Jurek (2014) for the specifics of FX options conventions.
7Brandt and Diebold (2006) use the same approach to construct realized covariances of exchange

rates from range-based volatility estimators.
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and Sij
t . The absence of triangular arbitrage then implies that:8 Sij

t = Si
t/S

j
t . Taking

logs, we derive the following equation:

ln

(

Sij
T

Sij
t

)

= ln

(

Si
T

Si
t

)

− ln

(

Sj
T

Sj
t

)

.

Finally, taking variances yields:

∫ T

t

(

σij
u

)2
du =

∫ T

t

(

σi
u

)2
du+

∫ T

t

(

σj
u

)2
du− 2

∫ T

t

γi,ju du,

where γi,jt denotes the covariance of returns between exchange rate pairs sit and sjt .

Solving for the covariance term, we obtain:

∫ T

t

γi,ju du =
1

2

∫ T

t

(

σi
u

)2
du+

1

2

∫ T

t

(

σj
u

)2
ds− 1

2

∫ T

t

(

σij
u

)2
du.

Using the standard replication arguments, we find that:

EQ
t

(
∫ T

t

γi,ju du

)

= er(T−t)

(
∫ Si

t

t

1

K2
Pi(K, T ) dK +

∫

∞

Si
t

1

K2
Ci(K, T ) dK (2)

+

∫ S
j
t

t

1

K2
Pj(K, T ) dK +

∫

∞

S
j
t

1

K2
Cj(K, T ) dK

−
∫ S

ij
t

t

1

K2
Pij(K, T ) dK −

∫

∞

S
ij
t

1

K2
Cij(K, T ) dK

)

.

8Recent studies report that the average violation of triangular arbitrage is about 1.5 basis points with
an average duration of 1.5 seconds (Kozhan and Tham, 2012). However, we observe that most papers
examining violations of triangular arbitrage use indicative quotes, which give only an approximate price
at which a trade can be executed. Executable prices can differ from indicative prices by several basis
points. Using executable FX quotes, Fenn, Howison, McDonald, Williams, and Johnson (2009) report
that triangular arbitrage is less than 1 basis point and the duration less than 1 second. Our data also
indicate that triangular arbitrage is less than 1 basis point. We therefore conclude that these violations
have no effect on calculated quantities.
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The model-free implied correlation can then be calculated using expression (2) and the

model-free implied variance expression (1):9

EQ
t

(
∫ T

t

ρi,ju du

)

≡
EQ

t

(

∫ T

t
γi,ju ds

)

√

EQ
t

(

∫ T

t
(σi

u)
2 du

)

√

EQ
t

(

∫ T

t

(

σj
u

)2
du
)

.

The summary statistics for the implied and realized FX variances for the G10 cur-

rencies are provided in Panels A and B in Table 2 (expressed as monthly numbers in

squared percent). Given the nine available currencies, we have a total of 36 correlations.

The first four columns in Table 3 provide the mean and the standard deviations for the

pairwise implied and realized correlations where the FX pairs are ordered alphabetically.

[Insert Tables 2 and 3 here.]

2 Empirical analysis

In this section, we first calculate the correlation risk premia as the difference between

the risk-neutral (implied) and objective (realized) correlation measures and we document

their properties in the cross section and the time series. We then proceed by documenting

9Our expression for the risk-neutral correlation does not imply that the correlations need to be
bounded between minus and plus one. One way to ensure that the absolute implied correlations never
reach unity would be to impose a normalization in the spirit of the Dynamic Conditional Correlation
model of Engle (2002). Because we find no implied correlations as high as one, we do not apply this
normalization.
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the link between correlation risk premia and average correlations, and we study the

market price of correlation risk in FX markets.

2.1 Correlation and variance risk premia in the cross section

Consistent with the literature on variance and correlation risk premia in other asset

markets, we define exchange rate correlation risk premia as the difference between the

risk-neutral and objective measures of the FX correlation:10

CRPi,j
t,T ≡ EQ

t

(
∫ T

t

ρi,ju du

)

− EP
t

(
∫ T

t

ρi,ju du

)

.

We only consider one-month premia, i.e., T = t+1 for a monthly frequency. Variance risk

premia are defined analogously as the difference between the risk-neutral and objective

measures of FX variance.

Given the availability of FX options, we calculate correlation and variance risk premia

for the nine G10 currencies during the sample period from 1996 to 2013 for a total of

216 monthly observations.11 Panel C in Table 2 provides the summary statistics for the

variance risk premia (expressed as monthly numbers in squared percent), whereas the

last three columns in Table 3 provide the mean and standard deviations as well as the

corresponding t-statistics for the pairwise correlation risk premia.

Despite the evidence for significant variance risk premia in equity markets (see, e.g.,

Bollerslev, Tauchen, and Zhou (2009)), the results in currency markets are mixed. On

the one hand, the variance risk premia for a number of exchange rates are either not

statistically significant (AUD, CHF, NZD) or only marginally significant (NOK), while,

on the other hand, variance risk premia for the CAD and the SEK are significant at

the 5% level and the variance risk premia for the EUR, GBP and JPY are significant

at the 1% level. For all exchange rates for which the average variance risk premium is

significant, the mean is positive. The average variance risk premium across all exchange

rates is 0.54, which is smaller by a factor of more than ten compared to the equity

10We follow for example Bollerslev, Tauchen, and Zhou (2009) who define the variance risk premium
in the same way. Alternatively, the variance risk premium is often defined as the difference between the
physical and the risk-neutral measure (i.e. by reversing the sign), thus being consistent with the payoff
to a long position in a variance swap.

11For the Euro, the options data starts in 1999 for a total of 181 observations.
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variance risk premium and by a factor of 4.5 compared to the Treasury variance risk

premium.12 Furthermore, there is an almost even split between exchange rates that

have left- and right-skewed distributions for the variance risk premia. The two most

negatively skewed USD exchange rates are the AUD and the NZD, which reflects the

implicit crash risk in these currencies as they are often used as investment currencies

in the carry trade (see Brunnermeier, Nagel, and Pedersen (2009)), whereas the EUR

(starting in 1999), the JPY and the GBP are the most positively skewed USD exchange

rates.

In contrast, we find that correlation risk premia can be substantial in the foreign

exchange market. Moreover, the size and the sign of the correlation risk premia can vary

greatly in the cross section of FX pairs. Roughly two thirds of the pairwise correlation

risk premia are positive and one third are negative; overall, three quarters of all pairwise

average correlation risk premia are significant at the 5% level of significance. The average

of the bottom quartile of correlation risk premia is −3.7%, whereas the top quartile

average is 7.2%.

A comparison of the average realized correlation (RC) and the average correlation risk

premia (CRP) in Table 3 furthermore suggests a link between correlation risk premia and

levels of correlation. While FX pairs that are less correlated exhibit positive correlation

risk premia, the opposite holds for pairs characterized by high average correlations. For

example, the JPY/AUD pair has a very low average realized correlation (15.5%) but a

positive and highly significant correlation risk premium of 8.3% (t-statistic of 7.58). On

the other hand, the AUD/NZD pair has a very high realized correlation (75.5%) but a

negative and significant correlation risk premium of −1.6% (t-statistic of −2.97).

[Insert Figure 1 here.]

Figure 1 plots the average correlation risk premia of the 36 G10 exchange rate pairs

against their average realized correlations, illustrating the cross-sectional relationship

between correlations and correlation risk premia. Across all 36 FX pairs, the correlation

12The corresponding numbers are calculated using the methodology reported in Mueller, Vedolin,
and Choi (2014) for a slightly longer sample. The corresponding values are 6 and 2.4 for the equity and
Treasury variance risk premia, respectively.
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between average FX correlation risk premia and average FX realized correlations is

−55%. In sum, we conclude that unconditional correlation risk premia are economically

large and positive for FX pairs with low average realized correlations and significantly

negative for pairs with high average realized correlations.

2.2 The time series of FX correlations and correlation risk premia

We now turn to the time series properties of FX correlations and FX correlation risk

premia. The first two columns of Table 4 present the time series correlations between

levels and changes in conditional realized and implied correlations for every FX pair in

our sample; unsurprisingly, the correlation between realized and implied correlations in

levels is very high. Columns three and four show the time series correlations between

conditional realized correlations and correlation risk premia: they are negative both for

levels and changes for almost all FX pairs. For changes, the correlations range between

−35% and −79% with an average of −62%. For levels, the correlations are slightly

smaller but still average −52%.

[Insert Table 4 here.]

Next, we turn to the cyclical properties of FX correlations in the cross section of

FX pairs. In particular, for each exchange rate pair we calculate the unconditional

correlation between the time series of its conditional correlations and the time series

of a number of macroeconomic and market variables that are well-known to exhibit

countercyclical behavior; we take this unconditional correlation to be our FX correlation

cyclicality measure. The macroeconomic and market variables we consider are a global

equity volatility measure (GV ol), a global funding illiquidity measure (GFI), the TED

spread (TED), and the CBOE VIX (V IX).13 Then, we explore the cross-sectional

properties of our FX correlation cyclicality measure by plotting the cyclicality measure

13GV ol is constructed as in Lustig, Roussanov, and Verdelhan (2011). GFI is constructed based
on the method proposed by Hu, Pan, and Wang (2013) but calculated using an international sample
of Treasury securities as in Malkhozov, Mueller, Vedolin, and Venter (2014). TED is from FRED and
is the spread between the three month USD LIBOR and the three month Treasury Bill rate. V IX

is backed out from options on the S&P 500 stock index. TED and V IX are U.S. specific measures
but are often used as global indicators. GV ol and GFI are calculated using international data in local
currencies.
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of all 36 FX pairs against either their average conditional correlation coefficient or their

average correlation risk premium.

Our findings are presented in Figure 2. For all four cyclicality proxies, there is a sig-

nificant positive relationship in the cross section of FX pairs between our FX correlation

cyclicality measure and average FX correlations (left hand size panels), which implies a

negative relationship between FX correlations and FX correlation cyclicality. Given the

negative relationship between average FX correlations and average FX correlation risk

premia, it is not surprising that we also find a significant negative relationship between

the cyclicality measures and average correlation risk premia (right hand side panels),

which implies a positive relationship between average correlation risk premia and FX

correlation cyclicality. All univariate slope coefficients are highly statistically significant.

The cross-sectional R2 from regressing the average FX correlations on our FX correla-

tion cyclicality measure range between 14% (V IX) and 50% (TED), whereas the R2

for the same regressions using average correlation risk premia as the regressand range

between 50% (GFI) and 61% (V IX). For example, the three FX pairs with the highest

average realized correlations (CHF/EUR, EUR/NOK, and EUR/SEK) and those with

the lowest average correlation risk premia (AUD/CAD, CAD/NZD and CAD/SEK) ex-

hibit either acyclical correlations (i.e., the unconditional correlation between the realized

correlations and the cyclical variables is not significant) or slightly countercyclical cor-

relations. In the other extreme, the three FX pairs with the highest correlation risk

premia (AUD/JPY, JPY/NOK, and JPY/NZD) and the lowest realized correlations

(AUD/JPY, CAD/JPY and JPY/NOK) are characterized by strongly procyclical FX

correlations.

[Insert Figures 2 and 3 here.]

Figure 3 plots the relationship between measures of cyclicality of correlation risk pre-

mia (instead of FX correlations) and average correlation risk premia. We find a positive

cross-sectional association between the measures of cyclicality of correlation risk premia

and unconditional correlation risk premia: FX pairs with high average correlation risk

premia have countercyclical correlation risk premia, whereas pairs with low correlation

risk premia have procyclical correlation risk premia.
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In sum, FX pairs with high average correlations or low average correlation risk premia

exhibit countercyclical correlations and procyclical correlation risk premia, whereas FX

pairs with low average correlations or high average correlation risk premia tend to have

procyclical correlations and countercyclical correlation risk premia. Our findings imply

that in periods characterized by adverse economic conditions or market stress, the cross

section of conditional FX correlations widens, as high correlation FX pairs become more

correlated and low correlation FX pairs become less correlated. Thus, the difference in

conditional correlations between high correlation FX pairs and low correlation FX pairs

is also countercyclical, increasing during crises and declining during booms. Similarly,

bad times also amplify the magnitude of correlation risk premia, increasing their cross-

sectional dispersion, as the risk premia of FX pairs with high average risk premia increase

and the risk premia of FX pairs with low average risk premia decline.

Our findings have important implications for models of exchange rate determination.

Under the assumption that investors are risk-averse, we may expect that FX pairs with

countercyclical (procyclical) correlations are characterized by positive (negative) corre-

lation risk premia. Since the former are the high average correlation pairs and the latter

are the low average correlation pairs, we may thus anticipate a positive cross-sectional

relationship between average FX correlation coefficients and average FX correlation risk

premia, which would imply that investors place a high price on states characterized by a

tightening of cross-sectional differences in conditional FX correlation. However, exactly

the reverse is true in the data. In Section 3 we present a no-arbitrage model of exchange

rates that addresses this apparent inconsistency.

2.3 The FX correlation risk factor and the cross section of currency returns

In this Section we describe the construction of our correlation factor FXC and we

document that our factor is priced in the cross section of currency returns. In particular,

we find that our correlation factor exhibits a negative price, so there is a negative

relationship between FXC betas and currency returns.
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2.3.1 Construction of the FX correlation risk factor

As noted in Section 2.2, the difference in conditional correlation between high correlation

FX pairs and low correlation FX pairs increases in bad times. We use this finding to

construct our FX correlation factor as follows: every period t, we sort all FX pairs

according to their conditional correlation, defined as the realized correlation over the

past three months. We then calculate the average conditional correlation for the top

and bottom decile (which consists of four pairs each) and take the difference of the

two values as our FX correlation factor at time t, FXCt.
14 Due to the time variation in

conditional FX correlations, there is turnover in both the top and bottom deciles; in order

to abstract from composition effects, we also compute an alternative correlation factor

(FXCUNC) by using the top and bottom deciles of FX pairs based on the unconditional

realized correlations.

We plot the time series of the level of the two FX correlation factors in Panel A

of Figure 4. The correlation between the two series is 87%, indicating that the two

factors are very similar.15 In Panel B, we plot the (standardized) macroeconomic and

market variables used to measure the cyclicality of correlations in the previous Section.

Table 5 reports the unconditional correlations between our two correlation factors and

the cyclicality proxies. All correlations are significantly positive, confirming the coun-

tercyclicality of our correlation factors.

[Insert Figure 4 and Table 5 here.]

2.3.2 Portfolios sorted on exposure to correlation risk

Next, we sort currencies into portfolios based on their exposure to correlation risk.

In particular, we measure correlation risk exposure by the currency return beta with

14Given the strong negative correlation between correlation risk premia and realized correlation, we
could also sort based on correlation risk premia and then construct the correlation factor as the difference
in correlations between the decile of low CRP currencies and the decile of high CRP currencies. However,
using realized correlations directly allows us to expand the sample for robustness checks.

15The Online Appendix presents additional results for alternative construction methods. Overall,
we find that results using the alternative factors remain qualitatively the same.
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respect to innovations in the FX correlation risk factor FXC.16 Our currency portfolios

are rebalanced monthly; this means each month t we calculate rolling betas using 36

monthly observations and, hence, portfolios are formed using only information available

at time t. Since we only have nine G10 currencies, we sort them into three portfolios,

whereas for the full set of countries and the set of developed countries we form four

portfolios. The first portfolio (Pf1) contains the currencies with the low correlation risk

factor betas while the last portfolio (Pf3 or Pf4) contains the high beta currencies. We

also construct an HMLC portfolio that is long in the high correlation beta currencies

(Pf3 or Pf4) and short in the low correlation beta currencies (Pf1). Table 6 reports

the summary statistics for the various portfolios and the three sets of currencies. There

is an inverse relationship between exposure to the FX correlation factor and average

portfolio returns, implying that currencies that depreciate when cross-sectional disparity

in conditional FX correlation increases (those with low or negative FXC betas) are risky,

whereas currencies that appreciate when our FX correlation factor increases (those with

high or positive betas) provide hedging benefits. The average return to the HMLC

is negative and highly statistically significant for all three currency samples. For the

sample of G10 currencies, shorting the HMLC portfolio yields an annualized average

excess return of 6.4% with an associated Sharpe ratio of 0.82. For the sample of all

countries and developed countries, the average annualized returns are 4% (HMLC−ALL)

and 5.5% (HMLC−DEV ), respectively, and the Sharpe ratios are 0.46 and 0.59. In terms

of magnitudes, the results are comparable to those presented in Table 1 for the carry

portfolios.17

[Insert Table 6 and Figure 5 here.]

16In order to calculate innovations in FXC we cannot simply take first differences in the level of
the factor, as the composition of the deciles changes over time. Thus, innovations of period t + 1
are calculated using the average of first differences in conditional FX correlation for the FX pairs that
belong to the top and bottom decile in period t. On the other hand, since the FX pairs used to calculate
FXCUNC are fixed, innovations in FXCUNC can be simply defined as first differences in the level of
the factor.

17Extending the sample back to 1984, the results are weaker but qualitatively similar. Shorting the
HMLC portfolio yields average annual excess returns of 3.7%, 2.2% and 3.1% for the sample of G10,
all and developed countries, respectively (with the associated Sharpe ratios being 0.44, 0.24 and 0.36,
respectively). On the other hand, the results are stronger if the credit crisis is excluded and the sample
ends in July 2007. The average excess returns to shorting the HMLC portfolio are then 7.4%, 5.5% and
7.2% for the sample of G10, all and developed countries, respectively (with associated Sharpe ratios of
1.1, 0.7 and 1.0, respectively). Further details on the subsamples are provided in the Online Appendix.
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Figure 5 summarizes the average excess portfolio returns for the three sets of currencies

(G10, all countries and developed countries) and four subsamples (starting in either

January 1996 or January 1984 and ending in December 2013 or just before the credit

crisis in July 2007). While the average return to theHMLC portfolio varies depending on

the sample period, there is a consistently negative relationship between average portfolio

excess returns and exposure to correlation risk: for all samples and sample periods we

find that portfolios of currencies with low FXC betas have higher excess returns than

portfolios of currencies with high FXC betas.

2.4 Cross-sectional pricing and the price of correlation risk

Finally, we turn to estimating the price of correlation risk. Similarly to Lustig, Rous-

sanov, and Verdelhan (2011), we consider a linear pricing model with two factors. The

first factor is the dollar factor DOL, defined as the simple average of all available cur-

rency returns. Lustig, Roussanov, and Verdelhan (2011) have shown that DOL acts as

level factor for currency returns. As a second factor, we use HMLC , the return dif-

ference between the high and the low correlation beta portfolio for the sample of G10

currencies and, thus, a traded factor that captures correlation risk.18 Hence, our model

is:

E[rxi] = βDOL
i λDOL + βHMLC

i λHMLC

,

where rxi denotes the excess return in levels (i.e., corrected for the Jensen term) instead

of logs as in Lustig, Roussanov, and Verdelhan (2011). To estimate the factor prices

λ we follow the traditional two-stage procedure of Fama and MacBeth (1973): in the

first stage, we run a time series regression of returns on the factors and then we run a

cross-sectional regression of average portfolio returns on the betas. We do not include a

constant in the cross-sectional regression of the second stage.19

Table 7 reports the asset pricing results on the currency portfolios sorted on exposure

to the correlation risk factor FXC. The left hand side of the table presents the results

for the correlation portfolios using all currencies whereas the right hand side of the table

18The results remain qualitatively the same if we use HMLC−ALL or HMLC−DEV instead.
19The dollar factor DOL essentially performs the function of a constant to allow for average mis-

pricing (see Lustig, Roussanov, and Verdelhan (2011)).
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presents the results for the developed currencies only. The first stage regression results

are presented in Panel A. The HMLC betas are monotonically increasing for both sets

of currencies and with one exception they are highly statistically significant. In line with

the countercyclical nature of the correlation risk factor we find a (significantly) negative

price of correlation risk of 48bps (all countries) and 49bps (developed countries) per

month.20 This corresponds to almost 90% of the average HMLC excess return of minus

54bps per month and is, hence, not significantly different. The second stage R2 are

very high for both sets of currencies (95% and 96%). HMLC betas for the correlation

portfolios are also monotonically increasing when we consider the alternative sample

periods 1984–2013 and 1996–2007 and the estimates for the market price of HMLC

remain significantly negative with slightly different magnitudes in line with different

average excess returns of HMLC during those alternative sample periods.21

[Insert Figure 6 and Table 7 here.]

For robustness, we repeat the analysis above using alternative sets of test assets. Fig-

ure 6 illustrates the performance of our linear two-factor model by plotting the predicted

excess returns for various test assets against the actual annualized mean excess returns:

in Panel A, the test assets are the individual G10 currencies, whereas in Panels B and

C we consider the four interest-rate-sorted (i.e., carry) and FXC-beta-sorted portfolios

for all countries and developed countries, respectively. The second stage R2 for the

three sets of test assets are 92%, 81% and 90%, respectively. We consistently estimate

a significantly negative market price of FX correlation risk that is never significantly

different from the mean return of the HMLC portfolio. For the set of individual G10

currencies for example, the estimated market price of risk is minus 48bps per month

(−5.7% annualized).

Overall, we find that correlation risk is priced in the cross section of currency returns

with a negative price, in line with the intuition that investors want to be compensated

for investing in currencies that perform badly during periods of increased cross-sectional

disparity in conditional FX correlations.

20Using the non-traded correlation risk factor FXC we also estimate a significantly negative price
of correlation risk.

21Further details are provided in the Online Appendix.
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3 A no-arbitrage model of exchange rates

In this section, we introduce a reduced-form, no-arbitrage model of exchange rates that

is consistent with our empirical findings. Our model builds on the reduced-form models

in Lustig, Roussanov, and Verdelhan (2011, 2014) and Verdelhan (2013). In contrast

to these models, which assume that innovations in the local pricing factors are purely

driven by local shocks and, thus, are uncorrelated across countries, we assume that there

is significant cross-country comovement in the price of local risk. This key assumption

allows our model to match the joint empirical properties of FX correlations and FX

correlation risk premia.

3.1 Model setup

The global economy comprises I+1 countries (i = 0, 1, . . . , I), each with a corresponding

currency. Without loss of generality, we will call country i = 0 the domestic country

and countries i = 1, ..., I the foreign countries. We assume that financial markets are

frictionless and complete, so that there is a unique stochastic discount factor (SDF)

for each country, but that frictions in the international market for goods induce non-

identical stochastic discount factors across countries. In particular, the SDF of country

i, denoted by mi, is exposed to two global shocks, uw and ug, and a country-specific

shock ui, and satisfies

−mi
t+1 = αi + χizit + ϕizwt +

√

κizitu
i
t+1 +

√

γizwt u
w
t+1 +

√

δizitu
g
t+1,

where zi and zw are the local pricing factor of country i and the global pricing factor,

respectively. The price of the local shock in country i is
√

κizit, so the relevant pricing

factor is the local one. The first global shock uw is priced with the global pricing factor,

with its price in country i being
√

γizwt , while the second global shock ug is locally priced

and its price in country i is
√

δizit. Therefore, the relative price of risk across countries

for the local shock and the second global shock ug exhibits time-variation, whereas the

relative price of risk for the first global shock uw is constant.
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The pricing factors are time-varying, stationary processes driven by the aforemen-

tioned shocks. In particular, the country-specific pricing factor zi is exposed to both the

local shock ui and the second global shock ug, with law of motion

∆zit+1 = λi(z̄i − zit)− ξi
√

zit

(

√

ρiuit+1 +
√

1− ρiugt+1

)

. (3)

Thus, all local pricing factors are stationary processes, reverting to their unconditional

mean z̄i at speed λi. The exposure of the local pricing factors to the global shock

ug introduces cross-country comovement in local pricing factors. Importantly, all local

pricing factors are countercyclical, as adverse shocks increase their value.

The global pricing factor zw is only exposed to the global shock uw; it is also a

stationary process, with law of motion

∆zwt+1 = λw(z̄w − zwt )− ξw
√

zwt u
w
t+1

and also features countercyclical pricing of risk. To ensure that all pricing factors are

strictly positive, we further assume that the Feller conditions 2λiz̄i > (ξi)
2
for all i and

2λwz̄w > (ξw)2 are satisfied.

Finally, we specify an exogenous inflation process given by

πi
t+1 = π̄i + ψizit + ζ izwt +

√
σiηit+1.

Inflation has a local and a global component and is exposed to unpriced inflation inno-

vations ηi. Given that inflation shocks are i.i.d., there is no inflation risk premium in

our model (see, e.g., Lustig, Roussanov, and Verdelhan (2011)). The nominal stochastic

discount factor of country i, mi,$, satisfies

mi,$
t+1 = mi

t+1 − πi
t+1.

All shocks are i.i.d. standard normal.

In order to illustrate the basic economic mechanism of our model with convenient

simplicity, it will be advantageous to focus on a simpler version of our full model, which
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will be referred to as the benchmark model. In particular, in the benchmark model the

only source of heterogeneity across countries is their differential exposure γ to the first

global shock uw. Apart from γ, all other parameters are assumed to be identical across

countries, so we can drop the i superscript for notational convenience. We also assume

that ρ = 0, which means that all local pricing factors are driven solely by the second

global shock ug. Further, we assume that all local pricing factors have the same initial

value. As a result, all local pricing factors are identical and we can consider a single

local pricing factor denoted by z. In the larger part of the remainder of this section,

we focus on the benchmark model. We consider the full model in the last part of our

analysis.

3.2 The properties of conditional FX moments

We denote the real log exchange rate between foreign country i and the domestic country

by qi (units of foreign currency per units of domestic currency, in real terms). As a result

of financial market completeness, real exchange rate changes equal the SDF differential

between the two countries,

∆qit+1 = m0
t+1 −mi

t+1,

which implies that real exchange rate changes can be decomposed into a part driven by

local shocks and a part that reflects exposure to global risk:

∆qit+1 = Et(∆q
i
t+1) +

√
κztu

i
t+1 −

√
κztu

0
t+1 +

(

√

γi −
√

γ0
)

√

zwt u
w
t+1.

If the foreign country has a higher (lower) exposure to the first global shock uw than the

domestic country, its currency depreciates (appreciates) when a positive uw realization

occurs. On the other hand, exposure to the second global shock ug drops out of exchange

rate changes since all countries have the same loading on ug, and, thus, the only global

shock that is priced in foreign exchange markets is uw. Therefore, in the remainder of

this section, global FX risk always refers to the first global shock uw.
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We now turn to conditional FX moments. The conditional variance of changes in

the log real exchange rate i is increasing in both the local pricing factor z and the global

pricing factor zw:

vart
(

∆qit+1

)

= 2κzt +
(

√

γi −
√

γ0
)2

zwt . (4)

The first effect arises from the country-specific component of stochastic discount factors:

given the independence of local shocks across countries, the larger those shocks are, the

more the two SDFs diverge and, hence, the more volatile the exchange rate is. The

second effect arises from the global component of SDFs: the higher the heterogeneity

between the global risk exposure of country i and the domestic country, and the more

severely those differences are priced, the higher the real exchange rate volatility is.

The conditional covariance of changes in log real exchange rates i and j is

covt
(

∆qit+1,∆q
j
t+1

)

= κzt +Di,jzwt , (5)

where we define the constant Di,j as follows:

Di,j ≡
(

√

γi −
√

γ0
)(

√

γj −
√

γ0
)

.

We call exchange rate pairs (i, j) that satisfy Di,j > 0 “similar” and exchange rate pairs

that satisfy Di,j < 0 “dissimilar”. Thus, similar exchange rates correspond to foreign

countries which both have either more or less exposure to global risk than the domestic

country, whereas dissimilar exchange rates correspond to pairs of foreign countries in

which one country has a higher and the other country a lower exposure to global risk

compared to the domestic country.

The first component of conditional FX covariance reflects the price of the domestic

local shock, as the two exchange rates are mechanically correlated through their com-

mon exposure to the domestic SDF. When z increases, this “domestic currency effect”

becomes more prevalent, increasing the covariance between the two exchange rates, as

both foreign currencies appreciate or depreciate together against the domestic currency.

The second component captures the comovement of exchange rate changes that arises

from exposure to global FX risk. On average, foreign countries with similar exposure
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to the global shock uw (i.e., that satisfy Di,j > 0) have exchange rates that covary

more than the exchange rates of countries that have dissimilar exposure to global FX

risk. Furthermore, the effect of fluctuations in zw on the conditional covariance of log

exchange rate changes depends on whether those fluctuations increase or decrease the

similarity of the pricing of global risks vis-à-vis the domestic country. In particular,

for similar exchange rates an increase in the global pricing factor increases their condi-

tional covariance. On the other hand, dissimilar exchange rates comove less when the

global pricing factor increases. Therefore, although an increase in zw increases the con-

ditional volatility of all exchange rates, it can either increase or decrease the conditional

covariance of an FX pair depending on the global risk loadings of the countries involved.

Combining equations (4) and (5), we get the conditional FX correlation between the

log exchange rate changes of countries i and j, given by:

corrt
(

∆qit+1,∆q
j
t+1

)

=
κzt +Di,jzwt

√

2κzt +
(

√

γi −
√

γ0
)2

zwt

√

2κzt +
(

√

γj −
√

γ0
)2

zwt

.

As happens for FX covariances, country heterogeneity in exposure to the global shock uw

generates cross-sectional heterogeneity in average conditional FX correlations: similar

FX pairs have higher unconditional correlations than dissimilar ones. In fact, the higher

the similarity or dissimilarity in exposures (measured by the magnitude of the absolute

value of Di,j), the higher the cross-sectional dispersion of average FX correlations. In

the time series, an increase in the global pricing factor zw increases the dispersion in the

cross section of conditional FX correlations, as it raises the correlation of exchange rates

with high average correlation (those of similar FX pairs) and decreases the correlation

of countries with low average correlation (those of dissimilar FX pairs). In the limit, as

zw → ∞, similar exchange rates become perfectly positively correlated and dissimilar

exchange rates become perfectly negatively correlated.

On the other hand, an increase of the local pricing factor z increases both the FX

variance of all exchange rates and the FX covariance of all exchange rate pairs, the latter

due to the domestic currency effect. As z → ∞, the correlation of all FX pairs converges

to 1
2
. This happens because all cross-sectional differences in global risk exposure become
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second-order and what ultimately drives comovement across countries is the domestic

currency effect. Intuitively, the behavior of real exchange rate changes is described by

∆qit+1 → Et(∆q
i
t+1) +

√
κztu

i
t+1 −

√
κztu

0
t+1.

All country-specific shocks have equal volatility, so the domestic shock, which accounts

for half of the conditional FX variance and generates all the FX comovement, pushes all

FX correlations towards 1
2
. Thus, as the local pricing factor increases, the conditional

correlation of similar exchange rates (which have high unconditional correlations) de-

clines, whereas the conditional correlation of dissimilar exchange rates (with low uncon-

ditional correlations) increases, leading to a tightening of the cross section of conditional

FX correlations in bad times.

To quantify the effects of the pricing factors on the conditional FX correlations, we

consider a world of I = 3 foreign countries. Countries 1 and 2 are less exposed to

global FX risk than the domestic country, while country 3 is more exposed than the

domestic country. This implies that the FX pair (1,2) is similar whereas FX pair (1,3)

is dissimilar. To ensure symmetry, we set the values of the country exposures to global

risk such that the condition D1,2 = −D1,3 > 0 is satisfied.

[Insert Figure 7 here.]

We first consider the impact of the global pricing factor zw; the left panels of Figure 7

present the results. In particular, Panels A, C and E plot the conditional FX correlation

as a function of zw for different values of the local pricing factor (in particular, z = 0.2z̄,

z̄ and 5z̄, respectively). Panel A refers to the similar exchange rate pair (1,2), Panel

C refers the dissimilar exchange rate pair (1,3) and Panel E plots the difference in the

conditional FX correlations between the two FX pairs. We see that regardless of the value

of the local pricing factor, the conditional correlation of the similar FX pair is increasing

in zw as the similarity of the two exchange rates to global risk exposure increases their

comovement when global fluctuations become more highly priced. For large values of

the global pricing factor, the similar exposure of the two exchange rates to global risk

leads to a perfect positive correlation between the two exchange rates. Exactly the
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opposite occurs for the dissimilar exchange rate pair: an increase in zw always reduces

their conditional correlation and for large values of the global pricing factor they become

perfectly negatively correlated. Taken together, these results imply that the correlation

of similar and dissimilar FX pairs diverges as zw increases. Thus, similar FX pairs

become more correlated, whereas dissimilar FX pairs become less correlated, and, hence,

the disparity in conditional FX correlations is increasing in zw, as illustrated in Panel

E.

This pattern is reversed once we consider the effects of the local pricing factor z.

The results are presented in the right panels of Figure 7, where Panels B, D and F plot

the sensitivity of the conditional FX correlation to the value of the local pricing factor

z for different values of the global pricing factor (i.e., zw = 0.2z̄, z̄ and 5z̄, respectively),

with Panel B referring to the similar FX pair, Panel D to the dissimilar FX pair and

Panel F to the difference in their conditional FX correlations. As seen in Panel B, the

conditional correlation between the two exchange rates is decreasing in z regardless of

the value of zw. This is due to the domestic currency effect, which for large values of

z pushes the correlation of the two exchange rates towards 1
2
. On the other hand, the

domestic currency effect induces a negative relationship between the value of the local

pricing factor and the conditional FX correlation of the dissimilar pair. As a result, the

difference in the two FX correlations is decreasing in z, regardless of the value of zw:

as z increases, what matters for exchange rates are domestic currency fluctuations, not

differences across individual currencies. In those states, all currencies appreciate and

depreciate together against the domestic currency.

In sum, what drives the behavior of conditional FX correlations and their dispersion

is the relative importance of the global against the local pricing factor: fluctuations in

the global pricing factor zw generate countercyclical FX correlation differentials, whereas

changes in the local pricing factor z lead to procyclical FX correlation differences. Empir-

ically, we find that conditional FX correlations become more cross-sectionally dispersed

in bad economic times (see Figure 4).22 Therefore, an important corollary of our model

is that the countercyclical widening of FX correlation differentials observed empirically

22As outlined in Section 2.3, we construct our empirical correlation factor FXC on the basis of this
finding.
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suggests that the time series of conditional FX correlation is primarily driven by fluctu-

ations in the global pricing factor.

Nominal exchange rate changes satisfy

∆sit+1 = m0,$
t+1 −mi,$

t+1 = ∆qit+1 + πi
t+1 − π0

t+1.

Given the symmetry assumption for all inflation parameters, expected inflation is iden-

tical across countries, so nominal expected FX changes are identical to real expected FX

changes. However, inflation differentials add unpriced volatility due to the idiosyncratic

nature of the inflation shocks η. In particular, the conditional variance of nominal log

exchange rate changes is given by

vart
(

∆sit+1

)

= vart
(

∆qit+1

)

+ vart
(

πi
t+1 − π0

t+1

)

= vart
(

∆qit+1

)

+ 2σ.

Furthermore, domestic inflation shocks enhance the domestic currency effect in FX co-

movement:

covt
(

∆sit+1,∆s
j
t+1

)

= covt
(

∆qit+1,∆q
j
t+1

)

+ σ.

Given the homoskedasticity of inflation innovations, conditional nominal FX moments

equal their real FX counterparts adjusted by constants, so their behavior has the same

properties as that of real exchange rate moments.

3.3 Interest rates and currency returns

The real interest rate of country i is determined by the local pricing factor z and the

global pricing factor zw, each generating both a smoothing and a precautionary savings

motive:

rit = α +

(

χ− 1

2
κ− 1

2
δ

)

zt +

(

ϕ− 1

2
γi
)

zwt .

All cross-sectional heterogeneity in real interest rates is due to cross-sectional differences

in global risk exposure γ: each period, countries with high (low) exposure to global risk

have a relatively low (high) average interest rate, due to a higher (lower) precautionary

savings motive. As a result, interest rate differentials against the domestic country
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solely reflect the difference in global risk exposure between each foreign country and the

domestic country.

The nominal risk-free rate of country i is

ri,$t = rit + π̄ + ψzt + ζzwt − 1

2
σ.

Hence, due to symmetry, the inflation-induced component is identical across currencies

and, thus, nominal interest rate differentials are identical to their real counterparts.

The log excess return that the domestic investor gets by investing in the foreign

currency i is given by

rxit+1 = rit − r0t −∆qit+1

and the associated conditional risk premium (including the Jensen term) is

rpit ≡ Et

(

rxit+1

)

+
1

2
vart(rx

i
t+1) = −covt(m0

t+1,−∆qit+1),

= covt
(√

κztu
0
t+1,

√
κztu

0
t+1

)

+ covt

(

√

γ0zwt u
w
t+1,

(

√

γ0 −
√

γi
)

√

zwt u
w
t+1

)

,

= κzt +
(

√

γ0 −
√

γi
)

√

γ0zwt .

FX risk premia have two components: a part that compensates domestic investors for the

fact that investing in a foreign currency essentially entails shorting the domestic SDF,

and a part that reflects compensation for exposure to global risk. The first component

is identical across currencies, so any cross-sectional variation in FX risk premia is solely

due to heterogeneity in global risk exposure γ. For example, if the foreign country is less

exposed to global risk than the domestic country, then its currency depreciates against

the domestic currency when a bad realization of the global shock uw occurs. Assuming

that the domestic country has a positive loading γ0 to the global shock uw, domestic

investors require a positive risk premium in order to hold that currency. Conversely,

currencies of countries with high exposure to uw have a negative compensation for global

FX risk, as they appreciate in bad global times, providing a hedge to domestic investors.

It follows that any variable that is exposed to uw shocks should be priced in the cross

section of currency returns. In our model, the cross-sectional disparity in conditional FX

correlations is such a variable: a negative uw shock increases the global pricing factor zw
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but has no effect on the local pricing factor z, so it leads to a widening of FX correlation

differentials. As a result, changes in our empirical correlation factor FXC should price

the cross section of FX returns with a negative price of risk, as they are negatively

associated with global shocks uw.

Notably, interest rate differentials against the domestic currency and currency risk

premia can be used to infer the sign and magnitude of the difference in global risk

exposures between each country and the domestic country: there is generally a positive

relationship between both the product of interest rate differentials (rit − r0t )
(

rjt − r0t
)

and the product of conditional currency risk premia rpitrp
j
t with the conditional FX

correlations of exchange rates i and j. This relationship also holds on average: our model

suggests that average conditional FX correlations are generally positively associated with

the product of average interest rate differentials E(rit−r0t )E
(

rjt − r0t
)

and the product of

average currency risk premia E(rpit)E(rp
j
t) in the cross section. This positive relationship

is present in the data: in our sample of G10 exchange rates, the cross-sectional correlation

of average FX correlations with the product of corresponding interest rate differentials

is 35% and with the product of average currency risk premia is 42%.

3.4 Pricing the cross section

We can contrast our FX correlation factor FXC, which captures the cross-sectional

disparity in conditional FX correlation, with factors that have been shown in earlier

research to be priced in the cross section of currency returns.

We begin with the carry trade factor HML. The excess return to the carry trade

HML portfolio is defined as:

rxHML
t+1 =

1

N

∑

i∈H

rxit+1 −
1

N

∑

i∈L

rxit+1,
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with high interest currencies in set H and low interest rate currencies in set L. Provided

that the long and the short end of the portfolio contain enough currencies so that the

local shocks cancel out, i.e.

1

N

∑

i∈H

uit+1 → 0 and
1

N

∑

i∈L

uit+1 → 0,

the return innovations of the HML portfolio are solely due to the FX global shock uw:

rxHML
t+1 −Et

(

rxHML
t+1

)

=
1

N

(

∑

i∈L

√

γi −
∑

i∈H

√

γi

)

√

zwt u
w
t+1.

In our model, the global pricing factor zw is countercyclical and driven by uw, so a

positive innovation in uw is also translated into a negative innovation in zw. As a

result, there is a negative relationship between HML returns and changes in our FX

correlation factor FXC. However, our FX correlation factor is not fully subsumed by

HML returns, as it also reflects fluctuations in the local pricing factor z. In fact, the

correlation between changes in the FXC correlation factor and HML returns is −18%

for our sample period.

Another factor shown to be priced is the FX variance factor (see Menkhoff, Sarno,

Schmeling, and Schrimpf (2012)), defined as the cross-sectional average of all FX condi-

tional variances:

FXV =
1

N

∑

i∈H

vart
(

∆qit+1

)

= 2κzt +
1

N

∑

i∈H

(

√

γi −
√

γ0
)2

zwt .

The FX variance factor is increasing in both the global and the local pricing factors. Since

increases in the global pricing factor zw increase both the FX variance factor and our

FX correlation factor, the dependence on the global pricing factor generates a positive

association between the two factors in both levels and changes. However, changes in the

local pricing factor z engender a negative relationship between the two FX factors, as

they increase the conditional variance of all FX pairs due to country-specific risk and

therefore raise FXV , but they reduce the importance of heterogeneity in global risk

exposure, tightening the cross section of FX correlation and, thus, decreasing our FX
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correlation factor. In the data, the correlation between FXC and FCV is roughly 30%

both in levels and changes.

Lastly, if we consider the domestic country to be the United States, we can charac-

terize the U.S. dollar factor DOL, the returns to which are defined as:

rxDOL
t+1 =

1

N

∑

i

rxit+1.

The innovations are given by

rxDOL
t+1 −Et

(

rxDOL
t+1

)

= − 1

N

∑

i

(√
κztu

i
t+1 −

√
κztu

0
t+1 +

(

√

γi −
√

γ0
)

√

zwt u
w
t+1

)

.

Invoking the law of large numbers

(

1
N

∑

i

uit+1 → 0

)

, we can show that DOL return

innovations reflect both U.S. local innovations and global innovations, the latter provided

that for the U.S. global risk exposure γ0 it holds that
√

γ0 6= 1
N

∑

i

√

γi:

xDOL
t+1 − Et

(

rxDOL
t+1

)

=
√
κztu

0
t+1 +

(

√

γ0 − 1

N

∑

i

√

γi

)

√

zwt u
w
t+1.

The first component of DOL return innovations is purely U.S.-specific and, thus, un-

correlated with any of the innovations in HML returns, the FX variance factor or the

FX correlation factor. This is because HML, FXV and FXC only reflect innovations

in the two pricing factors, both of which are solely driven by global shocks. Thus, if
√

γ0 = 1
N

∑

i

√

γi, DOL return innovations and innovations in the other three factors

should be uncorrelated. In that case, and given that all currency returns have the same

loading on U.S.-specific innovations, DOL returns constitute a level factor for currency

returns. However, if
√

γ0 6= 1
N

∑

i

√

γi, the global pricing factor induces a positive

association between DOL and the three aforementioned factors.

To summarize, DOL returns mostly act as a level factor in the cross section of

currency returns, in congruence with earlier research. Exposure to global risk, which

determines the cross section of currency returns, is best captured by exposure to HML

returns, as this is the only factor completely uncontaminated by fluctuations in the local

pricing factor z, the innovations to which are unpriced in currency markets. On the
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other hand, innovations in both our FX correlation factor and the FX variance factor

partly capture innovations in the global pricing factor zw, which are priced in currency

markets, and innovations in the local pricing factor z, which are unpriced in currency

markets, and, thus, add noise for pricing purposes. Therefore, our model suggests that

the cross section of currency returns line up with HML return betas better than with

the betas of any of the two FX moment factors, and that both FX moment factors have

a negative price of risk in line with our empirical findings.

3.5 The risk premia of FX moments

The negative cross-sectional relationship between average FX correlations and average

FX correlation risk premia implies that domestic investors are attaching a high price to

states of the world in which the cross section of FX correlations tightens; as discussed

above, those are states characterized by high values of the local pricing factor. We now

show that if the domestic agent prices fluctuations in the local pricing factor sufficiently

more than fluctuations in the global pricing factor, then correlation risk premia identify

bad states of the world as states in which adverse local pricing factor realizations occur.

Intuitively, domestic agents risk-adjust by overweighing states in which the local pricing

factor z is high and underweighting states in which the local pricing factor z is low. As

we have seen, those are exactly the states in which similar FX pairs are less correlated

than average and dissimilar FX pairs are more correlated than average.

In order to explore the properties of the FX correlation risk premia, we first need

to characterize the law of motion of the pricing factors under the risk-neutral measure.

From the perspective of the domestic investor, the law of motion for the global pricing

factor zw is

∆zwt+1 = λw(z̄w − zwt ) + ξw
√

γ0zwt − zwt ξ
w
√

zwt u
w,Q
t+1 , (6)

so the drift adjustment is positive and equal to ξw
√

γ0zwt . We can rewrite equation (6)

as a standard square root process,

∆zwt+1 = λw,Q(z̄w,Q − zwt )− ξw
√

zwt u
w,Q
t+1 ,
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where λw,Q ≡ λw − ξw
√

γ0 and z̄w,Q ≡ λw

λw,Q z̄
w. Thus, under the risk-neutral measure

the global pricing factor zw has a higher unconditional mean (z̄0,Q ≥ z̄0) and is more

persistent (λ0,Q ≤ λ0) than under the physical measure. Similarly, the risk-neutral

measure law of motion for the local pricing factor z is given by

∆zt+1 = λQ(z̄Q − zt)− ξ
√
ztu

g,Q
t+1,

where λQ ≡ λ− ξ
√
δ and z̄w,Q ≡ λ

λQ z̄, so the local pricing factor also has a higher uncon-

ditional mean and persistence under the risk-neutral measure than under the physical

measure. Notably, the relative risk adjustment of the two factors depends crucially on

the volatility parameters ξ and ξw, as well as the exposure parameters δ and γ0. The

higher ξ is compared to ξw, and the higher δ is relative to γ0, the higher the relative

drift adjustment of the local pricing factor over the global pricing factor, as the shocks

of the former become more highly priced compared to the shocks of the latter.

We can now turn to the risk premia of the conditional FX moments. First, we need

to determine the risk-neutral FX moments. For the period [t, T ], the expected variance

of the changes in the log exchange rate change for currency i is given by

EQ
t

(

T−t−1
∑

s=0

vart+s

(

∆qit+s+1

)

)

=
T−t−1
∑

s=0

EQ
t

[

2κzt+s +
(

√

γi −
√

γ0
)2

zwt+s

]

,

and the expected covariance of the changes in log exchange rates i and j is

EQ
t

(

T−t−1
∑

s=0

covt
(

∆qit+1,∆q
j
t+1

)

)

=

T−t−1
∑

s=0

EQ
t

[

κzt+s +
(

√

γi −
√

γ0
)(

√

γj −
√

γ0
)

zwt+s

]

.

Finally, the expected FX correlation is defined as the corresponding expected FX co-

variance, adjusted by the product of the squared root of the two FX variances, as in the

empirical section of our paper.

Note that for the local pricing factor we have

EQ
t (zt+s) =

(

1− (1− λQ)s
)

z̄Q + (1− λQ)szt
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under the risk-neutral measure, compared to

Et(zt+s) = (1− (1− λ)s) z̄ + (1− λ)szt

under the physical measure. Given the higher steady-state and higher persistence of the

local pricing factor under the risk-neutral measure, the wedge EQ
t (zt+s)−Et(zt+s) is an

affine function of zt, with both the constant and the slope coefficient being positive: the

wedge between the future value of the local pricing factor under the risk-neutral and

the physical measure is always positive and increasing in its current value zt.
23 Exactly

the same is true for the global pricing factor zw. We can write the FX correlation risk

premium as

CRP
i,j
t =

κ
(

AQ + BQzt
)

+
(

√

γi −

√

γ0

)(

√

γj −

√

γ0

)

(

Aw,Q +Bw,Qzwt
)

√

2κ (AQ +BQzt) +
(

√

γi −

√

γ0

)2

(Aw,Q + Bw,Qzwt )

√

2κ (AQ + BQzt) +
(

√

γj −

√

γ0

)2

(Aw,Q + Bw,Qzwt )

−

κ (A+ Bzt) +
(

√

γi −

√

γ0

)(

√

γj −

√

γ0

)

(Aw +Bwzwt )
√

2κ (A+Bzt) +
(

√

γi −

√

γ0

)2

(Aw +Bwzwt )

√

2κ (AQ + BQzt) +
(

√

γj −

√

γ0

)2

(Aw + Bwzwt )

.

Thus, the magnitude of the correlation risk premium is determined by the disparity

between the positive risk-neutral measure parameters AQ, BQ, Aw,Q and Bw,Q and the

positive physical measure parameters A, B, Aw and Bw, with all the risk-neutral measure

parameters being higher than their physical measure counterparts.

Of particular relevance is the case in which the domestic agent prices fluctuations in

the local pricing factor more heavily than fluctuations in the global pricing factor, i.e.,

where ξ
√
δ >> ξw

√

γ0. Then, the local pricing factor parameters will be considerably

higher under the risk-neutral measure than under the physical measure, whereas the

difference across measures will be small for the global pricing factor parameters. This

has implications for both the cross section and the time series of FX correlation risk

premia.

23The constant in the wedge is positive because the constant is higher in the risk-neutral measure

than in the physical measure due to the fact that the function f(x) = 1−(1−x)s

x
for s > 1 is decreasing

for x ∈ (0, 1).
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First, the relative importance of the global pricing factor will be smaller under the

risk-neutral measure than under the physical measure. Mathematically, if

(

AQ +BQzt
)

− (A +Bzt) >>
(

Aw,Q +Bw,Qzwt
)

− (Aw +Bwzwt ) ,

then the FX correlation under the risk-neutral measure is essentially the physical mea-

sure FX correlation with a large upwards adjustment for the local pricing factor and a

much smaller upwards adjustment for the global pricing factor. As Figure 7 suggests,

this implies that the risk-neutral FX correlation is lower than the physical correlation for

similar exchange rates, and higher than the physical correlation for dissimilar exchange

rates. Thus, the cross section of average risk-neutral FX correlations is tighter than

the cross section of average physical FX correlations, and high average correlation ex-

change rates tend to have a negative average CRP and low average correlation exchange

rates tend to have positive average CRP. In sum, average FX correlations are negatively

associated with average CRP in line with our empirical findings presented in Figure 1.

Second, although fluctuations in both the global pricing factor and the local pricing

factor are amplified under the risk-neutral measure, the amplification is very small for

changes in the global pricing factor zw; changes in zw in the physical measure translate

to roughly equal changes in zw in the risk-neutral measure. Given the higher relative

importance of the local pricing factor under the risk-neutral measure, same-size fluc-

tuations in zw typically have a smaller effect on risk-neutral measure conditional FX

correlations than on physical measure FX correlations. This is because, as seen in the

left panels of Figure 7, conditional FX correlation is a less steep function of zw for

higher values of z. Thus, changes in zw, which mainly drive conditional FX correlations,

move risk-neutral conditional FX correlations less than physical FX correlations. As a

result, changes in physical FX correlations are associated with opposite sign changes in

correlation risk premia for all FX pairs.

Conversely, we can use the same reasoning to determine that if the domestic agent

attaches a higher relative price to zw fluctuations than z0 fluctuations, there will be a

counter-factually positive cross-sectional relationship between average FX correlations

and average FX correlation risk premia.
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3.6 Calibration

We now turn to the calibration of our no-arbitrage model and show that it can match

key moments of currency and correlation risk premia, as well as the standard interest

rate and exchange rate moments.

The benchmark version of our model has 15 + (I + 1) parameters: five common

SDF parameters (α, χ, φ, κ and δ), I + 1 heterogeneous parameters (the loading γ for

each country), six pricing factor parameters—three for the local pricing factor (λ, z̄ and

ξ) and three for the global pricing factor (λw, z̄w and ξw)—and, finally, four common

inflation parameters (π̄, ψ, ζ and σ). In our calibration, we follow Lustig, Roussanov,

and Verdelhan (2011) and reduce the set of parameters by imposing the constraint that

the loadings γi are equally spaced across all foreign countries. In particular, we assume

that foreign country i = 1 has loading γmin, foreign country i = I has loading γmax

and each intermediate foreign country i, for i = 2, ..., I − 1, has loading γi = γmax
−γmin

I−1
.

Therefore, we calibrate 18 parameters in total, the 15 common SDF, inflation and pricing

factor parameters, as well as γmin, γmax and γ0. Given that we have options data (and

therefore FX correlation risk premia time series) for only nine exchange rates, we limit

our calibration to ten countries (I=9 foreign countries and the U.S.), consistent with our

empirical analysis. Furthermore, we simulate the model at the monthly frequency, with

conditional FX moments (realized and implied) calculated using conditional expectations

over a period of 21 days (i.e., one month) into the future, with the model parameters

appropriately adjusted to the daily frequency for the calculations.

In our calibration, we set the values of all SDF and inflation parameters, as well as the

unconditional means of the local and the global pricing factor (z̄ and z̄w, respectively)

equal to the corresponding values in Lustig, Roussanov, and Verdelhan (2011), which are

set to match specific interest rate and exchange rate moments. Notably, the calibration

in Lustig, Roussanov, and Verdelhan (2011) does not involve any moments related to

FX correlations or FX correlation risk premia. We depart from that calibration as

regards the values of λ, ξ, λw and ξw. The reason is that, as discussed above, for

our model to generate correlation risk premia that exhibit behavior consistent with our

empirical findings, it is necessary that shocks in the local pricing factor are priced much
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more severely than shocks in the global pricing factor. In terms of our calibration,

we need that ξ is significantly higher than ξw. To that end, we calibrate the four

aforementioned pricing factor parameters using a grid search in a parameter space that

has two properties: i) it contains relatively high values of ξ and relatively low values of

ξw, and ii) it adjusts λ so that the unconditional volatility of the global pricing factor

is identical to that in the Lustig, Roussanov, and Verdelhan (2011) calibration. Our

calibrated parameters are those in the grid space that minimize the sum of squared

percentage deviations of three moments: U.S. real exchange rate volatility, the cross-

sectional average of foreign real interest rate volatility, and the cross-sectional average

of real exchange rate volatility. In the final step, we adjust the constants α and π̄ in

order to exactly match the average U.S. real interest rate and the average U.S. inflation

rate, respectively. Importantly, we do not use any of the moments related to either FX

correlation or FX correlation risk premia in our calibration. We provide further details

about the calibration in Appendix A.24

The calibrated annualized values of our parameters are reported in Table 8. Note

that the calibrated value of the local pricing factor volatility parameter ξ is 6.8 times its

global pricing factor counterpart ξw. We use the calibrated parameter values to simulate

our model for 50,000 monthly periods. We initialize the economy at the pricing factor

steady-state values z̄ and z̄w and discard the first 5,000 observations in order to reduce

the effect of initial conditions. Tables 9 and 10 present the simulation results.

[Insert Tables 8, 9 and 10 here.]

Table 9 reports moments for inflation, real and nominal interest rates and real and

nominal exchange rates for the U.S. and the foreign countries. Given that the calibration

of Lustig, Roussanov, and Verdelhan (2011), on which our calibration is largely based,

targets inflation, interest rate and exchange rate moments and since our calibration ad-

justments, detailed above, also consider interest rate and exchange rate moments, it is

not surprising that our model is doing very well on those dimensions. The uncondi-

tional mean and volatility of the U.S. and foreign real interest rates are matched almost

24Interest rate differentials against the USD are proxied by the corresponding forward discounts.
The nominal USD interest rate is proxied by the Fama-French 1-month Treasury Bill rate. Inflation is
each country is constructed using the corresponding CPI.
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perfectly, although the model undershoots the cross-sectional average of foreign mean

real interest rates (0.29% versus 1.15%). In addition, the model produces an annualized

real exchange rate volatility of 12.09%, in line with its empirical counterpart (10.82%).

Moreover, simulated exchange rate changes exhibit no autocorrelation, as is true empir-

ically. Inflation moments are also well-matched. Since the model matches both real and

inflation moments, it follows that it is successful in quantitatively addressing nominal in-

terest rate and exchange rate moments: indeed, all nominal moments are well-matched,

although the model slightly overshoots both U.S. and foreign average nominal interest

rate volatility (1.28% for the U.S. and 1.29% for the foreign countries, against empiri-

cal volatilities of 0.62% and 0.44%, respectively). Further, the model generates a carry

trade effect: the return on the FX carry portfolio has an average excess return of 3.33%,

compared to 5.41% in the data. Finally, our calibration generates realistic SDF proper-

ties: the cross-sectional average of the standard deviation of the log SDF (both real and

nominal) is 0.54.

In Table 10, we turn to FX correlation moments, none of which have been used to

calibrate the parameters. The first panel reports the cross-sectional minimum, mean,

and maximum of average realized exchange rate correlations. Our model generates a

reasonable spread of average FX correlation coefficients, albeit somewhat tighter than

the empirical spread: the model values range from 11% to 61%, against a minimum of 5%

and a maximum of 89% for the empirical distribution. Importantly, the cross-sectional

average of mean FX correlations (42%) is very close to its empirical counterpart (45%).

Not surprisingly, the same is true for implied FX correlations: the cross-sectional average

of mean implied FX correlations is 43% in the model and 48% in the data. However, the

model is able to capture the empirical fact that the cross-sectional distribution of average

implied FX correlations is tighter than the cross-sectional distribution of realized FX

correlations, a key feature for correlation risk premia. Furthermore, the model is able

to replicate the empirically observed positive relationship between realized and implied

correlations both in the cross section of time series averages and in the time series of

individual realized and implied correlations, both in levels and changes. In particular, the

cross-sectional correlation of average realized and implied correlations is almost perfect

in the model, as it is in the data. Additionally, the model generates realized and implied

40



correlations that move together almost perfectly, both in levels and in changes—this

captures both the qualitative and the quantitative aspect of their empirical comovement

in levels (79% in the data), but overstates it in changes (28% in the data).

The third panel of Table 10 reports moments for FX correlation risk premia. The

model is able to successfully replicate the negative association observed in the data

between realized correlations and correlation risk premia in two dimensions: the negative

cross-sectional correlation between average realized correlations and average correlation

risk premia, and the negative time series correlation between realized correlations and

correlation risk premia both in levels and in changes for virtually all FX pairs. The

only weakness of the calibrated model regards the magnitude of correlation risk premia:

the model-implied correlation risk premium are lower (in absolute terms) than their

empirical counterparts. However, our model is able to successfully generate both positive

and negative correlation risk premia. In particular, high average correlation FX pairs

have negative average correlation risk premia and low average correlation FX pairs have

positive correlation risk premia in the model as in the data. Finally, the model generates

a negative price of risk for exposure to the correlation risk factor FXC: the annualized

average excess return for the currency portfolio that is long currencies with high exposure

to the correlation risk factor and short currencies with a low exposure is −1.08%.

3.7 The importance of local pricing factor comovement

The key innovation in our reduced-form model compared to earlier research is that we

allow for the local pricing factors to comove across countries. Indeed, in our benchmark

model we shut down any cross-sectional heterogeneity in the pricing of local risk. To

illustrate the importance of comovement in local pricing factors, we relax the assumption

that all local pricing factors are identical, achieved by imposing that ρ = 0, and allow

heterogeneity in local pricing factors across countries.

Recall the dynamics of the local pricing factor given in equation (3). If ρ > 0,

local pricing factors, although ex ante identical, have different realizations in different

countries due to the independence of the local shocks. As a result, countries have
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different conditional SDF loadings in the global innovation ug and the exposure to ug

now enters the expression for real exchange rate changes:

∆qit+1 = Et(∆s
i
t+1)+

√

κzitu
i
t+1−

√

κz0t u
0
t+1+

(

√

γi −
√

γ0
)

√

zwt u
w
t+1+

√
δ
(

√

zit −
√

z0t

)

ugt+1.

Under the risk-neutral measure, the law of motion for the global pricing factor zw is

given by equation (6), as in the benchmark model, whereas the local pricing factors zi,

for i = 0, 1, ..., I satisfy

∆zit+1 = λi,Q(z̄i,Q − zit)− ξ
√

zit

(√
ρui,Qt+1 +

√

1− ρug,Qt+1

)

,

where z̄i,Q ≡ λi

λi,Q z̄
i. Note that λ0,Q ≡ λ− ξ

(√
κ
√
ρ+

√
1− ρ

√
δ
)

, as both components

of the innovations in the domestic pricing factor z0 are priced by the domestic investor,

whereas for i = 1, ..., I we have λi,Q ≡ λ− ξ
√
1− ρ

√
δ as only the global component of

the foreign pricing factor innovations is priced by the domestic investor.

For convenience, consider the polar case of ρ = 1, in which case local pricing factors

are i.i.d. random variables; this is the assumption in Lustig, Roussanov, and Verdelhan

(2011, 2014) and Verdelhan (2013). In that case, the domestic investor prices the shocks

to zw and z0, but not the innovations to the foreign local pricing factors. Thus, to

understand implied FX correlations and FX correlation risk premia, we only need to

consider the dependence of conditional FX correlations on zw and z0. Appendix B

provides a detailed discussion of that dependence.

In order to explore the quantitative aspects of the full model with independent local

pricing factors, we run a simulation with 55,000 monthly periods and eliminate the first

5,000, and set all parameter values equal to the calibrated values in Table 8, with the only

exception being that we set ρ = 1 instead of ρ = 0. FX correlation moments of interest

are reported in Table 11. As expected, all correlation risk premia are positive (and small)

and there is an almost perfect positive association between average FX correlation and

average FX correlation risk premia. In general, as the degree of local pricing factor

comovement declines, so do FX correlation risk premia. For example, setting ρ = 0.5

while keeping the rest of the parameters equal to their calibrated values generates FX
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correlation risk premia ranging from −0.12% to 0.38%, although the relative pricing of

the local factor is still strong enough to generate a negative cross-sectional relationship

between average FX correlation and average FX correlation risk premia.

In sum, introducing cross-country comovement in local pricing factors allows for

explaining the joint time series and cross-sectional behavior of FX correlations and FX

correlation risk premia, while preserving all the previously studied properties of earlier

models, as those do not crucially depend on the relative pricing of local pricing factor

innovations over global pricing factor innovations.

[Insert Table 11 here.]

4 Conclusion

We document large cross-sectional differences in average FX correlations and average

FX correlation risk premia, and show that there is a negative association between the

two in the cross section of FX pairs. Furthermore, we show there is a negative rela-

tionship between FX correlations and FX correlation risk premia, both in levels and in

changes, in the time series of virtually all FX pairs, suggesting that implied FX correla-

tion is less responsive to shocks than physical FX correlation. Finally, we find a negative

cross-sectional relationship between average FX correlations and correlation cyclicality,

implying that FX pairs that are highly correlated on average become even more corre-

lated in bad times while pairs characterized by low average correlation become even less

correlated. Thus, FX correlations become more dispersed in adverse economic states.

We capture the countercyclicality of cross-sectional dispersion in conditional FX

correlation by constructing the FX correlation factor FXC, defined as the difference

between the average conditional correlation of the most and least conditionally corre-

lated FX pairs. We then sort currencies into portfolios based on their exposure to our

correlation factor and show that the spread between high and low FXC beta currency

portfolios is economically and statistically large, ranging between 4% and 6.4%, de-

pending on the set of currencies, for our benchmark sample period of January 1996 to

December 2013. For the same time period, we estimate the price of FX correlation risk

43



to be almost −6% per year. In short, we find that investors want to be compensated

for investing in currencies that perform badly during periods of increased cross-sectional

disparity in conditional FX correlations.

We rationalize our findings with a no-arbitrage model of exchange rates that is able to

replicate the salient empirical time series and cross sectional properties of FX correlations

and FX correlation risk premia, and show the importance of cross-country comovement

in the price of local risk. Thus, richer models that feature endogenously determined

stochastic discount factors and aim to explain the joint dynamics of FX correlations

under the physical and under the risk-neutral measure need to feature comovement in

the pricing of not just common, but also country-specific shocks.
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Appendix A

In the first step of our calibration, we perform a grid search that considers values of the local
pricing factor volatility parameter ξ ranging from 0.005561 to 0.031893 and values of the local
pricing factor volatility parameter ξw ranging from 0.000900 to 0.005561. Thus, we restrict
our search in the subset of the parameter space that ensures that ξ is at least as high as ξw,
following our model intuition. For comparison, Lustig, Roussanov, and Verdelhan (2011) use
a common value of 0.002500 for both ξ and ξw. We also vary the value of the mean-reversion
parameters λ and λw in order to ensure that: i) the unconditional volatility of the local pricing
factor z ranges between 1 and 5 times its unconditional volatility in the Lustig, Roussanov
and Verdelhan (2011) calibration, and that ii) the unconditional volatility of the global pricing
factor zw is exactly equal to its unconditional volatility in the Lustig, Roussanov and Verdelhan
(2011) calibration. Therefore, although we vary λ, we severely constrain the range of values
it can achieve, given ξ. Furthermore, the value of λw is exactly determined by the value of ξw

though the expression for the unconditional volatility of the global pricing factor, so variation
in λw provides no extra degree of freedom in our calibration.

In the second step of our calibration, we select the set of parameter values that minimizes
the expression

J =

(

β̂1 − β1

β1

)2

+

(

β̂2 − β2

β2

)2

+

(

β̂3 − β3

β3

)2

(A-1)

where β1, β2 and β3 refer to the empirical values of U.S. real exchange rate volatility, the
cross-sectional average of foreign real interest rate volatility, and the cross-sectional average of
real exchange rate volatility, respectively, and β̂1, β̂2 and β̂3 refer to the simulated values of
the aforementioned moments.

Appendix B

We illustrate the impact of changes in zw and z0 on the conditional FX correlations in the full
model in Figure 8. As in Figure 7, we study a world of three foreign countries. Countries 1
and 2 are less exposed to the first global shock uw than the domestic country, while country
3 is more exposed. The left panels of Figure 8 depict the conditional FX correlations as a
function of the global pricing factor zw for different values of the domestic local pricing factor
z0, holding all the foreign local pricing factors equal to their common steady-state value z̄.
Not surprisingly, in the full model the impact of changes in the global pricing factor zw is the
same as in the benchmark model that features identical local pricing factors: as zw increases,
similarities and dissimilarities in exposure to global risk get amplified.

The right panels of Figure 8 present the conditional FX correlations as a function of z0

for different values of zw, assuming that all other pricing factors are equal to their steady-
state values. Notably, the relationship between z0 and the conditional FX correlation is not
monotonic. For small values of z0, the conditional FX correlation is higher than its steady-
steady value for all FX pairs. This is because all FX pairs are similar regarding their exposure
to the second global shock ug: the loading of all foreign countries is lower than the domestic
loading. In that range, as the value of z0 increases, the value of the FX correlation decreases,
since higher values of z0 reduce the FX correlation arising from exposure to ug. When z0 = z̄,
all local factors have identical values, so exposure to ug does not affect FX moments. Finally,
for large values of z0, increases in z0 increase the similarity of all FX pairs regarding the
exposure to ug, as the domestic loading becomes much higher than all foreign loadings.
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[Insert Figure 8 here.]

Crucially, changes in z0 push the conditional correlation of all FX pairs, similar and dis-
similar, in the same direction. This implies that, in the absence of comovement in local pricing
factors across countries, the model’s ability to match the negative cross-sectional relationship
between average FX correlations and average FX correlation risk premia is severely hindered.
Recall that in the benchmark model, the desired cross-sectional pattern was achieved by over-
weighing states of the world characterized by high values of the common local pricing factor.
However, Figure 8 shows that overweighing states in which the domestic pricing factor z0 has
a high value does not generate the desired cross-sectional pattern when only z0 fluctuations
are priced. Indeed, in the absence of global pricing effects, such a risk adjustment leads to
positive correlation risk premia for all FX pairs. As a result, local pricing effects are not likely
to be able to overturn the positive cross-sectional relationship between FX correlations and
FX correlation risk premia generated by global pricing effects. 25

25The Online Appendix considers a global economy in which the loading of all countries to the second
global shock is equal to zero, i.e., δ = 0, and shows that local pricing effects do not have the desired
properties in that case either.
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Appendix C Tables

Table 1

Summary statistics for G10 currencies and carry trade portfolios

This table reports summary statistics for the G10 currencies (Panel A) and currency portfolios
sorted on forward discounts observed at the end of period t (Panels B and C). In Panel
A currencies are sorted on the average forward discount (first row, annualized expressed in
percent). Portfolio 1 (Pf1) contains 25% of all the currencies with the lowest forward discounts
whereas Portfolio 4 (Pf4) contains currencies with the highest forward discounts. Panel B
reports the summary statistics for the full set of currencies, whereas in Panel C only developed
countries are considered. All returns are excess returns in USD, annualized and expressed in
percent. DOL denotes the average return of the four currency portfolios, HML denotes a
long-short portfolio that is short in Pf1 and invests in Pf4. Data is monthly and runs from
January 1996 through December 2013. Before 1999 we use the DEM instead of the EUR.

Panel A: G10 countries

JPY CHF EUR SEK CAD GBP NOK AUD NZD

ft − st -3.01 -2.00 -0.60 -0.10 -0.04 0.91 0.98 2.12 2.70
Mean -2.74 -0.39 -0.46 0.22 1.12 1.37 1.17 3.01 3.73
StDev 10.78 10.91 10.25 11.22 8.50 8.50 11.15 12.78 13.09
Skewness 0.48 0.13 -0.15 -0.08 -0.60 -0.50 -0.36 -0.60 -0.37
Kurtosis 5.22 4.40 3.80 3.61 7.26 4.73 4.10 5.29 4.85

Panel B: Carry portfolios all countries

Pf1 Pf2 Pf3 Pf4 DOL HML

Mean -1.76 0.83 2.51 4.32 1.47 6.08
StDev 7.00 7.24 8.17 9.81 7.33 7.66
Skewness -0.07 -0.46 -0.80 -0.92 -0.64 -0.54
Kurtosis 3.01 4.66 5.66 6.14 4.89 4.34
Sharpe Ratio -0.25 0.11 0.31 0.44 0.20 0.79

Panel C: Carry portfolios developed countries

Pf1 Pf2 Pf3 Pf4 DOL HML

Mean -1.30 0.29 1.39 4.07 1.11 5.37
StDev 8.58 8.40 9.86 11.56 8.48 9.71
Skewness 0.24 -0.11 -0.58 -0.39 -0.26 -0.53
Kurtosis 3.19 3.95 6.19 5.15 4.15 4.97
Sharpe Ratio -0.15 0.03 0.14 0.35 0.13 0.55
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Table 2

Summary Statistics for variances and variance risk premia

This table reports summary statistics for implied and realized variances (Panels A and B) and
the variance risk premium, which is defined as the difference between the implied and realized
variance (Panel C). Implied variances are calculated from daily option prices on the underlying
exchange rates. Realized variances are calculated using past daily log exchange rate changes
over a three month window. Variances and variance risk premia are monthly and expressed
in squared percent. Data is monthly and runs from January 1996 to December 2013 (options
data for EUR starts in January 1999).

Panel A: Implied variance

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean 13.32 6.97 10.49 10.54 7.71 11.94 12.73 14.84 12.97
StDev 14.63 7.65 5.62 7.87 7.33 8.59 10.05 11.97 10.52
Skewness 6.74 4.26 3.25 3.91 5.22 3.95 4.17 4.15 3.93
Kurtosis 65.86 26.34 19.89 24.87 37.06 28.87 26.29 29.47 22.95
AC(1) 0.69 0.86 0.73 0.77 0.80 0.68 0.80 0.74 0.82

Panel B: Realized variance

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean 14.52 6.55 10.07 8.34 7.05 10.44 11.97 15.20 12.02
StDev 24.57 8.57 7.28 5.70 7.67 7.86 11.53 16.60 12.01
Skewness 6.51 4.48 3.88 3.49 4.69 3.05 3.78 4.48 3.97
Kurtosis 49.68 28.15 20.78 19.48 26.91 15.17 19.44 27.16 21.11
AC(1) 0.84 0.91 0.84 0.92 0.93 0.86 0.93 0.89 0.94

Panel C: Variance risk premium

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean -1.19 0.42 0.43 1.72 0.66 1.50 0.77 -0.36 0.95
StDev 14.74 3.16 5.35 4.58 3.77 5.81 5.79 9.09 6.47
Skewness -8.68 -1.32 -1.96 5.47 3.05 1.90 -0.19 -5.66 0.18
Kurtosis 84.82 34.11 20.07 54.18 45.93 32.81 19.86 47.94 30.79
AC(1) 0.60 0.45 0.58 0.45 0.46 0.33 0.57 0.52 0.54
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Table 3

Summary statistics for correlation risk premia

This table reports means and standard deviations for implied and realized correlations, as
well as correlation risk premia for all FX pairs. Correlation risk premia (CRP) are defined
as the difference between the implied and realized correlations. Implied correlations (IC) are
calculated from daily option prices on the underlying exchange rates. Realized correlations
(RC) are calculated using past daily log exchange rate changes over a three month window.
Correlations and correlation risk premia are expressed in decimals. Data is monthly and runs
from January 1996 to December 2013 (options data for EUR starts in January 1999).

IC RC CRP

Currency Mean StDev Mean StDev Mean StDev t-stat

AUD CAD 0.430 0.274 0.471 0.246 -0.041 0.148 -4.07
AUD CHF 0.405 0.200 0.357 0.273 0.048 0.149 4.73
AUD EUR 0.544 0.162 0.450 0.276 0.019 0.089 2.81
AUD GBP 0.453 0.186 0.422 0.241 0.031 0.119 3.86
AUD JPY 0.238 0.257 0.155 0.341 0.083 0.161 7.58
AUD NOK 0.431 0.294 0.467 0.258 -0.036 0.201 -2.64
AUD NZD 0.739 0.146 0.755 0.164 -0.016 0.081 -2.97
AUD SEK 0.480 0.202 0.474 0.255 0.005 0.127 0.61
CAD CHF 0.283 0.211 0.233 0.283 0.050 0.149 4.94
CAD EUR 0.405 0.187 0.307 0.298 0.024 0.133 2.45
CAD GBP 0.307 0.231 0.281 0.269 0.025 0.153 2.34
CAD JPY 0.136 0.190 0.054 0.259 0.082 0.164 7.33
CAD NOK 0.341 0.279 0.340 0.276 -0.002 0.184 -0.17
CAD NZD 0.352 0.342 0.413 0.234 -0.061 0.215 -4.19
CAD SEK 0.287 0.290 0.352 0.261 -0.069 0.170 -5.96
CHF EUR 0.875 0.117 0.888 0.135 -0.010 0.078 -1.69
CHF GBP 0.605 0.146 0.580 0.190 0.025 0.110 3.32
CHF JPY 0.456 0.179 0.405 0.255 0.051 0.145 5.15
CHF NOK 0.731 0.119 0.726 0.160 0.006 0.110 0.73
CHF NZD 0.370 0.199 0.358 0.230 0.012 0.162 1.06
CHF SEK 0.712 0.133 0.707 0.159 0.004 0.105 0.58
EUR GBP 0.683 0.101 0.644 0.153 0.003 0.079 0.54
EUR JPY 0.364 0.195 0.324 0.271 0.067 0.154 5.84
EUR NOK 0.798 0.071 0.825 0.095 -0.025 0.065 -5.20
EUR NZD 0.501 0.173 0.440 0.230 0.005 0.125 0.55
EUR SEK 0.817 0.077 0.816 0.113 -0.022 0.064 -4.64
GBP JPY 0.293 0.188 0.217 0.264 0.076 0.152 7.29
GBP NOK 0.638 0.120 0.577 0.155 0.059 0.161 5.39
GBP NZD 0.404 0.219 0.415 0.225 -0.011 0.136 -1.15
GBP SEK 0.598 0.133 0.560 0.165 0.037 0.129 4.26
JPY NOK 0.347 0.213 0.248 0.260 0.099 0.158 9.22
JPY NZD 0.233 0.237 0.146 0.320 0.087 0.180 7.09
JPY SEK 0.294 0.197 0.241 0.271 0.052 0.155 4.95
NOK NZD 0.413 0.274 0.449 0.222 -0.036 0.198 -2.65
NOK SEK 0.780 0.106 0.796 0.102 -0.016 0.081 -2.93
NZD SEK 0.403 0.270 0.439 0.231 -0.036 0.181 -2.89
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Table 4

Time series correlations for RC, IC, and CRP

This table reports the time series correlations between realized correlations (RC) and implied
correlations (IC) on one hand (columns one and two), and between realized correlations and
correlation risk premia (CRP) on the other hand (columns three and four) for all FX pairs.
Correlation risk premia (CRP) are defined as the difference between the implied and realized
correlations. Implied correlations (IC) are calculated from daily option prices on the underlying
exchange rates. Realized correlations (RC) are calculated using past daily log exchange rate
changes over a three month window. Time series correlations are expressed in decimals and
they are measured using monthly data from January 1996 to December 2013 (options data for
EUR starts in January 1999).

Correlation RC/IC Correlation RC/CRP

Currency Level Changes Level Changes

AUD CAD 0.843 0.248 -0.102 -0.676
AUD CHF 0.844 0.348 -0.695 -0.773
AUD EUR 0.923 0.424 -0.714 -0.698
AUD GBP 0.876 0.211 -0.656 -0.710
AUD JPY 0.892 0.503 -0.695 -0.641
AUD NOK 0.744 0.101 -0.213 -0.721
AUD NZD 0.872 0.319 -0.457 -0.686
AUD SEK 0.870 0.191 -0.618 -0.618
CAD CHF 0.856 0.180 -0.684 -0.769
CAD EUR 0.864 0.247 -0.702 -0.791
CAD GBP 0.825 0.266 -0.518 -0.719
CAD JPY 0.777 0.361 -0.680 -0.686
CAD NOK 0.780 0.142 -0.316 -0.633
CAD NZD 0.784 0.066 0.161 -0.574
CAD SEK 0.813 0.029 -0.137 -0.598
CHF EUR 0.846 0.495 -0.603 -0.354
CHF GBP 0.816 0.315 -0.640 -0.634
CHF JPY 0.835 0.323 -0.733 -0.520
CHF NOK 0.725 0.232 -0.671 -0.600
CHF NZD 0.724 0.270 -0.532 -0.733
CHF SEK 0.757 0.284 -0.560 -0.425
EUR GBP 0.774 0.381 -0.592 -0.621
EUR JPY 0.858 0.423 -0.760 -0.567
EUR NOK 0.704 0.350 -0.632 -0.426
EUR NZD 0.770 0.224 -0.467 -0.692
EUR SEK 0.721 0.368 -0.549 -0.537
GBP JPY 0.824 0.405 -0.713 -0.594
GBP NOK 0.332 0.293 -0.710 -0.595
GBP NZD 0.812 0.234 -0.350 -0.597
GBP SEK 0.644 0.273 -0.615 -0.551
JPY NOK 0.795 0.394 -0.572 -0.620
JPY NZD 0.831 0.396 -0.680 -0.664
JPY SEK 0.825 0.379 -0.699 -0.582
NOK NZD 0.699 0.051 -0.157 -0.659
NOK SEK 0.701 0.219 -0.347 -0.403
NZD SEK 0.750 0.088 -0.158 -0.699
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Table 5

Correlations for risk factors

This table reports the correlation coefficients between the correlation factors FXC and
FXCUNC and the global equity volatility measure used in Lustig, Roussanov, and Verdel-
han (2011) (GV ol), the global funding illiquidity measure of Malkhozov, Mueller, Vedolin, and
Venter (2014) (GFI), the CBOE VIX (V IX), and the TED spread (TED). Data is monthly
and runs from January 1996 through December 2013.

FXC FXCUNC GV ol GFI TED V IX

FXC 1.00 0.86 0.35 0.48 0.42 0.45

FXCUNC 0.86 1.00 0.26 0.44 0.41 0.39

GV ol 0.35 0.26 1.00 0.53 0.59 0.81

GFI 0.48 0.44 0.53 1.00 0.57 0.61

TED 0.42 0.41 0.59 0.57 1.00 0.43

V IX 0.45 0.39 0.81 0.61 0.43 1.00
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Table 6

Summary statistics for correlation portfolios

Panel A reports summary statistics for G10 currency portfolios sorted on exposure to the corre-
lation risk factor FXC observed in period t. The exposure is measured by regressing currency
excess returns on innovations in the correlation risk factor over the preceding 36 months. Port-
folio 1 (Pf1) contains the three currencies with the lowest pre-sort correlation betas whereas
Portfolio 3 (Pf3) contains the three currencies with the highest pre-sort correlation betas. Pan-
els B and C report the summary statistics for the four correlation sorted portfolios using full
set of currencies and the set developed currencies, respectively. All returns are excess returns
in USD, annualized and expressed in percent. HMLC , HMLC−ALL and HMLC−DEV denote
the long-short portfolios that invest in the high correlation beta currencies (Pf3 or Pf4, respec-
tively) and short the low correlation beta currencies (Pf1) for the different sets of currencies.
Data is monthly and runs from January 1996 through December 2013.

Panel A: G10 countries

Pf1 Pf2 Pf3 HMLC

Mean 4.04 0.99 -2.38 -6.42
StDev 10.26 9.11 7.86 7.83
Skewness -0.66 0.06 0.01 0.44
Kurtosis 6.57 3.53 3.09 4.75
Sharpe Ratio 0.39 0.11 -0.30 -0.82

Panel B: All countries

Pf1 Pf2 Pf3 Pf4 HMLC−ALL

Mean 3.92 1.63 0.28 -0.12 -4.04
StDev 10.52 8.60 6.87 6.13 8.72
Skewness -0.95 -0.58 -0.30 -0.43 0.70
Kurtosis 6.23 5.69 3.77 4.08 5.09
Sharpe Ratio 0.37 0.19 0.04 -0.02 -0.46

Panel C: Developed countries

Pf1 Pf2 Pf3 Pf4 HMLC−DEV

Mean 4.29 2.31 -1.88 -1.36 -5.64
StDev 11.02 9.96 8.93 8.03 9.64
Skewness -0.58 -0.20 -0.14 0.19 0.80
Kurtosis 7.18 4.02 3.73 3.61 6.80
Sharpe Ratio 0.39 0.23 -0.21 -0.17 -0.59
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Table 7

Estimating the price of correlation risk: HMLC

Test assets are the four portfolios sorted based on exposure to the correlation risk factor FXC
from Table 6 based on either all countries or developed countries only. HMLC is the high
minus low portfolio constructed using the G10 currencies. Panel A reports factor betas and
Newey and West (1987) standard errors (in parentheses) while Panel B reports the Fama and
MacBeth (1973) factor prices and standard errors (in parentheses). Shanken (1992)-corrected
standard errors are reported in brackets. Data is monthly and runs from January 1996 through
December 2013.

Panel A: Factor betas

All countries Developed countries

α DOL HMLC R2 α DOL HMLC R2

Pf1 0.07 1.17 -0.34 0.89 0.00 1.11 -0.52 0.88
(0.06) (0.03) (0.03) (0.08) (0.04) (0.04)

Pf2 -0.02 1.05 -0.11 0.88 0.04 1.15 -0.06 0.74

(0.06) (0.04) (0.03) (0.10) (0.06) (0.05)
Pf3 0.02 0.87 0.14 0.79 -0.06 1.15 0.17 0.80

(0.06) (0.04) (0.03) (0.09) (0.06) (0.04)
Pf4 0.09 0.76 0.31 0.75 0.11 0.96 0.53 0.75

(0.06) (0.04) (0.03) (0.09) (0.05) (0.04)

Panel B: Factor prices

All countries Developed countries

DOL HMLC R2 DOL HMLC R2

0.14 -0.49 0.96 0.12 -0.48 0.95
(0.15) (0.22) (0.15) (0.16)
[0.15] [0.23] [0.15] [0.17]
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Table 8

Parameter values

This table reports the annualized parameter values for the calibrated version of the model.
All countries share the same parameter values except for γ: γ0 is the parameter for the home
country, whereas the values for γi are linearly spaced on the interval [γmin, γmax].

SDF parameters

α χ φ κ δ γ0 γmin γmax

0.0077 2.78 2.78 0.65 16.04 12.84 8.35 17.34

Factor dynamics

λ z̄ ξ λw z̄w ξw

0.93 0.000781 0.025453 0.19 0.000781 0.003741

Inflation dynamics

π̄ ψ ζ
√
σ

-0.0054 0 9.41 0.0027
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Table 9

Simulated moments: Interest rates, inflation, and exchange rates

In the first panel, we report annualized means and standard deviations of real US interest rates and cross-
sectional averages of mean and standard deviation of foreign (FGN) interest rates in the data and in the
model. The second panel reports cross-sectional averages of exchange rate volatility and autocorrelation.
The third panel reports average and standard deviation of US inflation and cross-sectional averages of
mean and standard deviation of foreign inflation. The fourth panel reports annualized means and
standard deviations of nominal US interest rates and cross-sectional averages of mean and standard
deviation of foreign (FGN) interest rates. The fifth panel reports cross-sectional averages of the volatility
and autocorrelation of nominal exchange rates. The sixth panel reports the average excess return on
the carry factor and the last panel reports the cross-sectional average of the standard deviation of the
real and nominal log SDF.
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Table 10

Simulated moments: FX correlations and risk premia

For all moments, the left column presents the empirical moments, whereas the right column presents
the simulated moments. All moments refer to nominal exchange rates. The first panel reports the
cross-sectional minimum, mean and maximum of average realized FX correlation. The second panel
reports the cross-sectional minimum, mean and maximum of average implied FX correlation, the cross-
sectional correlation between average realized and average implied FX correlation, the cross-sectional
average of the correlation between realized and implied FX correlation and the cross-sectional average
of the correlation between changes in realized and implied FX correlation. The third panel reports the
cross-sectional minimum, mean and maximum of average FX correlation risk premia, the cross-sectional
correlation between average realized correlation and average correlation risk premia, the cross-sectional
minimum, mean and maximum of the correlation between realized correlation and correlation risk
premia, and the cross-sectional minimum, mean and maximum of the correlation between changes in
realized correlation and changes in correlation risk premia. The last panel reports the average excess
return of a monthly rebalanced portfolio that has along position on the 3 foreign currencies with the
highest conditional loading on the correlation risk factor FXC and a short position on the 3 foreign
currencies with the lowest conditional loading on FXC.

Moment Data Model
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Table 11

Simulated moments: FX correlations and risk premia no comovement in

local pricing factors

The first panel reports the minimum, average and maximum cross-sectional average of realized nominal
exchange rate correlation in the model. The second panel reports cross-sectional average of mean implied
correlation, the unconditional cross-sectional correlation between average realized and implied exchange
rate correlation, the cross-sectional average of the correlation between realized and implied exchange rate
correlation and the cross-sectional average of the correlation between changes in realized and implied
exchange rate correlation. The third panel reports the cross-sectional average of the correlation risk
premia, the cross-sectional correlation of average realized correlation and correlation risk premia, the
cross-sectional minimum of the correlation between realized correlation and correlation risk premia and
changes thereof, the cross-sectional average of the correlation of realized correlation and the correlation
risk premia and the changes thereof and the cross-sectional maximum of the correlation between realized
correlation and correlation risk premia and the changes thereof. Lastly, we report the average excess
return on the correlation portfolio.
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Appendix D Figures
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Figure 1. G10 realized correlation and correlation risk premia

This figure plots the average correlation risk premia for all 36 G10 exchange rate pairs
against the average realized correlations. The unconditional correlation between the
average correlation risk premia and average correlation is −55%. Correlation risk premia
and correlations are expressed in percent. Data is monthly and runs from January 1996
(EUR since January 1999) to December 2013.
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Figure 2. Realized correlations, correlation risk premia, and cyclicality

This figure illustrates the relationship between measures of cyclicality of FX correlations and
average realized correlations and average correlation risk premia, respectively. Cyclicality is
measured by the correlation between the realized correlation time series for a FX pair and
a proxy for a global risk. The proxies considered are the global equity volatility measure
from Lustig, Roussanov, and Verdelhan (2011) (GV ol, Panels A and B), the global funding
illiquidity measure (GFI, Panels C and D) from Malkhozov, Mueller, Vedolin, and Venter
(2014), the TED spread (TED, Panels E and F), and the CBOE VIX (V IX, Panels G and
H). Data is monthly and runs from January 1996 to December 2013.
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Figure 3. Correlation risk premia and cyclicality

This figure illustrates the relationship between measures of cyclicality of correlation risk premia
and average correlation risk premia. Cyclicality is measured by the correlation between the
correlation risk premia for a FX pair and a proxy for a global risk. The proxies considered
are the global equity volatility measure from Lustig, Roussanov, and Verdelhan (2011) (GV ol,
Panel A), the global funding illiquidity measure (GFI, Panels B) from Malkhozov, Mueller,
Vedolin, and Venter (2014), the TED spread (TED, Panels C), and the CBOE VIX (V IX,
Panels D). The cross-sectional correlations between the average correlation and the proxies
are 47%, 79%, 70% and 58%, respectively. Data is monthly and runs from January 1996 to
December 2013.
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Figure 4. FX correlation risk factor and measures of cyclicality

Panel A plots the correlation risk factor FXC calculated as the difference between the average high and
low correlation FX pairs (solid line). The two groups consist of the highest and lowest decile of realized
correlations across all 36 G10 FX pairs. The deciles are rebalanced every month. The correlation risk
factor is calculated for the period from January 1996 to December 2013. The alternative correlation
risk factor FXCUNC is calculated as the difference of correlations between the decile of high correlation
pairs and the decile of low correlation pairs measured over the whole sample period. Panel B plots the
global equity volatility measure used in Lustig, Roussanov, and Verdelhan (2011) (GV ol), the global
funding illiquidity measure of Malkhozov, Mueller, Vedolin, and Venter (2014) (GFI), the CBOE VIX
(V IX), and the TED spread (TED). All series are standardized to have zero mean and a standard
deviation of one. The shaded areas depict NBER recessions.
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Figure 5. Portfolios sorted on exposure to correlation risk

The figure displays average portfolio excess returns for different subsamples. Currencies are
sorted at time t into portfolios based on exposure to correlation risk at the end of period
t − 1. The exposure is measured by regressing currency excess returns on innovations in the
correlation risk factor over the preceding 36 months. Portfolio 1 (Pf1) contains the currencies
with the lowest pre-sort correlation beta whereas Portfolio 3 or 4 (Pf3 or Pf4) contains the
currencies with the highest pre-sort correlation beta. The average portfolio excess returns are
calculated for the various sample periods starting either in January 1984 or January 1996 and
ending in December 2013 or July 2007 (i.e., excluding the financial crisis). Panel A presents
the results for the three G10 currency portfolios sorted based on the exposure to innovations
in the correlation risk factor FXC. Panels B and C present the portfolio excess returns for
portfolio sorts using an extended set of currencies (either developed currencies only or the full
set as described in Section 1.1).
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Figure 6. Model performance with various test assets

The figure plots the actual annualized mean excess returns in percent versus the predicted
excess returns for various test assets using a linear pricing model that includes the dollar
factor DOL and the HMLC correlation factor. Panel A displays the results for the nine
G10 currencies and Panels B and C display the results for the four carry (Pf1F to Pf4F)
and correlation (Pf1C to Pf4C) portfolios constructed using all or only developed currencies,
respectively. Data is monthly and runs from January 1996 to December 2013.
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Figure 7. Model-implied FX correlations

The figure displays the properties of conditional real FX correlation in the benchmark model,
which features identical local pricing factors. Panels A, C and E plot conditional FX correlation
as a function of the global pricing factor zw, holding the local pricing factor z constant: Panel
A refers to the conditional FX correlation of the similar FX pair (1,2), Panel C refers to the
conditional FX correlation of the dissimilar FX pair (1,3) and Panel E refers to difference in
the conditional FX correlation between the two pairs. In each panel, the circles, solid line and
squares plot the conditional FX correlation conditional on the local pricing factor z being equal
to 0.2, 1, and 5 times its steady-state value z̄, respectively. Panels B, D and F plot conditional
FX correlation as a function of the local pricing factor z, holding the global pricing factor zw

constant: Panel B refers to the conditional FX correlation of the similar FX pair (1,2), Panel
D refers to the conditional FX correlation of the dissimilar FX pair (1,3) and Panel F refers to
difference in the conditional FX correlation between the two pairs. In each panel, the circles,
solid line and squares plot the conditional FX correlation conditional on the global pricing
factor zw being equal to 0.2, 1, and 5 times its steady-state value z̄w, respectively. To plot the
figures, we set the relevant model parameters equal to their calibrated values in Table 8.
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Figure 8. Model-implied FX correlations: no comovement in local pricing

factors

The figure displays the properties of conditional real FX correlation in the full model. Panels A, C and
E plot conditional FX correlation as a function of the global pricing factor zw, holding all the local
pricing factors constant: Panel A refers to the conditional FX correlation of the similar FX pair (1,2),
Panel C refers to the conditional FX correlation of the dissimilar FX pair (1,3) and Panel E refers to
difference in the conditional FX correlation between the two pairs. In each panel, the circles, solid line
and squares plot the conditional FX correlation conditional on the domestic local pricing factor z0 being
equal to 0.2, 1, and 5 times its steady-state value z̄, respectively, and all the foreign local pricing factors
being equal to their common steady-state value z̄. Panels B, D and F plot conditional FX correlation
as a function of the local pricing factor zw, holding the global pricing factor zw constant: Panel B
refers to the conditional FX correlation of the similar FX pair (1,2), Panel D refers to the conditional
FX correlation of the dissimilar FX pair (1,3) and Panel F refers to difference in the conditional FX
correlation between the two pairs. In each panel, the circles, solid line and squares plot the conditional
FX correlation conditional on the global pricing factor zw being equal to 0.2, 1, and 5 times its steady-
state value z̄w, respectively, and all the foreign local pricing factors being equal to their steady-state
value steady-state value z̄. To plot the figures, we set the relevant model parameters equal to their
calibrated values in Table 8.
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